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From the Seven Bridges in Königsberg to the Circuits in Hyde Park

L. G. Telser

Fair even m-polygons have no bands, partitions nor permutation matrixes in 
contrast to fair odd-m polygons that have bands, partitions and permutation 
matrixes for their bands. They also have perimeters that are simple Hamiltonian 
m-circuits. This is not the case for fair even m-polygons because their vertexes 
have an odd number of arrows unlike fair odd m-polygons whose vertexes have 
an even number of arrows. Their characteristic functions show other 
differences. Every simple circuit has a positive characteristic function on the 
semi-open interval (0,1].  The characteristic function for fair even m-polygon is 
negative for all x in (0,1].

Quasi - band is the term I use that corresponds to true bands. Quasi-bands are 
useful for calculating Eulerian cycles in even m-polygons. The number of quasi-
bands = m/2 - 1 = (m-2)/2. The number of arrows in a m-polygon does not 
depend on the parity of m, m(m-1)/2 for even and odd m.

Sexagon [Latin]

   quasi - bands    arrow prospects

   

b1 b3 b5 u2 u4
1, 2 1, 4 1, 6 3, 1 5, 1
2, 3 2, 5 - 4, 2 6, 2
3, 4 3, 6 - 5, 3 -
4, 5 - - 6, 4 -
5, 6 - - - -

In["]:= makeA[6]

In["]:= LG1 := {{0, 0, 0, 0, 0, 1}, {0, 0, 1, 0, 0, 0},
{1, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 1, 0},
{0, 0, 1, 0, 0, 0}, {0, 1, 0, 1, 0, 0}}



In["]:= MatrixForm[LG1]
Out["]//MatrixForm=

0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 0 0

In["]:= makeGrph[LG1, 2]

Out["]=

In["]:= Apply[DirectedEdge, arrw, 1]

In["]:= unused := {1 ' 2, 3 ' 4, 5 ' 6}

lg1 is not a simple circuit.

In["]:= lg1 := {1 ' 6, 6 ' 2, 2 ' 3, 3 ' 1, 1 ' 4, 4 ' 5,
5 ' 3, 3 ' 6, 6 ' 4, 4 ' 2, 2 ' 5, 5 ' 1}

In["]:= l1 := fig[lg1, 2]
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In["]:= l1

Out["]=

Graph of Maximal Eulerian cycle. It is not a partition of the sexagon

In["]:= FindEulerianCycle[l1]

Out["]= {{1 " 6, 6 " 2, 2 " 3, 3 " 1, 1 " 4, 4 " 2,
2 " 5, 5 " 3, 3 " 6, 6 " 4, 4 " 5, 5 " 1}}

In["]:= u6 := {{0, 0, 0, 1, 0, 1}, {0, 0, 1, 0, 1, 0},
{1, 0, 0, 0, 0, 1}, {0, 1, 0, 0, 1, 0},
{1, 0, 1, 0, 0, 0}, {0, 1, 0, 1, 0, 0}}

In["]:= Det[u6 - x IdentityMatrix[6]]

Out["]= -6 x - 9 x2 - 2 x3 + x6
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In["]:= Factor-6 x - 9 x2 - 2 x3 + x6

Out["]= (-2 + x) x (1 + x)2 3 + x2

In[15]:= Plot-6 x - 9 x2 - 2 x3 + x6, {x, 0, 2.5},

PlotStyle → {Black, Medium},
PlotLabel → "CharacteristicPolynomial of Sexagon"

Out[15]=
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CharacteristicPolynomial of Sexagon

The list ur[top] shows the arrows in the perimeter of a fair even m-polygon 
whose adjacency matrix is A[m]. Make its arrows. The terms in ur[m] are its 
arrows from {1#2} to {m-1, m}. It is easier to describe the next step using the 
sexagon.

In[1]:= ur[top_Integer] := Table[{i ' i + 1}, {i, 1, top - 1}]

In["]:= ur[6]

Out["]= {{1 " 2}, {2 " 3}, {3 " 4}, {4 " 5}, {5 " 6}}

In["]:= makeA[6]
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In["]:= Apply[DirectedEdge, arrw, 1]

Out["]= {1 ' 2, 1 ' 4, 1 ' 6, 2 ' 3, 2 ' 5, 3 ' 1, 3 ' 4,
3 ' 6, 4 ' 2, 4 ' 5, 5 ' 1, 5 ' 3, 5 ' 6, 6 ' 2,
6 ' 4}

First step in general procedure

Replace  {1# 2} by {1#6},{6#2},
{3#4{ by {3#1}, {1#4}
{5#6} by {5#3}, {3#6}

Following {3# 6}, insert {6#4},{4#2} & {2#5}, {5#1},
This makes an Eulerian cycle for the sexagon.
Starting from the arrows in the m-polygon, replace alternate pairs beginning 
with the first {1#2} and continuing to the last, {m-1#m}, we finish by 
alternating the remaining terms in the sequence of arrows  starting with {m #
m+1} to the last term in the arrow list, {m, m-2}. The result is

 m 6 8 10 12
left out 3 4 5 6

The total number of arrows is m(m-1)/2. As we shall see, m/2 arrows are left 
out so the ratio is 1/(m-1).

Octagon

Although Mathematica could not find an Eulerian Cycle, I did. The maximal 
Eulerian cycle excludes 4 arrows. 

      quasi - bands  prospects
b1 b3 b5 b7 u2 u4 u6
1, 2 1, 4 1, 6 1, 8 3, 1 5, 1 7, 1
2, 3 2, 5 2, 7 - 4, 2 6, 2 8, 2
3, 4 3, 6 3, 8 - 5, 3 7, 3 -
4, 5 4, 7 - - 6, 4 8, 4 -
5, 6 5, 8 - - 7, 5 - -
6, 7 - - - 8, 6 - -
7, 8 - - - - - -
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In["]:= makeA[8]

In["]:= ur[8]

Out["]= {{1 " 2}, {2 " 3}, {3 " 4},
{4 " 5}, {5 " 6}, {6 " 7}, {7 " 8}}

In["]:= e1 := {1 ' 8, 8 ' 2, 2 ' 7, 7 ' 3, 3 ' 8, 8 ' 4,
4 ' 7, 7 ' 5, 5 ' 8, 8 ' 6, 6 ' 7, 7 ' 1}

In["]:= e2 := {1 ' 6, 6 ' 2, 2 ' 3, 3 ' 1, 1 ' 4, 4 ' 2,
2 ' 5, 5 ' 3, 3 ' 6, 6 ' 4, 4 ' 5, 5 ' 1}

excluded arrows := {1 ' 2, 3 ' 4, 5 ' 6, 7 ' 8}

In["]:= g12 := fig[e1 ⋃ e2, 2]
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In["]:= g12

Out["]=

In["]:= FindEulerianCycle[g12]

Out["]= {{1 " 4, 4 " 2, 2 " 3, 3 " 1, 1 " 6, 6 " 4, 4 " 5, 5 " 1,
1 " 8, 8 " 4, 4 " 7, 7 " 3, 3 " 6, 6 " 2, 2 " 5, 5 " 8,
8 " 6, 6 " 7, 7 " 5, 5 " 3, 3 " 8, 8 " 2, 2 " 7, 7 " 1}}

excluded arrows := {1 ' 2, 3 ' 4, 5 ' 6, 7 ' 8}

In["]:= exa := {{0, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 1, 0, 1, 0, 1, 0},
{1, 0, 0, 0, 0, 1, 0, 1}, {0, 1, 0, 0, 1, 0, 1, 0},
{1, 0, 1, 0, 0, 0, 0, 1}, {0, 1, 0, 1, 0, 0, 1, 0},
{1, 0, 1, 0, 1, 0, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 0}}
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In["]:= Det[exa - x IdentityMatrix[8]]

Out["]= -3 - 8 x - 24 x2 - 48 x3 - 38 x4 - 8 x5 + x8

In["]:= Factor-3 - 8 x - 24 x2 - 48 x3 - 38 x4 - 8 x5 + x8

Out["]= (-3 + x) (1 + x)3 1 + 6 x2 + x4

In[16]:= Plot-3 - 8 x - 24 x2 - 48 x3 - 38 x4 - 8 x5 + x8, {x, 0, 3.1},

PlotStyle → {Black, Medium}, AxesOrigin → {0, 0},
PlotLabel → "CharacteristicPolynomial of Octagon"

Out[16]= 0.5 1.0 1.5 2.0 2.5 3.0
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Decagon

quasi - bands    prospects

b1 b3 b5 b7 b9 u2 u4 u6 u8
1, 2 1, 4 1, 6 1, 8 1, 10 3, 1 5, 1 7, 1 9, 1
2, 3 2, 5 2, 7 2, 9 - 4, 2 6, 2 8, 2 10, 2
3, 4 3, 6 3, 8 3, 10 - 5, 3 7, 3 9, 3 -
4, 5 4, 7 4, 9 - - 6, 4 8, 4 10, 4 -
5, 6 5, 8 5, 10 - - 7, 5 9, 8 - -
6, 7 6, 9 - - - 8, 6 10, 6 - -
7, 8 7, 10 - - - 9, 7 - - -
8, 9 - - - - 10, 8 - - -

9, 10 - - - - - - - -

In["]:= makeA[10]

In["]:= Apply[DirectedEdge, arrw, 1]

In["]:= c1 := {1 ' 10, 2 ' 3, 3 ' 10, 4 ' 5, 5 ' 10, 6 ' 7,
7 ' 10, 8 ' 9, 9 ' 1, 10 ' 2, 10 ' 4, 10 ' 6, 10 ' 8}

In["]:= u10 := {9 ' 10, 7 ' 8, 5 ' 6, 3 ' 4, 1 ' 2}

The quasi-bands {c1, c2, c3, c4}  are the maximal Eulerian cycle. Neither c1 
nor c2 is a simple Hamiltonian circuit

In["]:= c4 := {1 ' 8, 8 ' 6, 6 ' 9, 9 ' 3, 3 ' 1}

In["]:= c3 := {1 ' 6, 6 ' 2, 2 ' 7, 7 ' 3, 3 ' 8, 8 ' 4,
4 ' 9, 9 ' 5, 5 ' 1}

In["]:= c2 := {1 ' 4, 4 ' 2, 2 ' 5, 5 ' 3, 3 ' 6, 6 ' 4,
4 ' 7, 7 ' 5, 5 ' 8, 8 ' 2, 2 ' 9, 9 ' 7, 7 ' 1}
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In["]:= fig[c1, 2]

Out["]=

As required every vertex in the Eulerian cycle has an even number of arrows.

In["]:= c1234 := fig[c1 ⋃ c2 ⋃ c3 ⋃ c4, 3]

In["]:= FindEulerianCycle[c1234]

Out["]= {{1 " 4, 4 " 2, 2 " 3, 3 " 1, 1 " 6, 6 " 4, 4 " 5,
5 " 1, 1 " 10, 10 " 4, 4 " 7, 7 " 10, 10 " 6,
6 " 2, 2 " 5, 5 " 10, 10 " 2, 2 " 7, 7 " 5, 5 " 3,
3 " 10, 10 " 8, 8 " 6, 6 " 7, 7 " 8, 8 " 9, 9 " 1}}

In["]:= makeA[10]
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In["]:= chf := {{0, 0, 0, 1, 0, 1, 0, 1, 0, 1},
{0, 0, 1, 0, 1, 0, 1, 0, 1, 0},
{1, 0, 0, 0, 0, 1, 0, 1, 0, 1},
{0, 1, 0, 0, 1, 0, 1, 0, 1, 0},
{1, 0, 1, 0, 0, 0, 0, 1, 0, 1},
{0, 1, 0, 1, 0, 0, 1, 0, 1, 0},
{1, 0, 1, 0, 1, 0, 0, 1, 0, 1},
{0, 1, 0, 1, 0, 1, 0, 0, 0, 0},
{1, 0, 1, 0, 1, 0, 1, 0, 0, 0},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 0}}

In["]:= Det[chf - x IdentityMatrix[10]]

Out["]= -2 - 18 x - 63 x2 - 132 x3 - 198 x4 - 198 x5 - 106 x6 - 20 x7 + x10

In["]:= Factor-2 - 18 x - 63 x2 - 132 x3 - 198 x4 - 198 x5 - 106 x6 -

20 x7 + x10

Out["]= (1 + x)3 -2 - 12 x - 21 x2 - 31 x3 - 30 x4 + 6 x5 - 3 x6 + x7
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In[14]:= Plot-2 - 18 x - 63 x2 - 132 x3 - 198 x4 - 198 x5 - 106 x6 -

20 x7 + x10, {x, 0, 4.1}, PlotStyle → {Medium, Black},
PlotLabel → "CharacteristicPolynomial of Decagon"

Out[14]=
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Conclusions

A fair m-polygon has m(m-1)/2 arrows. A fair even m-polygon leaves out m/2 
arrows to obtain the maximal Eulerian cycle. The left-out arrows measure the 
minimal structural unemployment in the m-polygon network. Let σ denote the 
structural unemployment rate divided by total number of arrows in the 
polygon. Thus σ is the minimal structural unemployment rate. Equation (1) 
shows σ decreases as m increases.
(1) σ = (m/2) ÷ (m(m-1)/2) = 1/(m-1).
Because the maximal Eulerian cycle in an odd m-polygon is a partition, it 
includes all arrows so that odd polygons have no structural unemployment. 
Since even and odd numbers alternate, simple algebra can show cyclical 
behavior of σ. An even m-polygon has m(m-1)/2 arrows. The following odd 
(m+1)-polygon has m(m+1)/2 arrows. The difference between the odd and 
the preceding m number, [m(m+1)-m(m-1)]/2 is m. The successor odd m-
polygon has m more arrows than its predecessor even m-polygon. The Eulerian 
Cycle, (E-cycle) in the odd m-polygon is a partition so it includes all its arrows. 
The preceding even m-polygon has a maximal E-cycle that leaves out m/2 
arrows. The difference between E-cycle sizes odd minus even is m + m/2, the 
new arrows in the odd polygon + the arrows left out of the preceding maximal 
E-cycle is  (3/2). The table shows that structural unemployment decreases as 
m increases.
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A fair m-polygon has m(m-1)/2 arrows. A fair even m-polygon leaves out m/2 
arrows to obtain the maximal Eulerian cycle. The left-out arrows measure the 
minimal structural unemployment in the m-polygon network. Let σ denote the 
structural unemployment rate divided by total number of arrows in the 
polygon. Thus σ is the minimal structural unemployment rate. Equation (1) 
shows σ decreases as m increases.
(1) σ = (m/2) ÷ (m(m-1)/2) = 1/(m-1).
Because the maximal Eulerian cycle in an odd m-polygon is a partition, it 
includes all arrows so that odd polygons have no structural unemployment. 
Since even and odd numbers alternate, simple algebra can show cyclical 
behavior of σ. An even m-polygon has m(m-1)/2 arrows. The following odd 
(m+1)-polygon has m(m+1)/2 arrows. The difference between the odd and 
the preceding m number, [m(m+1)-m(m-1)]/2 is m. The successor odd m-
polygon has m more arrows than its predecessor even m-polygon. The Eulerian 
Cycle, (E-cycle) in the odd m-polygon is a partition so it includes all its arrows. 
The preceding even m-polygon has a maximal E-cycle that leaves out m/2 
arrows. The difference between E-cycle sizes odd minus even is m + m/2, the 
new arrows in the odd polygon + the arrows left out of the preceding maximal 
E-cycle is  (3/2). The table shows that structural unemployment decreases as 
m increases.

m 4 5 6 7 8 9 10 11 12 …
σ 13 0 15 0 17 0 19 0 111 …
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