Skip to main content
Article
Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage
PLoS ONE
  • Liam A. Royce, Iowa State University
  • Erin E. Boggess, Iowa State University
  • Yao Fu, Iowa State University
  • Ping Liu, Iowa State University
  • Jacqueline V. Shanks, Iowa State University
  • Julie A. Dickerson, Iowa State University
  • Laura R. Jarboe, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
2-28-2014
DOI
10.1371/journal.pone.0089580
Abstract

Carboxylic acids are an attractive biorenewable chemical. Enormous progress has been made in engineering microbes for production of these compounds though titers remain lower than desired. Here we used transcriptome analysis of Escherichia coli during exogenous challenge with octanoic acid (C8) at pH 7.0 to probe mechanisms of toxicity. This analysis highlights the intracellular acidification and membrane damage caused by C8 challenge. Network component analysis identified transcription factors with altered activity including GadE, the activator of the glutamate-dependent acid resistance system (AR2) and Lrp, the amino acid biosynthesis regulator. The intracellular acidification was quantified during exogenous challenge, but was not observed in a carboxylic acid producing strain, though this may be due to lower titers than those used in our exogenous challenge studies. We developed a framework for predicting the proton motive force during adaptation to strong inorganic acids and carboxylic acids. This model predicts that inorganic acid challenge is mitigated by cation accumulation, but that carboxylic acid challenge inverts the proton motive force and requires anion accumulation. Utilization of native acid resistance systems was not useful in terms of supporting growth or alleviating intracellular acidification. AR2 was found to be non-functional, possibly due to membrane damage. We proposed that interaction of Lrp and C8 resulted in repression of amino acid biosynthesis. However, this hypothesis was not supported by perturbation of lrp expression or amino acid supplementation. E. coli strains were also engineered for altered cyclopropane fatty acid content in the membrane, which had a dramatic effect on membrane properties, though C8 tolerance was not increased. We conclude that achieving higher production titers requires circumventing the membrane damage. As higher titers are achieved, acidification may become problematic.

Comments

This article is from PLoS ONE 9(2): e89580. doi:10.1371/journal.pone.0089580. Posted with permission.

Rights
© 2014 Royce et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright Owner
Royce et al.
Language
en
File Format
application/pdf
Citation Information
Liam A. Royce, Erin E. Boggess, Yao Fu, Ping Liu, et al.. "Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage" PLoS ONE Vol. 9 Iss. 2 (2014) p. e89580
Available at: http://works.bepress.com/laura_jarboe/19/