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Hamiltonian Circuits as Coalitions and their Core Status

L . G . Telser

Definition. Arrows in a Hamiltonian circuit appear only once and have the 
same orientation.

Let c denote a coalition with m members. Let V[c] denote the value of 
c. Let x[i] denote the contribution of coalition member i to c.
(1) V[c] = F[X],

 X = {x[1], x[2], … ,  x[m]}
 is an m-vector in the positive orthant of R n, n > m.
The value of a Hamiltonian circuit in the Nöther algebra is the product of 
its members’ contributions to the circuit.
(2) F[X] = ∏i=1

m x [i ]
Let μ denote the arithmetic mean of X and let γ denote the geometric 
mean of X.
(3) μ = (1/n) ∑i=1

m x [i ]  and  γ = F [x ]m .
The well-known theorem relating the arithmetic mean to the geometric 
mean says
(4) μ > γ.
The two means are equal if and only if x[i] is the same for all i.

Classical core theory states the following problem.
Let n individuals form coalitions. The minimax theorem applies to the 
function that defines the value of a coalition. The value is the most the 
coalition can get under the most adverse conditions. Let N denote the 
grand coalition of all n individuals. The upper bound on the return to N is 
V(N). An imputation of the payoffs, r[i], i = 1, 2, …, n,  is in the core if
 ∑i=1

n r[i] ≤ V[N], and each coalition c can pay its members at least V[c]. 
 A solution of the following linear programming problem can show 
whether this is possible (Bondereva [1963]).

Primal Problem   Min ∑i=1
n r [i ] with respect to r[i] ≥ 0 subject to

(5) ∑i∈c r [i ] ≥ V [c ]  for all c ∈ S, where S denotes the set of all the 
feasible coalitions.
If the constraints have a solution that can satisfy
 (6) ∑i∈N r [i ] ≤ v[N], 
then it is in the core. Otherwise, the core is empty.



Primal Problem   Min ∑i=1
n r [i ] with respect to r[i] ≥ 0 subject to

(5) ∑i∈c r [i ] ≥ V [c ]  for all c ∈ S, where S denotes the set of all the 
feasible coalitions.
If the constraints have a solution that can satisfy
 (6) ∑i∈N r [i ] ≤ v[N], 
then it is in the core. Otherwise, the core is empty.

The problem is whether there is a core for coalitions as Hamiltonian 
circuits.

Let p[i] = log x[i] denote the payoff to member i in circuit c. Assume 
the circuit has m members. Equations (2) and (3) imply
(7)   log γ = (1/m) log [ ∏i=1

m x [i ] ] = (1/m) ∑i=1
m log x [i ] 

   = (1/m) ∑i=1
m p [i ] = Mean[p(m)].

 Inequality (4) implies taking logs gives
(8)   log μ > log γ = Mean [p(m)].
The log of the value of circuit c satisfies the following conditions. 
(9)  log V[c] = log (∏i=1

m x [i ]) = ∑i=1
m log x [i ] 

= ∑i=1
m p [i ] = m log γ.

Therefore,
(10)  log V[c] = m log γ = m Mean[p(m)]

 These results imply the value of a Hamiltonian circuit is maximal when 
its members are equally productive.

Equation (10) says; If circuit members are paid the log of their 
contributions to the circuit, then their payoffs sum to the log of the 
value of the circuit. If instead they are paid their actual contributions, 
x[i], then the sum of these payments would exceed the value of the 
circuit. Also, the sum of these payments over any partition of the 
individuals into circuits would not be feasible so the sum cannot belong 
to the core. However, the log of the value of the circuit equals the sum 
of the logs of the member contributions. This satisfies a necessary but 
not a sufficient condition for a non empty core. One must also show the 
sum of the logs is maximal so it is an imputation. The maximal valuation 
occurs only if all members get the same payoff. It is not hard to show 
the maximal valuation is dominated by the 3-circuit containing the most 
productive members of the grand coalition.

The best case for a non empty core is when the contribution to a circuit 
by a member does not depend on the circuit. When it does depend, a 
non empty core is even less likely.
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The best case for a non empty core is when the contribution to a circuit 
by a member does not depend on the circuit. When it does depend, a 
non empty core is even less likely.

Some Hamiltonian Circuit Properties

All arrows in a Hamiltonian circuit have the same orientation.
No arrow appears more than once.
A Hamiltonian circuit has no Hamiltonian sub-circuit.
The union of two Hamiltonian circuits is a Hamiltonian circuit if and only 
if they do not overlap and share only one vertex.
Hamiltonian circuits that satisfy these conditions for their union is an 
Eulerian Cycle.

In[.]:= cm := {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {1, 0, 0, 1, 0},
{0, 0, 0, 0, 1}, {0, 0, 1, 0, 0}}

In[.]:= gcm := makeGrph[cm, 2]

In[.]:= gcm

Out[.]=

In[.]:= findSomeCycles[cm, 3]

Out[.]= {{3 " 4, 4 " 5, 5 " 3}, {1 " 2, 2 " 3, 3 " 1}}

In[.]:= findSomeCycles[cm, 6]

Out[.]= {}
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In[.]:= fig[Join[{3 ' 4, 4 ' 5, 5 ' 3}, {1 ' 2, 2 ' 3, 3 ' 1}],
3]

Out[.]=

In[.]:= fig[{3 ' 4, 4 ' 5, 5 ' 3, 1 ' 2, 2 ' 3, 3 ' 1}, 3]

Out[.]=

In[.]:= HamiltonianGraphQ[gcm]

Out[.]= False

In[.]:= EulerianGraphQ[gcm]

Out[.]= True

In[.]:= FindHamiltonianCycle[gcm]

Out[.]= {}
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In[.]:= FindEulerianCycle[gcm]

Out[.]= {{1 " 2, 2 " 3, 3 " 4, 4 " 5, 5 " 3, 3 " 1}}

In[.]:= tm := {{0, 1, 0, 0}, {0, 0, 1, 0}, {1, 0, 0, 1},
{0, 1, 0, 0}}

In[.]:= gtm := makeGrph[tm, 3]

In[.]:= gtm

Out[.]=

In[.]:= FindEulerianCycle[gtm]

Out[.]= {}

In[.]:= FindHamiltonianCycle[gtm]

Out[.]= {}

In[.]:= findSomeCycles[tm, 3]

Out[.]= {{2 " 3, 3 " 4, 4 " 2}, {1 " 2, 2 " 3, 3 " 1}}

In[.]:= M := {{0, 1, 0, 1}, {0, 0, 1, 0}, {1, 0, 0, 1},
{0, 1, 0, 0}}

In[.]:= gM := makeGrph[M, 2]
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In[.]:= gM

Out[.]=

In[.]:= HamiltonianGraphQ[gM]

Out[.]= True

FindCycle[gM]

Out[.]= {{1 " 2, 2 " 3, 3 " 1}}

In[.]:= MatrixForm[findAllCycles[M]]
Out[.]//MatrixForm=

{2 " 3, 3 " 4, 4 " 2}
{1 " 2, 2 " 3, 3 " 1}

{1 " 4, 4 " 2, 2 " 3, 3 " 1}

In[.]:= sM := {{0, 1, 1, 1}, {1, 0, 1, 1}, {1, 0, 0, 1},
{1, 1, 1, 0}}
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In[.]:= MatrixForm[findAllCycles[sM]]
Out[.]//MatrixForm=

{3 " 4, 4 " 3}
{2 " 4, 4 " 2}
{1 " 4, 4 " 1}
{1 " 3, 3 " 1}
{1 " 2, 2 " 1}

{2 " 3, 3 " 4, 4 " 2}
{1 " 4, 4 " 3, 3 " 1}
{1 " 4, 4 " 2, 2 " 1}
{1 " 3, 3 " 4, 4 " 1}
{1 " 2, 2 " 4, 4 " 1}
{1 " 2, 2 " 3, 3 " 1}

{1 " 4, 4 " 2, 2 " 3, 3 " 1}
{1 " 3, 3 " 4, 4 " 2, 2 " 1}
{1 " 2, 2 " 4, 4 " 3, 3 " 1}
{1 " 2, 2 " 3, 3 " 4, 4 " 1}
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In[.]:= makeGrph[sM, 3]

Out[.]=

In[.]:= eM := {{0, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 0, 1},
{1, 1, 1, 0}}

In[.]:= EulerianGraphQ[eM]

Out[.]= False

In[.]:= HamiltonianGraphQ[eM]

Out[.]= False
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In[.]:= makeGrph[eM, 2]

Out[.]=

In[.]:= MatrixForm[findAllCycles[eM]]
Out[.]//MatrixForm=

{2 $ 3, 3 $ 4, 4 $ 2}
{1 $ 4, 4 $ 2, 2 $ 1}
{1 $ 2, 2 $ 3, 3 $ 1}
{1 $ 4, 4 $ 3, 3 $ 1}

{1 $ 4, 4 $ 3, 3 $ 2, 2 $ 1}
{1 $ 2, 2 $ 4, 4 $ 3, 3 $ 1}
{1 $ 4, 4 $ 2, 2 $ 3, 3 $ 1}

eM has Hamiltonian sub-circuits but it is not a Hamiltonian circuit.
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In[.]:= tl := {1 ' 2, 2 ' 3, 3 ' 1, 1 ' 4, 4 ' 5, 5 ' 1, 3 ' 4}

In[.]:= fig[tl, 3]

Out[.]=

In[.]:= tlm := {{0, 1, 0, 1, 0}, {0, 0, 1, 0, 0}, {1, 0, 0, 1, 0},
{0, 0, 0, 0, 1}, {1, 0, 0, 0, 0}}

In[.]:= makeGrph[tlm, 2]

Out[.]=

In[.]:= MatrixForm[findAllCycles[tlm]]
Out[.]//MatrixForm=

{1 " 4, 4 " 5, 5 " 1}
{1 " 2, 2 " 3, 3 " 1}

{1 " 2, 2 " 3, 3 " 4, 4 " 5, 5 " 1}

In[.]:= HamiltonianGraphQ[tlm]

Out[.]= False
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Some vertexes are odd.

In[.]:= s5 := {{0, 1, 1, 1, 1}, {1, 0, 1, 1, 1}, {1, 1, 0, 1, 1},
{1, 1, 1, 0, 1}, {1, 1, 1, 1, 0}}

In[.]:= gs5 := makeGrph[s5, 2]

In[.]:= gs5

Out[.]=

In[.]:= EulerianGraphQ[gs5]

Out[.]= True

The symmetric square has no Eulerian graph because its vertexes are 
odd. The symmetric pentagon has an Eulerian graph because its 
vertexes are even.
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