From the Seven Bridges of Königsberg to the Circuits in Hyde Park

Lester G Telser

From the Seven Bridges in Königsberg to the Circuits in Hyde Park

L. G. Telser

Fair even m-polygons have no bands, partitions nor permutation matrixes in contrast to fair odd-m polygons that have bands, partitions and permutation matrixes for their bands. They also have perimeters that are simple Hamiltonian m -circuits. This is not the case for fair even m -polygons because their vertexes have an odd number of arrows unlike fair odd m-polygons whose vertexes have an even number of arrows. Their characteristic functions show other differences. Every simple circuit has a positive characteristic function on the semi-open interval $(0,1]$. The characteristic function for fair even m-polygon is negative for all x in $(0,1]$.

Quasi - band is the term I use that corresponds to true bands. Quasi-bands are useful for calculating Eulerian cycles in even m-polygons. The number of quasibands $=m / 2-1=(m-2) / 2$. The number of arrows in a m-polygon does not depend on the parity of $m, m(m-1) / 2$ for even and odd m.

Sexagon [Latin]

quasi - bands arrow prospects

b1	b3	b5	u2	u4
1,2	1,4	1,6	3,1	5,1
2,3	2,5	-	4,2	6,2
3,4	3,6	-	5,3	-
4,5	-	-	6,4	-
5,6	-	-	-	-

$\ln [0]:=$ makeA [6]

$$
\operatorname{In}[0]:=\operatorname{LG1}:=\{\{0,0,0,0,0,1\},\{0,0,1,0,0,0\},
$$

$$
\{1,0,0,0,0,1\},\{0,0,0,0,1,0\}
$$

$$
\{0,0,1,0,0,0\},\{0,1,0,1,0,0\}\}
$$

$\operatorname{In}[-]:=$ MatrixForm[LG1]
Out[0]//MatrixForm=
$\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0\end{array}\right)$
$\operatorname{In}[\cdot]:=$ makeGrph[LG1, 2]

In[•]:= Apply[DirectedEdge, arrw, 1]
$\ln [\square]:=$ unused $:=\{1 \mapsto 2,3 \mapsto 4,5 \mapsto 6\}$
$\lg 1$ is not a simple circuit.
$\ln [\circ]:=\lg 1:=\{1 \rightarrow 6,6 \rightarrow 2,2 \rightarrow 3,3 \mapsto 1,1 \mapsto 4,4 \rightarrow 5$, $5 \mapsto 3,3 \mapsto 6,6 \mapsto 4,4 \mapsto 2,2 \mapsto 5,5 \mapsto 1\}$
$\ln [\cdot]:=$ l1 := fig[lg1, 2]
$\ln [0]:=11$

Graph of Maximal Eulerian cycle. It is not a partition of the sexagon
$\ln [\varnothing]:=$ FindEulerianCycle[l1]
Out[$]=\{\{1 \mapsto 6,6 \mapsto 2,2 \mapsto 3,3 \mapsto 1,1 \mapsto 4,4 \mapsto 2$, $2 \mapsto 5,5 \mapsto 3,3 \mapsto 6,6 \mapsto 4,4 \mapsto 5,5 \mapsto 1\}\}$
$\ln [\cdot]:=\mathbf{u} 6:=\{\{0,0,0,1,0,1\},\{0,0,1,0,1,0\}$, $\{1,0,0,0,0,1\},\{0,1,0,0,1,0\}$, $\{1,0,1,0,0,0\},\{0,1,0,1,0,0\}\}$
$\ln [\cdot]:=\operatorname{Det}[u 6-x$ IdentityMatrix[6]]
Out[0] $=-6 x-9 x^{2}-2 x^{3}+x^{6}$

```
    \(\ln [\sigma]:=\) Factor \(\left[-6 x-9 x^{2}-2 x^{3}+x^{6}\right]\)
Out[-] \(=(-2+x) x(1+x)^{2}\left(3+x^{2}\right)\)
\(\ln [15]:=P \operatorname{lot}\left[-6 x-9 x^{2}-2 x^{3}+x^{6},\{x, 0,2.5\}\right.\),
    PlotStyle \(\rightarrow\) \{Black, Medium \(\}\),
    PlotLabel \(\rightarrow\) "CharacteristicPolynomial of Sexagon"]
                                    CharacteristicPolynomial of Sexagon
```


The list ur[top] shows the arrows in the perimeter of a fair even m-polygon whose adjacency matrix is $A[m]$. Make its arrows. The terms in ur[m] are its arrows from $\{1 \mapsto 2\}$ to $\{m-1, m\}$. It is easier to describe the next step using the sexagon.
$\ln [1]:=\quad u r[$ top_Integer $]:=$ Table[\{i $\rightarrow i+1\},\{i, 1$, top -1 $\}$]
$\ln [0]:=\operatorname{ur}[6]$
Out[o]= $\{\{1 \mapsto 2\},\{2 \mapsto 3\},\{3 \mapsto 4\},\{4 \mapsto 5\},\{5 \mapsto 6\}\}$

In[$]$:= Apply[DirectedEdge, arrw, 1]

Out $[0=\{1 \rightarrow 2,1 \rightarrow 4,1 \rightarrow 6,2 \rightarrow 3,2 \rightarrow 5,3 \rightarrow 1,3 \rightarrow 4$,

$$
\begin{aligned}
& 3 \mapsto 6,4 \mapsto 2,4 \mapsto 5,5 \mapsto 1,5 \mapsto 3,5 \mapsto 6,6 \mapsto 2, \\
& 6 \rightarrow 4\}
\end{aligned}
$$

First step in general procedure
Replace $\{1 \rightarrow 2\}$ by $\{1 \rightarrow 6\},\{6 \rightarrow 2\}$,
$\{3 \rightarrow 4\{$ by $\{3 \rightarrow 1\},\{1 \rightarrow 4\}$
$\{5 \rightarrow 6\}$ by $\{5 \rightarrow 3\},\{3 \rightarrow 6\}$
Following $\{3 \rightarrow 6\}$, insert $\{6 \rightarrow 4\},\{4 \mapsto 2\} \&\{2 \rightarrow 5\},\{5 \rightarrow 1\}$,
This makes an Eulerian cycle for the sexagon.
Starting from the arrows in the m-polygon, replace alternate pairs beginning with the first $\{1 \rightarrow 2\}$ and continuing to the last, $\{m-1 \rightarrow m\}$, we finish by alternating the remaining terms in the sequence of arrows starting with $\{\mathrm{m} \rightarrow$ $m+1\}$ to the last term in the arrow list, $\{\mathrm{m}, \mathrm{m}-2\}$. The result is

m	6	8	10	12
left out	3	4	5	6

The total number of arrows is $m(m-1) / 2$. As we shall see, $m / 2$ arrows are left out so the ratio is $1 /(m-1)$.

Octagon

Although Mathematica could not find an Eulerian Cycle, I did. The maximal Eulerian cycle excludes 4 arrows.
quasi - bands prospects

b1	b3	b5	b7	u2	u4	u6
1,2	1,4	1,6	1,8	3,1	5,1	7,1
2,3	2,5	2,7	-	4,2	6,2	8,2
3,4	3,6	3,8	-	5,3	7,3	-
4,5	4,7	-	-	6,4	8,4	-
5,6	5,8	-	-	7,5	-	-
6,7	-	-	-	8,6	-	-
7,8	-	-	-	-	-	-

$\ln [0]:=$ makeA[8]
$\ln [\sigma]:=\operatorname{ur}[8]$

$$
\begin{aligned}
\text { Out }[0]= & \{\{1 \mapsto 2\},\{2 \mapsto 3\},\{3 \mapsto 4\}, \\
& \{4 \mapsto 5\},\{5 \mapsto 6\},\{6 \mapsto 7\},\{7 \mapsto 8\}\}
\end{aligned}
$$

$\ln [\mathrm{f}]=\mathrm{e} 1:=\{1 \rightarrow 8,8 \rightarrow 2,2 \rightarrow 7,7 \rightarrow 3,3 \rightarrow 8,8 \rightarrow 4$, $4 \rightarrow 7,7 \rightarrow 5,5 \rightarrow 8,8 \rightarrow 6,6 \rightarrow 7,7 \rightarrow 1\}$
$\ln [\rho]=\mathrm{e} 2:=\{1 \rightarrow 6,6 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 1,1 \rightarrow 4,4 \rightarrow 2$, $2 \rightarrow 5,5 \rightarrow 3,3 \rightarrow 6,6 \rightarrow 4,4 \rightarrow 5,5 \rightarrow 1\}$
excluded arrows $:=\{1 \rightarrow 2,3 \rightarrow 4,5 \rightarrow 6,7 \rightarrow 8\}$
$\ln [\rho]=\mathrm{g} 12:=\mathrm{fig}[\mathrm{e} 1 \mathrm{Ue} 2,2]$

In[o]:= FindEulerianCycle[g12]

Out[$0=\{\{1 \mapsto 4,4 \mapsto 2,2 \mapsto 3,3 \mapsto 1,1 \mapsto 6,6 \mapsto 4,4 \mapsto 5,5 \mapsto 1$, $1 \mapsto 8,8 \mapsto 4,4 \mapsto 7,7 \mapsto 3,3 \mapsto 6,6 \mapsto 2,2 \mapsto 5,5 \mapsto 8$, $8 \mapsto 6,6 \mapsto 7,7 \mapsto 5,5 \mapsto 3,3 \mapsto 8,8 \mapsto 2,2 \mapsto 7,7 \mapsto 1\}\}$
excluded arrows $:=\{1 \mapsto 2,3 \mapsto 4,5 \mapsto 6,7 \mapsto 8\}$
$\ln [\cdot]:=\operatorname{exa}:=\{\{0,0,0,1,0,1,0,1\},\{0,0,1,0,1,0,1,0\}$, $\{1,0,0,0,0,1,0,1\},\{0,1,0,0,1,0,1,0\}$, $\{1,0,1,0,0,0,0,1\},\{0,1,0,1,0,0,1,0\}$, $\{1,0,1,0,1,0,0,0\},\{0,1,0,1,0,1,0,0\}\}$

$$
\begin{aligned}
& \operatorname{In}[\varnothing]:=\operatorname{Det}[\text { exa - x IdentityMatrix[8]] } \\
& \text { Out[0]= }-3-8 x-24 x^{2}-48 x^{3}-38 x^{4}-8 x^{5}+x^{8} \\
& \ln [\varnothing]:=\text { Factor }\left[-3-8 x-24 x^{2}-48 x^{3}-38 x^{4}-8 x^{5}+x^{8}\right] \\
& \text { Out[0]= }(-3+x)(1+x)^{3}\left(1+6 x^{2}+x^{4}\right) \\
& \ln [16]:=P \operatorname{lot}\left[-3-8 x-24 x^{2}-48 x^{3}-38 x^{4}-8 x^{5}+x^{8},\{x, 0,3.1\},\right. \\
& \text { PlotStyle } \rightarrow \text { \{Black, Medium }\} \text {, AxesOrigin } \rightarrow\{0,0\} \text {, } \\
& \text { PlotLabel } \rightarrow \text { "CharacteristicPolynomial of Octagon"] } \\
& \text { CharacteristicPolynomial of Octagon }
\end{aligned}
$$

Decagon

quasi - bands

b1	b3	b5	b7	b9	u2	u4	u6	u8
1,2	1,4	1,6	1,8	1,10	3,1	5,1	7,1	9,1
2,3	2,5	2,7	2,9	-	4,2	6,2	8,2	10,2
3,4	3,6	3,8	3,10	-	5,3	7,3	9,3	-
4,5	4,7	4,9	-	-	6,4	8,4	10,4	-
5,6	5,8	5,10	-	-	7,5	9,8	-	-
6,7	6,9	-	-	-	8,6	10,6	-	-
7,8	7,10	-	-	-	9,7	-	-	-
8,9	-	-	-	-	10,8	-	-	-
9,10	-	-	-	-	-	-	-	-

$\operatorname{In}[\rho]:=$ makeA [10]
$\ln [\cdot]:=$ Apply[DirectedEdge, arrw, 1]
$\ln [\cdot]:=c 1:=\{1 \rightarrow 10,2 \rightarrow 3,3 \rightarrow 10,4 \mapsto 5,5 \mapsto 10,6 \mapsto 7$,

$$
7 \mapsto 10,8 \mapsto 9,9 \mapsto 1,10 \mapsto 2,10 \mapsto 4,10 \mapsto 6,10 \mapsto 8\}
$$

$\ln [\cdot]:=\mathrm{u} 10:=\{9 \mapsto 10,7 \rightarrow 8,5 \mapsto 6,3 \mapsto 4,1 \mapsto 2\}$
The quasi-bands $\{c 1, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c} 4\}$ are the maximal Eulerian cycle. Neither c1 nor c2 is a simple Hamiltonian circuit
$\ln [\square]:=c 4:=\{1 \mapsto 8,8 \mapsto 6,6 \mapsto 9,9 \mapsto 3,3 \mapsto 1\}$
$\ln [\cdot]:=c 3:=\{1 \mapsto 6,6 \rightarrow 2,2 \mapsto 7,7 \mapsto 3,3 \mapsto 8,8 \mapsto 4$,

$$
4 \mapsto 9,9 \mapsto 5,5 \mapsto 1\}
$$

$\ln [\cdot]:=c 2:=\{1 \mapsto 4,4 \mapsto 2,2 \mapsto 5,5 \mapsto 3,3 \mapsto 6,6 \mapsto 4$,

$$
4 \mapsto 7,7 \mapsto 5,5 \mapsto 8,8 \mapsto 2,2 \mapsto 9,9 \mapsto 7,7 \mapsto 1\}
$$

$\ln [\cdot]:=\mathrm{fig}[\mathbf{c} 1,2]$

As required every vertex in the Eulerian cycle has an even number of arrows.
$\ln [\rho]:=c 1234:=\mathrm{fig}[\mathrm{c} 1 \cup \mathrm{c} 2 \cup \mathrm{c} 3 \cup \mathrm{c} 4,3]$
In[•]:= FindEulerianCycle[c1234]

$$
\begin{aligned}
\text { Out }[\cdot]= & \{ \\
\{ & 1 \mapsto 4,4 \mapsto 2,2 \mapsto 3,3 \mapsto 1,1 \mapsto 6,6 \mapsto 4,4 \mapsto 5, \\
& 5 \mapsto 1,1 \mapsto 10,10 \mapsto 4,4 \mapsto 7,7 \mapsto 10,10 \mapsto 6, \\
& 6 \mapsto 2,2 \mapsto 5,5 \mapsto 10,10 \mapsto 2,2 \mapsto 7,7 \mapsto 5,5 \mapsto 3, \\
& 3 \mapsto 10,10 \mapsto 8,8 \mapsto 6,6 \mapsto 7,7 \mapsto 8,8 \mapsto 9,9 \mapsto 1\}\}
\end{aligned}
$$

$\ln [\cdot]:=$ makeA [10]
$\ln [0]=\operatorname{chf}:=\{\{0,0,0,1,0,1,0,1,0,1\}$,

$$
\{0,0,1,0,1,0,1,0,1,0\}
$$

$$
\{1,0,0,0,0,1,0,1,0,1\}
$$

$$
\{0,1,0,0,1,0,1,0,1,0\}
$$

$$
\{1,0,1,0,0,0,0,1,0,1\}
$$

$$
\{0,1,0,1,0,0,1,0,1,0\}
$$

$$
\{1,0,1,0,1,0,0,1,0,1\}
$$

$$
\{0,1,0,1,0,1,0,0,0,0\}
$$

$$
\{1,0,1,0,1,0,1,0,0,0\}
$$

$$
\{0,1,0,1,0,1,0,1,0,0\}\}
$$

$\operatorname{mn}[0]=\operatorname{Det}[c h f-x$ IdentityMatrix[10]]
Outfol $=-2-18 x-63 x^{2}-132 x^{3}-198 x^{4}-198 x^{5}-106 x^{6}-20 x^{7}+x^{10}$
$\ln [9]:=$ Factor $\left[-2-18 x-63 x^{2}-132 x^{3}-198 x^{4}-198 x^{5}-106 x^{6}-\right.$ $\left.20 x^{7}+x^{10}\right]$
Out $\left[0=(1+x)^{3}\left(-2-12 x-21 x^{2}-31 x^{3}-30 x^{4}+6 x^{5}-3 x^{6}+x^{7}\right)\right.$

$$
\begin{aligned}
& \ln [14]:= P l o t\left[-2-18 x-63 x^{2}-132 x^{3}-198 x^{4}-198 x^{5}-106 x^{6}-\right. \\
& 20 x^{7}+x^{10},\{x, 0,4.1\}, P l o t S t y l e \rightarrow\{\text { Medium, Black }\}, \\
& \text { PlotLabel } \rightarrow \text { "CharacteristicPolynomial of Decagon"] } \\
& \text { CharacteristicPolynomial of Decagon }
\end{aligned}
$$

Conclusions

A fair m-polygon has $m(m-1) / 2$ arrows. A fair even m-polygon leaves out $m / 2$ arrows to obtain the maximal Eulerian cycle. The left-out arrows measure the minimal structural unemployment in the m-polygon network. Let σ denote the structural unemployment rate divided by total number of arrows in the polygon. Thus σ is the minimal structural unemployment rate. Equation (1) shows σ decreases as m increases.

$$
\begin{equation*}
\sigma=(m / 2) \div(m(m-1) / 2)=1 /(m-1) \tag{1}
\end{equation*}
$$

Because the maximal Eulerian cycle in an odd m-polygon is a partition, it includes all arrows so that odd polygons have no structural unemployment. Since even and odd numbers alternate, simple algebra can show cyclical behavior of σ. An even m-polygon has $m(m-1) / 2$ arrows. The following odd $(m+1)$-polygon has $m(m+1) / 2$ arrows. The difference between the odd and the preceding m number, $[m(m+1)-m(m-1)] / 2$ is m. The successor odd m polygon has more arrows than its predecessor even m-polygon. The Eulerian Cycle, (E-cycle) in the odd m-polygon is a partition so it includes all its arrows. The preceding even m-polygon has a maximal E-cycle that leaves out m/2 arrows. The difference between E-cycle sizes odd minus even is $m+m / 2$, the new arrows in the odd polygon + the arrows left out of the preceding maximal

E-cycle is (3/2). The table shows that structural unemployment decreases as m increases.

m	4	5	6	7	8	9	10	11	12	\ldots
σ	$1 / 3$	0	$1 / 5$	0	$1 / 7$	0	$1 / 9$	0	$1 / 11$	\ldots

