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Marquis de Condorcet and von Neumann: Voting Paradox, 
Economic Growth and Linear Programming

L . G . Telser

1 Introduction

In common with many great discoveries von Neumann' s minimax 
theorem (1928) had unintended consequences. It was von Neumann's 
original intention to describe the best conservative way to play 2-person 
zero-sum games. It turned out that this theorem is the mathematical 
foundation of linear programming. George Dantzig's invention of the 
simplex method for solving linear programming problems is arguably a 
major source of economic growth not only in the last half of the 20th 
century but also to the present. (See Forward in Dantzig and Thapa, 
1997).

The expected value of payoffs is used not because it implies transitivity 
but because it underlies the minimax theorem. The minimax theorem 
needs mixed strategies. A bivariate game could not have a saddlevalue 
were it confined to pure strategies. Whether payoffs are measured in 
money or by an increasing function of money called utility, the validity 
of the minimax theorem depends on a well chosen, convex combination 
of payoffs. The weights of the convex combination are interpreted as 
probabilities. Only on this interpretation does the convex combination 
become the expected value of the payoffs. Of course, the expected 
value of the payoffs does not describe the actual payoff in any single 
play of the game. That the expected value of payoffs is transitive is not 
why it is used.

This interpretation is implicit in von Neumann and Morgenstern (1947, 
sec. 3.5.2). Also worth reading is their deep analysis of how to handle 
comparisons among different goals.(1947, Appendix, especially A.3.4). 

Long before von Neumann and Morgenstern, Marquis de Condorcet 
studied voting mathematically. He discovered the intransitivity of 
choices among three alternatives given by majority rule. He states, 
"Thus the form of the assemblies which decide men's lot is much less 
important for their happiness than the enlightenment of those who sit in 
these assemblies and the progress of reason will contribute more to the 
happiness of peoples than the form of political constitutions." 
Condorcet, 1785, p. 57.
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2 Transitivity and the v. Neumann & Morgenstern Utility Indicator

Transitivity seems to have acquired sterling credentials owing to its 
place in the v. Neumann - Morgenstern cardinal utility function. My brief 
description hardly does justice to their subtle reasons. They introduce 
their utility function to meet objections that a mixed strategy creates 
risky monetary payoffs. Other things equal, it appears that more money 
is always better than less. However, a mixed strategy is not simple. A 
player may win more money with a lower probability or win less money 
with a higher probability. Which the player would prefer is not obvious 
because it depends on two things, the amount of money and the 
probability of getting it. If the probabilities were the same, then 
presumably everyone would prefer more to less money. If the money 
were the same, then presumably everyone would prefer the higher to 
the lower probability of getting the money. The pair, money and 
probability, is a vector with two coordinates. To derive transitivity from 
a vector one must transform it to a scalar. Von Neumann & Morgenstern 
did this in several steps. First, they replace money by a utility indicator 
that moves pari passu with the amount of money. Now a player decides 
on the basis of the utility of the amount of money, U(A), not on the 
amount of money, A. Since the utility indicator is a scalar, A > B > C 
implies U(A) > U(B)> U(C). So far there is an implication of transitivity. 
The choice between A and B is clear if A>B and the probability of 
getting A is not less than the probability of getting B. However, the 
choice is between the joint commodity, an amount of money and the 
probability of getting it, the choice is not between amounts of money 
ignoring the probabilities of getting the amounts of money. Von 
Neumann and Morgenstern reduce the vector to a number by assuming 
the choice is made on the basis of expected utility, not on the basis of 
realized utility. Expected utility is an average of the realized utilities of 
the various outcomes weighted by the probabilities of these outcomes. 
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The solution is not straightforward for this joint product, an amount of 
money and a probability. Assume the vector (A, p) is preferred to the 
vector, (B, q), written (A,p)≻(B,q). The joint product (A, p) is preferred 
to the joint product (B, q), if p and q are probabilities, so they are 
positive numbers between 0 and 1. Also assume that (B, q)≻(C, r), 
where r is a probability. If there were transitivity, then
(1) (A,p) ≻ (B,q) and (B,q) ≻ (C,r) would imply (A,p) ≻ (C,r).
However, the conclusion in (1)  does not follow from anything assumed 
so far. Assume A > B > C. Also assume  the bigger is the prize, the 
smaller the probability of getting it so that p < q < r. Finally, assume 
these probabilities sum to 1, p+q+r=1. All these assumptions do not 
suffice to establish transitivity in (1). Transitivity depends on the shape 
of the utility indicator. Take the simplest case, linear utility and assume 
that
(2) p A > q B, p < q, & q B > r C, q < r.
Now (2) implies transitivity because
(3) p A > q B > r C,
It must not escape attention that to get (3) the model is enriched by 
the assumption not only that the size of the prize varies inversely with 
the probability of getting it but also that the inequalities in (2) hold. The 
latter is an assumption about the world, not about individual preferences.

Utility becomes a random variable because the prize is a random 
variable. Von Neumann and Morgenstern replace utility as a random 
variable by a scalar, expected utility. It is a weighted average of the 
prizes with weights of the utility of each possible prize equal to the 
probability of winning it.

An instructive example shows how the inverse relation between the 
probability of winning a prize and the size of the prize is pertinent. Let p 
denote the probability of winning the prize w. Let r denote the return 
and let
(4) w = 1

p
 - 1

(5) r = 0 probability = 1 - p
w probability = p

Therefore, E(r) = 0 (1-p) + w p = 1 - p. The expected value of the 
return is 1- p .
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Here transitivity and certainty is worth zero.
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Because this example is unfamiliar, it needs some explanation. If X is a 
random variable so that Pr{X ≤ x}=∫ⅆF (x ), then the expected value of X 
is given by E(X)=∫x ⅆF (x ). The formula
w= (1/p) -1 seems to make the random variable depend on the 
probability. However, this is consistent with standard probability theory. 
In standard form, let f(w) be the probability density function of the 
random variable w. Hence E(w) =∫w f (w )dw . Equation (4) yields 
p=1/(1+w) so let f(w)=1/(1+w) be the pdf of w. Now 

∫f (w ) ⅆw=∫ 1
1+w

ⅆw = log(1+w ). For a proper pdf, confine the random 

variable w to the finite range from 0 to an arbitrary, finite upper bound 
V. Given this finite upper bound,
(5) E(w) = ∫ w

1+w
ⅆw = w - log (1+w ).

Dividing by the term log (V+1) to have a proper pdf,
(7) E(w)=( w - log(1+ w) 0

V )  log (V +1) = V  log (V +1) -1.
Since V/log (1+V) is an increasing function of V, the expected value is 
unbounded

4   | 1 de Condercet von Neumann.nb



Because this example is unfamiliar, it needs some explanation. If X is a 
random variable so that Pr{X ≤ x}=∫ⅆF (x ), then the expected value of X 
is given by E(X)=∫x ⅆF (x ). The formula
w= (1/p) -1 seems to make the random variable depend on the 
probability. However, this is consistent with standard probability theory. 
In standard form, let f(w) be the probability density function of the 
random variable w. Hence E(w) =∫w f (w )dw . Equation (4) yields 
p=1/(1+w) so let f(w)=1/(1+w) be the pdf of w. Now 

∫f (w ) ⅆw=∫ 1
1+w

ⅆw = log(1+w ). For a proper pdf, confine the random 

variable w to the finite range from 0 to an arbitrary, finite upper bound 
V. Given this finite upper bound,
(5) E(w) = ∫ w

1+w
ⅆw = w - log (1+w ).

Dividing by the term log (V+1) to have a proper pdf,
(7) E(w)=( w - log(1+ w) 0

V )  log (V +1) = V  log (V +1) -1.
Since V/log (1+V) is an increasing function of V, the expected value is 
unbounded

3 Linear Programming in the Theory of Demand 

According to the minimax theorem, an mXn matrix A has a saddle value given 
by the nonnegative m-tuple xo  and the nonnegative n-tuple yo so that for all 
nonnegative x and y,
(1) x Ayo ≤ xo Ayo ≤ xo Ay.
In the application to games the coordinates of (x, y) are interpreted as 
probabilities. The vectors in the pair (xo , yo ) are the saddle points and xo Ayo 
is the saddlevalue of A.

In 1932 von Neumann gave a lecture to the mathematics department, 
Princeton University, on economic growth in equilibrium. His interpretation of 
the saddlevalue and saddle points is entirely different than his 1928 article on 
game theory that interprets x and y as probabilities. In the application to 
economic growth, the nonnegative coordinates of the x-vector describe n 
inputs to m production processes. lt is the physical combination of the inputs 
required to make the various outputs used as inputs in the economy. An even 
more surprising change is the interpretation of the coordinates of the y-vector. 
No longer probabilities, now they are the relative prices of inputs and outputs 
in the economy. Almost 15 years later George Dantzig invented the simplex 
method that brought to life practical application of this result. It became 
known as linear programming. Dantzig vividly describes von Neumann's major 
role in this invention (Dantzig and Thapa, 1997). 

1 de Condercet von Neumann.nb |   5



In 1932 von Neumann gave a lecture to the mathematics department, 
Princeton University, on economic growth in equilibrium. His interpretation of 
the saddlevalue and saddle points is entirely different than his 1928 article on 
game theory that interprets x and y as probabilities. In the application to 
economic growth, the nonnegative coordinates of the x-vector describe n 
inputs to m production processes. lt is the physical combination of the inputs 
required to make the various outputs used as inputs in the economy. An even 
more surprising change is the interpretation of the coordinates of the y-vector. 
No longer probabilities, now they are the relative prices of inputs and outputs 
in the economy. Almost 15 years later George Dantzig invented the simplex 
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known as linear programming. Dantzig vividly describes von Neumann's major 
role in this invention (Dantzig and Thapa, 1997). 

A novice learning the standard economic theory of demand is told that a 
consumer selects that bundle of goods which maximizes utility subject to a 
budget constraint. More thoughtful people, including D. H. Robertson, wonder 
what is utility. They are told it is a rubbery thing. What it is actually does not 
matter as long as it stretches more, the more commodities it takes into 
account. After this assurance comes a long story about real income and how 
price changes affect the quantity bought. A student who emerges from 
learning all this and who gets a job in the marketing department of some 
business has few tools to handle actual demand problems.

A critic may claim that my use of linear programming to describe what is best 
to buy tacitly allows transitivity in through the back door. This deserves a 
closer look. Assume a buyer decides what to buy from a pertinent class of 
various commodities on the basis of two considerations, the requirements that 
m different commodities can satisfy and their prices. The pertinent class 
includes those commodities that are related by the requirements they can 
satisfy. Think of specific means of transportation such as automobiles of 
various types.

The mXn matrix A = ai j  describes a collection of m related 
commodities in terms of the n requirements they satisfy. Thus ai j is the 
amount of requirement j in a unit of commodity i. This does not assume 
each commodity can satisfy all n requirements. It does assume each 
commodity can satisfy at least one. Let the coordinates of the n-vector 
r denote the minimal amounts of the desired requirements. This allows 
choice of several different commodities to satisfy the n requirements. 
The coordinates of the m-vector p are the unit prices of the m 
commodities. The coordinates of the  m-vector y are the nonnegative 
quantities of the m commodities. A buyer seeks a combination of the m 
commodities that satisfies the n requirements at the least total cost. 
The problem is
(1) Primal: Min p y with respect to y ≧ 0 subject to A y ≧ r.
Because the objective is the total cost in monetary terms, a scalar, it 
may seem the smaller is the outlay, the better so the objective is 
transitive. This is wrong. The best bundle is not necessarily the 
cheapest. The best bundle is the one that satisfies all requirements at 
the least cost. A commodity in the best bundle is not necessarily the 
cheapest. The most expensive commodity can be in the solution. As 
long as there is more than one requirement, the linear programming 
algorithm shows how to find the solution. The solution of the dual 
problem finds shadow prices for the requirements.
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A serious complication faces both the linear programming algorithm and 
the standard demand theory. It concerns social aspects of commodities, 
studied more than a century ago by Thorstein Veblen (1899). The 
desirability of many commodities depends on the prestige they confer 
and on society's opinions about them. Money itself is a leading example 
of a commodity whose public aspects are paramount. Money is not only 
a numeraire for making comparisons but it also derives its value from its 
acceptability as a means of payment. The inequalities should incorporate 
the social and public aspects of commodities and describe the users of 
the commodities, who they are, how many there are and their relations 
to the individual buyer.

Although the algorithm ignores the public and social aspects of 
commodities, still it furnishes useful information about buyers' choices. 
A solution has at most as many commodities as requirements. Because 
commodities are usually more numerous than the requirements they can 
satisfy, a solution excludes many commodities. A fall in prices of 
unbought commodities need not induce a buyer to replace those 
actually bought. Similarly, a rise in the prices of the purchased 
commodities need not cause removing them from the best bundle. Also, 
the model applies to an individual buyer. Different buyers can have 
different requirements. Even if all buyers face the same prices, their 
purchases can differ. This complicates analysis of the total effects of 
price changes.

The companion to the primal problem is the dual problem. The dual 
problem seeks the shadow prices of the n requirements that maximizes 
the value of the requirements. The coordinates of the n-vector x are the 
shadow prices of the n requirements. They must be nonnegative. The 
shadow prices impart a value to the requirements derived from 
commodity prices according to the nature and amount of requirements 
that the commodities can satisfy.
(2) Dual:  Max x r with respect to x ≧ 0 subject to x A ≦ p.
Only those commodities are bought that yield as much value from the 
requirements that they satisfy at their unit prices. A commodity that 
fails this test is not bought. 
From A y ≧ r, it follows that x A y ≧ x r. From x A ≦ p, It follows that x A 
y ≦ p y. Hence p y ≧ x A y ≧ x r. Let xo denote a solution of the dual and 
yo a solution of the primal.
(3) p y ≧ p yo = xo Ayo = xo r  ≩ x r.
Expression  (3) says the least a buyer pays equals the most a seller gets.
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(3) p y ≧ p yo = xo Ayo = xo r  ≩ x r.
Expression  (3) says the least a buyer pays equals the most a seller gets.

4 Money as a Numeraire

Beginning with Bernoulli's proposed solution of the St Petersburg 
paradox that supposes a dollar is worth more to the poor than to the 
rich, the fashion in economic theory has become utility, not money, in 
the theory of demand. By the end of the 19th century it was a widely 
accepted axiom of economics that ordinal utility would suffice for a 
theory of demand for private goods. A public good is not so simple. If 
the benefit of a public good is widespread equally among the individuals 
in the community, then payment for it should vary inversely with the 
wealth of the beneficiary. In the private sector only a monopolist would 
maximize his net return in like manner. A monopolist could charge the 
rich more than the poor one for the same good. It is only the presence 
of rivals who can use the same technology that prevents exploitation by 
means of such price discrimination. The supplier of a public good, the 
state, is the epitome of monopoly. Even if the public somehow decides 
what and how much public goods to have, transitivity remains a red 
herring. It is so not only owing to Condercet's analysis of the 
deficiencies of majority rule but also, and more importantly, because a 
public good must also satisfy many different requirements. Hence many 
different public goods compete for different purposes by satisfying 
different requirements. Monetary measures of the costs and benefits 
still command best way th handle these jobs.
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It may seem preposterous to apply linear programming algorithms to 
public goods. A few examples can dispel doubts. The defense budget 
contains many cases where linear programming is actually used to 
choose among alternatives. Planes for the Air Force, ships for the Navy, 
radar systems, communication gear, armored vehicles are only a few 
examples where linear programming is used. Some inequalities are in use 
for public goods that are motivated by considerations unusual in the 
private sector. These include  effects on employment, carbon emissions, 
diversity of employees, regional equity and so forth.

Even to mention public goods is an invitation to controversy. It clarifies 
the issues by remarking how capital goods come into existence. A 
capital good is durable. Those who finance it do so in the belief that in 
due course they will get enough revenue to pay the total cost of the 
capital good including interest. A capital good must be productive 
enough over its life including the costs of maintenance and repair to 
make this happen. Whether a capital good is the property of an 
individual, a private company or any other institution in the economy, 
the arithmetic of amortization is the same. Every accountant knows the 
formula. It is in every pocket calculator. Outlays on capital goods that 
fail this test will not be embraced by the private sector. Which 
organizations will finance such goods and on what terms enters another 
terrain.

5. Goals of Game Theory

There are two main candidates, not necessarily rivals, to be the goal of 
game theory; the first is normative, the second is positive. The 
normative goal describes how to play a game well. The positive goal is 
scientific. It aims to make a model that predicts how people play. A 
thought experiment can explain this, the 2-person game, 'Rock, Scissors, 
Paper'. Each player has three alternatives. Simultaneously, each may 
show a fist for rock, two fingers for scissors or a spread out hand for 
paper. If they show the same thing, then nobody wins or loses and the 
payoff is 0. Rock beats scissors, scissors beats paper and paper beats 
rock. The payoff matrix of this game for the row player is
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payoff is 0. Rock beats scissors, scissors beats paper and paper beats 
rock. The payoff matrix of this game for the row player is

(1)

row  column Rock Scissors Paper
Rock 0 1 -1

Scissors -1 0 1
Paper 1 -1 0

If the row player picks row i with probability xi  and the column player 
picks column j with probability yj , then the row player's expected return 
is 
(2) E(row)=x1(y2 - y3) + x2(y1 - y3) + x3(y1 - y2).
Therefore, the row player's expected return is zero no matter what row 
he chooses if the column player is equally likely to choose each column. 
However, if the column player somehow knows which row his adversary 
will choose, then he would not make his selections at random if he wants 
to win. There is also an advantage of delegating the selection to a 
device capable of random selections. It provides security since neither 
player knows what the robot will choose. A disadvantage is that the 
column player who uses a random device thereby delegates playing the 
game to a robot. Indeed, if the two play often enough, then their 
average return would be close to zero. Using a mixed strategy to play 
the game introduces insurable risk plus boredom. Those who wish to 
play this game for pleasure, entertainment or excitement would not 
delegate play to a random device. They might believe they could guess 
their adversary's pick. They might even derive pleasure from playing 
against a slot machine. 

This game is not a game of chance. Chance enters only by virtue of the 
minimax that requires a mixed strategy. The two players are not obliged 
to employ the mixed strategy that yields the minimax. They follow the 
dictates of this mixed strategy if and only if they seek a conservative 
mode of play on the hypothesis they choose to play. A conservative 
person can have the certainty of neither gain nor loss by not playing.

The 3 choice version of this class of games is exceedingly simple. It may 
give the impression that the minimax theorem is trivial. It is far from 
being trivial. Even the 4 choice version is decidedly more challenging 
than the 3 choice version. The payoff matrix for the row player in the 4 
choice version is T4 as follows.
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(3) T4 =

0 1 -1 1
-1 0 1 -1
1 -1 0 1
-1 1 -1 0

The expected return to the row player if both players use a mixed 
strategy is given by
(4)
E(row)=
x1(y2 - y3 + y4) + x2(-y1 + y3 - y4) + x3(y1 - y2 + y4) + x4(-y1 + y2 - y3)
The saddle points for the saddlevalue are equal and set x4 = y4 = 0. 
Consequently, the saddlevalue = 0.

The saddlevalue = 0 for all games in this class. However, there is a 
surprising difference between the games with an even number and an 
odd number of choices. Let m denote the number of choices. If m is 
even, then xm = ym = 0 and the remaining values of the x's and y's 
=1/(m-1). The minimax strategy in effect converts an even m game into 
an odd m game.  For odd m, all choices have the same chance of being 
chosen, 1/m.

Repeated play of this game produces a sequence of independent random 
variables. With 3 alternatives in the thought experiment, the variance is 
2/3. With m alternatives, the variance is (1-1/m). The density function 
is 1/3 only for m = 3 as shown in Figure 1. Compare it with Figure 2. 
The bigger is the number of alternatives, the smaller the probability of 
0. In the limit, the probability of a tie is 0 and the variance is 1.

-1 0 1
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Figure 1 m = 3

-1 0 1

Figure 2, m = 10

This argument concludes that game theory can give poor descriptions of 
how people play games. A main contribution of game theory is the 
discovery of the minimax theorem, the mathematical foundation of 
linear programming. Granting this, and without the simplex algorithm 
invented by Dantzig, the minimax theorem would be a theoretical 
curiousum.
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