
Iowa State University

From the SelectedWorks of Kristin Yvonne Rozier

2014

Runtime Observer Pairs and Bayesian Network
Reasoners On-board FPGAs: Flight-Certifiable
System Health Management for Embedded
Systems
Johannes Geist, Research Institute for Advanced Computer Science (RIAC)
Kristin Y. Rozier, NASA Ames Research Center
Johann Schumann, SGT, Inc.

Available at: https://works.bepress.com/kristin-yvonne-rozier/12/

http://www.iastate.edu
https://works.bepress.com/kristin-yvonne-rozier/
https://works.bepress.com/kristin-yvonne-rozier/12/

Runtime Observer Pairs and Bayesian Network
Reasoners On-board FPGAs: Flight-Certifiable System

Health Management for Embedded Systems ?

Johannes Geist1, Kristin Y. Rozier2, and Johann Schumann3

1 USRA/RIACS, Mountain View, CA, USA, jgeist@usra.edu
2 NASA ARC, Moffett Field, CA, USA, Kristin.Y.Rozier@nasa.gov

3 SGT, Inc., NASA Ames, Moffett Field, CA, USA, Johann.M.Schumann@nasa.gov

Abstract. Safety-critical systems, like Unmanned Aerial Systems (UAS) that
must operate totally autonomously, e.g., to support ground-based emergency ser-
vices, must also provide assurance they will not endanger human life or prop-
erty in the air or on the ground. Previously, a theoretical construction for paired
synchronous and asynchronous runtime observers with Bayesian reasoning was
introduced that demonstrated the ability to handle runtime assurance within the
strict operational constraints to which the system must adhere. In this paper, we
show how to instantiate and implement temporal logic runtime observers and
Bayesian network diagnostic reasoners that use the observers’ outputs, on-board a
field-standard Field Programmable Gate Array (FPGA) in a way that satisfies the
strict flight operational standards of REALIZABILITY, RESPONSIVENESS, and
UNOBTRUSIVENESS. With this type of compositionally constructed diagnostics
framework we can develop compact, hierarchical, and highly expressive health
management models for efficient, on-board fault detection and system moni-
toring. We describe an instantiation of our System Health Management (SHM)
framework, rt-R2U2, on standard FPGA hardware, which is suitable to be de-
ployed on-board a UAS. We run our system with a full set of real flight data from
NASA’s Swift UAS, and highlight a case where our runtime SHM framework
would have been able to detect and diagnose a fault from subtle evidence that
initially eluded traditional real-time diagnosis procedures.

1 Introduction
Totally autonomous systems operating in hazardous environments save human lives. In
order to operate, they must both be able to intelligently react to unknown environments
to carry out their missions and adhere to safety regulations to prevent causing harm.
NASA’s Swift Unmanned Aerial System (UAS) [6] is tasked with intelligently map-
ping California wildfires for maximally effective deployment of fire-fighting resources
yet faces obstacles to deployment, i.e., from the FAA because it must also provably
avoid harming any people or property in the air or on the ground in case of off-nominal
conditions. Similar challenges are faced by NASA’s Viking Sierra-class UAS, tasked
with low-ceiling earthquake surveillance, as well as many other autonomous vehicles,
UAS, rovers, and satellites. To provide assurance that these vehicles will not cause any

? Additional artifacts to enable reproducibility are available at http://research.kristinrozier.com/
RV14.html. This work was supported in part by ARMD 2014 Seedling Phase I and Universi-
ties Space Research Association under NASA Cooperative Agreement, International Research
Initiative for Innovation in Aerospace Methods and Technologies (I3AMT), NNX12AK33A.

2

harm during their missions, we propose a framework designed to deliver runtime Sys-
tem Health Management (SHM) [7] while adhering to strict operational constraints,
all aboard a low-cost, dedicated, and separate FPGA; FPGAs are standard components
used in such vehicles. We name our framework rt-R2U2 after these constraints:
real-time: SHM must detect and diagnose faults in real time during any mission.
REALIZABLE: We must utilize existing on-board hardware (here an FPGA) providing a
generic interface to connect a wide variety of systems to our plug-and-play framework
that can efficiently monitor different requirements during different mission stages, e.g.,
deployment, measurement, and return. New specifications do not require lengthy re-
compilation and we use an intuitive, expressive specification language; we require real-
time projections of Linear Temporal Logic (LTL) since operational concepts for UASs
and other autonomous vehicles are most frequently mapped over timelines.
RESPONSIVE: We must continuously monitor the system, detecting any deviations from
the specifications within a tight and a priori known time bound and enabling mitigation
or rescue measures. This includes reporting intermediate status and satisfaction of timed
requirements as early as possible and utilizing them for efficient decision making.
UNOBTRUSIVE: We must not alter any crucial properties of the system, use commercial-
off-the-shelf (COTS) components to avoid altering cost, and above all not alter any
hardware or software components in such a way as to lose flight-certifiability, which
limits us to read-only access to the data from COTS components. In particular, we must
not alter functionality, behavior, timing, time or budget constraints, or tolerances, e.g.,
for size, weight, power, or telemetry bandwidth.
Unit: The rt-R2U2 is a self-contained unit.

Previously, we defined a compositional design for combining building blocks con-
sisting of paired temporal logic observers; Boolean functions; data filters, such as smooth-
ing, Kalman, or FFT; and Bayesian reasoners for achieving these goals [17]. We require
the temporal logic observer pairs for efficient temporal reasoning but since temporal
monitors don’t make decisions, Bayesian reasoning is required in conjunction with our
temporal logic observer pairs in order to enable the decisions required by this safety-
critical system. We designed and proved correct a method of synthesizing paired tem-
poral logic observers to monitor, both synchronously and asynchronously, the system
safety requirements and feed this output into Bayesian network (BN) reasoner back ends
to enable intelligent handling and mitigation of any off-nominal operational conditions
[15]. In this paper, we show how to create those BN back ends and how to efficiently
encode the entire rt-R2U2 runtime monitoring framework on-board a standard FPGA
to enable intelligent runtime SHM within our strict operational constraints. We demon-
strate that our implementation can significantly outperform expert human operators by
running it in a hardware-supported simulation with real flight data from a test flight of
the Swift UAS during which a fluxgate magnetometer malfunction caused a hard-to-
diagnose failure that grounded the flight test for 48 hours, a costly disturbance in terms
of both time and money. Had rt-R2U2 been running on-board during the flight test it
would have diagnosed this malfunction in real time and kept the UAS flying.

1.1 Related Work
While there has been promising work in Bayesian reasoning for probabilistic diagnosis
via efficient data structures in software [16, 18], this does not meet our UNOBTRU-

3

SIVENESS requirement to avoid altering software or our REALIZABILITY requirement
because it does not allow efficient reasoning over temporal traces. For that, we need
dynamic Bayes Nets, which are much more complex and necessarily cannot be RE-
SPONSIVE in real time.

There is a wealth of promising temporal-logic runtime monitoring techniques in
software, including automata-based, low-overhead techniques, i.e., [5, 19]. The suc-
cess of these techniques inspires our research question: how do we achieve the same
efficient, low-overhead runtime monitoring results, but in hardware since we cannot
modify system software without losing flight certifiability? Perhaps the most pertinent
is Copilot [14], which generates constant-time and constant-space C programs imple-
menting hard real-time monitors, satisfying our RESPONSIVENESS requirement. Copi-
lot is unobtrusive in that it does not alter functionality, schedulability, certifiability, size,
weight, or power, but the software implementation still violates our strict UNOBTRU-
SIVENESS requirement by executing software. Copilot provides only sampling-based
runtime monitoring whereas rt-R2U2 provides complete SHM including BN reasoning.

BusMOP [13, 10] is perhaps most similar to our rt-R2U2 framework. Exactly like
rt-R2U2, BusMOP achieves zero runtime overhead via a bus-interface and an imple-
mentation on a reconfigurable FPGA and monitors COTS peripherals. However, Bus-
MOP only reports property failure and (at least at present) does not handle future-time
logic, whereas we require early-as-possible reporting of future-time temporal properties
passing and intermediate status updates. The time elapsed from any event that triggers
a property resolution to executing the corresponding handler is up to 4 clock cycles for
BusMOP whereas rt-R2U2 always reports in 1 clock cycle. Most importantly, although
BusMOP can monitor multiple properties at once, it handles diagnosis on a single-
property-monitoring basis, executing arbitrary user-supplied code on the occurrence of
any property violation whereas rt-R2U2 performs SHM on a system level, synthesizing
BN reasoners that utilize the passage, failure, and intermediate status of multiple prop-
erties to assess overall system health and reason about conditions that require many
properties to diagnose. Also rt-R2U2 never allows execution of arbitrary code as that
would violate UNOBTRUSIVENESS, particularly flight certifiability requirements.

The gNOSIS [8] framework also utilizes FPGAs, but assesses FPGA implementa-
tions, mines assertions either from simulation or hardware traces, and synthesizes LTL
into, sometimes very large, Finite State Machines that take time to be re-synthesized
between missions, violating our REALIZABILITY requirement. Its high bandwidth, au-
tomated probe insertion, ability to change timing properties of the system, and low sam-
ple-rate violate our UNOBTRUSIVENESS and RESPONSIVENESS requirements, though
gNOSIS may be valuable for design-time checking of rt-R2U2 in the future.

1.2 Contributions

We define hardware, FPGA encodings for both the temporal logic runtime observer
pairs proposed in [15] and the special BN reasoning units required to process their
three-valued output for diagnostics and decision-making. We detail novel FPGA imple-
mentations within a specific architecture to exhibit the strengths of an FPGA implemen-
tation in hardware in order to fulfill our strict operational requirements; this construc-
tion incurs zero runtime overhead. We provide a specialized construction rather than

4

the standard “algorithm-rewrite-in-VHDL” that may be acceptable for less-constrained
systems. We provide timing and performance data showing reproducible evidence that
our new rt-R2U2 implementation performs within our required parameters of REALIZ-
ABILITY, RESPONSIVENESS, and UNOBTRUSIVENESS in real time. Finally, we high-
light implementation challenges to provide instructive value for others looking to re-
produce our work, i.e., implementing theoretically proven temporal logic observer con-
structions on a real-world UAS. Using full-scale, real flight test data streams from
NASA’s Swift UAS, we demonstrate this real-time execution and prove that rt-R2U2
would have pinpointed in real time a subtle buffer overflow issue that grounded the
flight test and stumped human experts for two days in real life.

This paper is organized as follows: Section 2 provides the reader with theoretical
principles of our approach. Section 3 provides an overview of the various parts and
Sections 4 and 5 give more details about the hardware implementation. A real-world
test case of NASA’s Swift UAS is evaluated in Section 6. Section 7 concludes this
paper with a summary of our findings.

2 Preliminaries

Our system health models are comprised of paired temporal observers, sensor filters,
and Bayesian network probabilistic reasoners, all encoded on-board an FPGA; see [17]
for a detailed system-level overview.

2.1 Temporal-Logic Based Runtime Observer Pairs [15]

We encode system specifications in real-time projections of LTL. Specifically, we use
Metric Temporal Logic (MTL), which replaces the temporal operators of LTL with op-
erators that respect time bounds [1] and mission-time LTL [15], which reduces to MTL
with all operator bounds being between now (i.e., time 0) and the mission termination
time.

Definition 1 (Discrete-Time MTL [15]). For atomic proposition σ ∈ Σ, σ is a for-
mula. Let time bound J = [t, t′] with t, t′ ∈ N0. If ϕ and ψ are formulas, then so are:

¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | Xϕ | ϕ UJ ψ | �Jϕ | ♦Jϕ.

Time bounds are specified as intervals: for t, t′ ∈ N0, we write [t, t′] for the set
{i ∈ N0 | t ≤ i ≤ t′}. We interpret MTL formulas over executions of the form
e : ω → 2Prop; we define ϕ holds at time n of execution e, denoted en |= ϕ, inductively
as follows:

en |= true is true, en |= σ iff σ holds in sn,
en |= ¬ϕ iff en 6|=ϕ, en |= ϕ ∧ ψ iff en |= ϕ and en |= ψ,
en |= Xϕ iff en+1 |= ϕ, en |= ϕ ∨ ψ iff en |= ϕ or en |= ψ,
en |= ϕ UJ ψ iff ∃i(i ≥ n) : (i− n ∈ J ∧ ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= ϕ).

Since systems in our application domain are usually bounded to a certain mission
time τ ∈ N0, we also encode mission-time LTL [15]. For a formula ϕ in LTL, we create
mission-bounded formula ϕm by replacing every �, ♦, and U operator in ϕ with its

5

bounded MTL equivalent using the bounds J = [0, τ]. An execution sequence for an
MTL formula ϕ, denoted by 〈Tϕ〉, is a sequence of tuples Tϕ = (v, τe) where τe ∈ N0

is a time stamp and v ∈ {true, false,maybe} is a verdict.
For every temporal logic system specification, we synthesize a pair of runtime ob-

servers, one asynchronous and one synchronous, using the construction defined and
proved correct in [15]. Asynchronous observers are evaluated with every new input, in
this case with every tick of the system clock. For every generated output tuple T we
have that T.v ∈ {true, false} and T.τe ∈ [0, n]. Since verdicts are exact evaluations
of a future-time specification ϕ, for each clock tick they may resolve ϕ for clock ticks
prior to the current time n if the information required for this resolution was not avail-
able until n. Synchronous observers are evaluated at every tick of the system clock and
their output tuples T are guaranteed to be synchronous to the current time stamp n.
Thus, for each time n, a synchronous observer outputs a tuple T with T.τe = n. This
eliminates the need for synchronization queues. Outputs of these observers are three-
valued verdicts: T.v ∈ {true, false,maybe} depending on whether we can concretely
valuate that the observed formula holds at this time point (true), does not hold (false),
or cannot be evaluated due to insufficient information (maybe). Verdicts of maybe are
later resolved concretely by the matching asynchronous observers in the first clock tick
when sufficient information is available.

2.2 Bayesian Networks for Health Models

A S

C

H_S

H_U

U

B

+

f

× ×

+ +

λ!S λS

× × × ×

× + ×

+ × × + λ!UλU

× ×

×

×λ!HSθ0.05

+ ×

×λHSθ0.95

× × θ0.99λHU

θ0.01λH!U

× ×

λC θ0.5 λ!C

Fig. 1. A: BN for Health manage-
ment. B: Arithmetic circuit

In order to maximize the reasoning power of our
health management system, we use Bayesian networks
(BN). BNs have been well established in the area of di-
agnostic and health management (e.g., [12, 9]) as they
can cope with conflicting sensor signals and priors.
BNs are directed acyclic graphs, where each node rep-
resents a statistical variable. Directed edges between
nodes correspond to (local) conditional dependencies.
For our health models, we are using BNs of a gen-
eral structure as shown in Figure 1A. We do not use
dynamic BNs, because all temporal aspects are be-
ing dealt with by the temporal observers described
above. Discrete sensor signals or outputs of the syn-
chronous temporal observers (true, false, maybe) are
clamped to the “sensor” and “command” nodes of the
BN as observable. Since sensors can fail, they have
(unobservable) health nodes attached. As priors, these
health nodes can contain information on how reliable
the component is, e.g., by using a Mean Time To Fail-
ure (MTTF) metric.

Unobservable nodes U may describe the behavior
of the system or component as it is defined and influ-
enced by the sensor or software information. Often,
such nodes are used to define a mode or state of the

6

system. For example, it is likely that the UAS is climbing if the altimeter sensor says
“altitude increasing.” Such (desired) behavior can also be affected by faults, so be-
havior nodes have health nodes attached. For details of modeling see [16]. The local
conditional dependencies are stored in the Conditional Probability Table (CPT) of each
node. For example, the CPT of the sensor node S defines its probabilities given its
dependencies: P (S|U,H S).

In our health management system, we, at each time stamp, calculate the posterior
probabilities of the BN’s health nodes, given the sensor and command values e as ev-
idence. The probability Pr(H S = good|e) gives an indication of the status of the
sensor or component. Reasoning in real-time avionics applications requires aligning re-
source consumption of diagnostic computations with tight resource bounds [11]. We
are therefore using a representation of BNs that is based upon arithmetic circuits (AC),
which are directed acyclic graphs where leaf nodes represent indicators (λ in Fig. 1)
and parameters (θ) while all other nodes represent addition and multiplication opera-
tors. AC based reasoning algorithms are powerful, as they provide predictable real-time
performance [2, 9].

The AC is factually a compact encoding of the joint distribution into a network
polynomial [3]. The marginal probability (see Corollary 1 in [3]) for a variable x given
evidence e can then be calculated as Pr(x | e) = 1

Pr(e) ·
∂f
∂λx

(e) where Pr(e) is the
probability of the evidence. In a first, bottom-up pass, the λ indicators are clamped ac-
cording to the evidence and the probability of this particular evidence setting is evalu-
ated. A subsequent top-down pass over the circuit computes the partial derivatives ∂f

∂λx
.

Based upon the structure of the AC, this algorithm only requires —except for the final
division by Pr(e)— only additions and multiplications. Since the structure of the AC
is determined at compile time, a fixed, reproducible timing behavior can be guaranteed.

2.3 Digital Design 101 and FPGAs
Integrated circuits (ICs) have come a long way from the first analog, vacuum tube-based
switching circuits, over discrete semiconductors to sub-micron feature size for modern
ICs. Our ability to implement rt-R2U2 in hardware is strongly based upon high-level
hardware definition languages and tools to describe the functionality of the hardware
design, and FPGAs, which make it possible to “instantiate” the hardware on-the-fly
without having to go through costly silicon wafer production.

I/
O

bl
oc

k
I/

O
bl

oc
k

I/O block I/O block

I/O block I/O block

I/
O

bl
oc

k
I/

O
bl

oc
k

CLB

CLB

CLB

CLB

in
te

rc
on

ne
ct

io
ns

switch box

six-way switch
(transistor based)

Fig. 2. Simplified representation of a modern
FPGA architecture.

VHDL - Very High Speed Integrated
Circuit Hardware Definition Language.
This type-safe programming language al-
lows the concise description of concur-
rent systems, supporting the inherent na-
ture of any IC. Therefore, programming
paradigms are substantially different from
software programming languages, e.g.,
memory usage and mapping has to be
considered explicitly and algorithms with
loops have to be rewritten into finite state
machines. In general, a lot more time and
effort has to be put into system design.

7

FPGA - Field Programmable Gate Array is a fast, cheap, and efficient way to pro-
duce a custom-designed digital system or prototype. Basically an FPGA consists of
logic cells (Figure 2), that can be programmed according to its intended use. A mod-
ern FPGA is composed of three main parts Configurable Logic Blocks (CLBs), long and
short interconnections with six-way programmable switches, and I/O blocks. The CLBs
are elementary Look Up Tables (LUTs) where, depending on the input values, a certain
output value is presented to the next cell. Hence, every possible combination of unary
operations can be programmed. Complex functionality can be achieved by connect-
ing different CLBs using short (between neighboring cells) and long interconnections.
These interconnections need the most space on an FPGA, because in general every cell
can be connected to every other cell. The I/O cells are also connected to this intercon-
nection grid. To be able to route the signals in all directions there is a “switch box” on
every intersection. This six-way switch is based on 6 transistors that can be programmed
to route the interconnection accordingly. In order to achieve higher performance mod-
ern FPGAs have hardwired blocks for certain generic or complex operations (adder,
memory, multiplier, I/O transceiver, etc.).

3 System Overview

Our system health models are constructed based upon information extracted from sys-
tem requirements, sensor schematics, and specifications of expected behaviors, which
are usually written in natural language. In a manual process (Figure 3) we develop the
health model in our framework, which is comprised of temporal components (LTL and
MTL specifications), Bayesian networks (BNs), and signal processing. Our tool chain
compiles the individual parts and produces binary files, which, after linking, are down-
loaded to the FPGA. The actual hardware architecture, which is defined in VHDL, is
compiled using a commercial tool chain4 and used to configure the FPGA. This lengthy
process, which can take more than 1 hour on a high-performance workstation needs to
be carried out only once, since it is independent of the actual health model.

system specification
& description

Bayesian network

Γ > 0→ ♦[0,2s]∆β > θ,
(cmd = do)→ �[0,40](x ≥ 600),. . .

LTL formulas

parser,
compiler &

assembler script

ACE compiler*

*3rd party tool

01001001
01001100
01001111
01010110
01000101

binary file

+

× ×

+ +

× × × ×

θα θα

λβλβ θβθβ

arithmetic circuit

parser,
compiler &
assembler

GUI

01010101
01000010
01000001
01000010
01010011

binary file

in
te

rf
ac

e

FPGA

synthesis,
placement
& route*

*3
r
d

pa
rt

y
to

ol
.

VHDL sources

Fig. 3. rt-R2U2 software tool chain

4 http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm

8

3.1 Software

The software tool chain for creating the code for the temporal logic specifications is
straightforward and only translates the given formulas to a binary representation with
mapping information. Significantly more effort goes into preparing a BN for our system.
First, the given network is translated into an optimized arithmetic circuit (AC) using the
Ace5 tool. Then, the resulting AC must be compiled and mapped for efficient execution
on the FPGA. This process, which will be described in more detail in Section 5, is
controlled with a Java GUI.

3.2 Hardware

The hardware architecture (Figure 4A) of our implementation is built out of three com-
ponents: the control subsystem, the runtime verification (RV) unit, and the runtime rea-
soning (RR) unit. Whereas the control subsystem establishes the communication link to
the external world (e.g., to load health models and to receive health results), the RV and
RR units comprise the proper health management hardware, which we will discuss in
detail in the subsequent sections. Any sensor and software data passed along the Swift
UAS bus can be directly fed into the signals’ filters and pre-processing modules of the
atChecker, which are a part of the RV unit, where they are converted into streams of
Boolean values.

A

SWIFT

Se
ns

or
s,

Fl
ig

ht
C

om
pu

te
r,.

..

Host PC

rt
-R

2U
2

To
ol

C
ha

in
&

D
at

a
L

og
gi

ng

Health Management Hardware

FPGA

RV
-U

ni
t

atChecker

filter #0

#1

..
.

pa
st

-t
im

e
O

bs
er

ve
r

sy
nc

hr
on

ou
s

fu
tu

re
-t

im
e

O
bs

er
ve

r

as
yn

ch
ro

no
us

fu
tu

re
-t

im
e

O
bs

er
ve

r

RTC

R
R

-U
ni

t

Reasoning Master

Computing Blocks

#0 #1 #2 . . .

Memory Interface

Control Unit
Communication

Interface
LCD

B

RESET

IDLE

FETCH

LOAD_OP1

LOAD_OP2

CALC

CALC_BOX_DOTCALC_UNTIL

WRITE_BACK

UPDATE_Q1

UPDATE_Q2

Fig. 4. A: Overview of the rt-R2U2 architecture. B: FSM for the ftObserver.

Our architecture is designed in such a way that its requirements with respect to
gates and look-up tables only depend on the number of signals we monitor, not on the
temporal logic formulas or the Bayesian networks. In the configuration used for our
case study (with 12 signals), the monitoring device synthesized for the Xilinx Virtex
5 XC5VFX130T FPGA needed 28849 registers, 24450 look-up tables, 63 blocks of
RAM, and 25 digital signal processing units. These numbers clearly strongly depend
on the architecture of the FPGA, and, in our case used 35% of the registers, 29% of the
LUTs, 21% of the RAM, and 7% of the DSP blocks.

5 http://reasoning.cs.ucla.edu/ace/

9

The runtime verification subsystem evaluates the compiled temporal logic formulas
over the Boolean signals prepared by the atChecker. Since evaluations of the past-time
variations of our logics (MTL and mission-time LTL) are naturally synchronous, we can
essentially duplicate the synchronous observer construction, but with past-time evalua-
tion, to add support for past-time formulas should they prove useful in the context of the
system specifications. Depending on the type of logic encoding each individual formula
(past or future time), it is either evaluated by the past-time or future-time subsystem. As
the algorithms are fundamentally different for the two time domains we use two sep-
arate entities in the FPGA. A real time clock (RTC) establishes a global time domain
and provides a time base for evaluating the temporal logic formulas.

After the temporal logic formulas have been evaluated, the results are transferred
to the runtime reasoning (RR) subsystem, where the compiled Bayesian network is
evaluated to yield the posterior marginals of the health model. For easier debugging
and evaluation, a memory dump of the past and future time results as well as of the
posterior marginals has been implemented. After each execution cycle, the evaluation
is paused and the memory dump is transferred to the host PC for further analysis.

4 FPGA implementation of MTL/mission-time LTL

As shown in Figure 4A, incoming sensor and software signals, which consist of vec-
tors of binary fixed-point numbers, are first processed and discretized by the atChecker
unit. This hardware component can contain filters to smooth the signal, Fast Fourier
Transforms, or Kalman Filters, and performs scaling and comparison operations to
yield a Boolean value. Each discretizer block can process one or two signals s1, s2
according to (±2p1 × F 2

1 (F
1
1 (s1)) ± 2p2 × F 2

2 (F
1
2 (s2))) ./ c for integer constants

p1, p2, and c, filters F ij , and a comparison operator ./ ∈ {=, <,≤,≥, >, 6=}. For ex-
ample, the discrete signal “UAS is at least 400ft above ground” would be specified by:
(mvg avg(altUAS) − altgnd) > 400, where the altitude measurements of the UAS
would be smoothed out by a moving average filter before the altitude of the ground is
subtracted. Note that several blocks can be necessary for thresholding, e.g., to determine
if the UAS is above 400ft, 1000ft, or 5000ft.

Each temporal logic processing unit (ptObserver, ftObserver) is implemented as a
processor, which executes the compiled formulas instruction by instruction. It contains
its own program and data memory, and finite-state-machine (FSM) based execution unit
(Figure 4B6). Individual instructions process Boolean operators and temporal logic op-
erators using the stages of FETCH (fetch instruction word) followed by loading the ap-
propriate operand(s). Calculation of the result can be accomplished in one step (CALC)
or might require an additional state for the more complex temporal operations like U or
�[.,.]. During calculation, values for the synchronous and asynchronous operators are
updated according to the logic’s formal algorithm (see [15]). Finally, results are written
back into memory (WRITE) and the queues are updated during states (UPDATE Q1,
UPDATE Q2), before the execution engine goes back to its IDLE state. Asynchronous
temporal observers usually need local memory for keeping information like the time

6 The architecture and FSM for processing the past time fragment is similar to this unit and thus
will not be discussed here.

10

stamps for the last rising transition or the start time of the next tuple in the queues,
which are implemented using a ring buffer. Internal functions feasible and aggregate
put information (timestamps) into the ring buffer, whereas a highly specialized garbage
collecting function removes time stamps that can no longer contribute to the validity
of the formula, thus keeping memory requirements low. These updates to the queues
happen during the UPDATE states of the processor ([15]).

In contrast to asynchronous observers, which require additional memory for keeping
internal history information, synchronous observers are realized as memoryless Boolean
networks. Their three-valued logic {false, true, maybe} is encoded in two binary sig-
nals as 〈0, 0〉, 〈0, 1〉, and 〈1, 0〉, respectively.

Let us consider the following specification, which expresses that the UAS, after
receiving the takeoff command must reach an altitude alt above ground of at least 600ft
within 40 seconds: cmd = takeoff→ ♦[0,40s](alt ≥ 600). Obviously, synchronous and
asynchronous observers report true before the takeoff. After takeoff, the synchronous
observer immediately returns maybe until the 40-second time window has expired or
the altitude exceeds 600ft, whichever comes first. Then the formula can be decided to
yield true or false. In contrast, the asynchronous observer always yields the concrete
valuation of the formula, true or false, for every time stamp; however this result (which
is always tagged with a time stamp) might retroactively resolve an earlier point in time.

For rt-R2U2, both types of observers are important. Whereas asynchronous ob-
servers guarantee the concrete result but might refer to an earlier system state, syn-
chronous observers immediately yield some information, which can be used by the
Bayesian network to disambiguate failures. In our example, this information can be
used to express that, with a certain (albeit unknown) probability, the UAS still can
reach the desired target in time, but hasn’t done so yet. Our Bayesian health models can
reflect that fact by using three-valued sensor and command nodes.

5 FPGA implementation of Bayesian Networks

The BN reasoning has been implemented on the FPGA as a Multiple Instruction, Mul-
tiple Data (MIMD) architecture. This means that every processing unit calculates a part
of the AC using its individual data and program memory. That way, a high degree of
parallelism can be exploited and we can obtain a high performance and low latency
evaluation unit. Therefore, our architectural design process led to a simple, tightly cou-
pled hardware architecture, which relies on optimized instructions provided by the BN
compiler (Figure 3). The underlying idea of this architecture is to partition the entire
arithmetic circuit into small parts of constant size, which in turn are processed by a
number of parallel execution units with the goal of minimizing inter-processor data ex-
changes and synchronization delays. We will first describe the hardware architecture
and then focus on the partitioning algorithm in the BN compiler.
BN Computing Block. We designed an elementary BN processor (BN computing
block) that can process three different kinds of small “elementary” arithmetic circuits.
A number of identical copies (the number depends on the size of the FPGA) of these
computing blocks work as slaves in a master-slave configuration. Figure 5A shows the
three different patterns. Each pattern consists of up to three arithmetic operators (addi-

11

A

computing
block

×/+
×/+ ×/+

i1 i2 i3 i4

×/+
×/+

i1 i3 i4

×/+

i1 i4
i1 i2 i3 i4

result

mode

B

bus interface

control unit

memory interface / multiplexer

network
parameter (θ)

memory

evidence
indicator (λ)
memory

instruction
memory

scratchpad
memory

ALU

×/+
×/+ ×/+

i1 i2 i3 i4

Fig. 5. A: A computing block and its three modes of operation. B: Internals of a computing block.

tion or multiplication) and can have 2, 3, or 4 inputs. Such a small pattern can be effi-
ciently executed by a BN computing block. Figure 5B shows a BN computing block,
which is built from several separate hardware units (bus interface, local memory, in-
struction decoder, ALU, etc.). On an abstract level the calculation is based on a generic
four-stage pipeline execution (FETCH, DECODE, CALCULATE, and WRITE-BACK). To
achieve this performance-focused behavior, each subsystem runs independently. There-
fore, a handshake synchronizing protocol between each internal component is used.
As a MIMD processor, each BN computing block keeps its own instruction memory as
well as local storage for network parameters and evidence indicators. A local scratchpad
memory is used to store intermediate results.

Although probabilities are best represented using floating-point numbers according
to IEEE 754, we chose to use an 18-bit fixed-point representation, because floating-
point ALUs are resource-intensive in terms of both number of logic gates used and
power, and would drastically reduce the number of available parallel BN computing
blocks. Our chosen resolution is based on the 18-bit hardware multiplier that is available
on our Xilinx Virtex 5 FPGA. We achieve a resolution of 2−18 = 3.8 · 10−6, which is
sufficient for our purposes to represent probability values.

All slave processors are connected via a bus to the BN master processor. Besides
programming, data handling, and controlling their execution, the master also calculates
the final result Pr(x | e) = 1

Pr(e) ·
∂f
∂λx

(e), because the resources needed to perform the
division are comparatively high and therefore not replicated over the slave processors.
Mapping of AC to BN computing units. Our software tool chain tries to achieve an
optimal mapping of the AC to the different BN computation units during compile time,
using a pattern-matching-based algorithm. We “tile” the entire AC with the three small
patterns (Figure 5A) in such a way that the individual BN processing units operate as
parallel as possible and communication and data transfer is reduced to a minimum. For
this task, we use a Bellman-Ford algorithm to obtain the optimal placement. Further-
more, all scheduling information (internal reloads and communication on the hardware
bus to exchange data with other computing blocks) as well as the configuration for the
master and probability values for the Conditional Probability Table (CPT) are prepared
for the framework.

6 Case Study: Fluxgate Magnetometer Buffer Overflow

In 2012, a NASA flight test of the Swift UAS was grounded for 48 hours as system
engineers worked to diagnose an unexpected problem with the UAS that ceased vital
data transmissions to the ground. All data of the scientific sensors on the UAS (e.g.,

12

laser altimeter, magnetometer, etc.) were collected by the Common Payload System
(CPS). The fluxgate magnetometer (FG), which measures strength and direction of the
Earth’s magnetic field, had previously failed and was replaced before the flight test.
System engineers eventually determined that the replacement was not configured cor-
rectly; firmware on-board the fluxgate magnetometer was sending data to its internal
transmit buffer at high speed although the intended speed of communication with the
CPS was 9600 baud. As the rate was set to a higher value and the software in the mag-
netometer did not catch this error, internal buffer overflows started to occur, resulting
in an increasing number of corrupted packets sent to the CPS. This misconfiguration in
the data flow was very difficult to deduce by engineers on the ground because they had
to investigate the vast number of possible scenarios that could halt data transmission.

Signal description Source
Ng number of good FG packets since start of mission CPS
Nb number of bad FG packets since start of mission CPS
Elog logging event CPS
FGx,y,z directional fluxgate magnetometer reading CPS
Hdx,y aircraft heading FC
p, q, r pitch, roll, and yaw rate FC

Table 1: Signals and sources used in this health model, sampled with a 1Hz sampling
rate

In this case study, we use the original data as recorded by the Swift Flight Computer
(FC) and the CPS. At this time, no publicly available report on this test flight has been
published; the tests and their resulting data are identified within NASA by the date and
location, Surprise Valley, California on May 8, 2012, starting at 7:50 am. With our rt-
R2U2 architecture, which continuously monitors our standard set of rates, ranges, and
relationships for the on-board sensors, we have been able to diagnose this problem in
real-time, and could have avoided the costly delay in the flight tests.

The available recorded data are time series of continuous and discrete sensor and
status data for navigational, sensor, and system components. From the multitude of
signals, we selected, for the purpose of this case study, the signals shown in Table 1.
We denote the total number of packets from the FG with Ntot = Ng + Nb; XR =
Xt −Xt−1 is the rate of signal X , and XN denotes the normalized vector X .

6.1 The Bayesian Health Model

The results of the temporal specifications S1, . . . , S6 alone are not sufficient to disam-
biguate the different failure modes. We are using the Bayesian network as shown in
Figure 6A, which receives, as evidence, the results of each specification Si and pro-
duces posterior marginals of the health nodes for the various failure modes. All health
nodes are shown in Figure 6A. H FG indicates the health of the FG sensor itself. It is
obviously related to evidence that the measurements are valid (S4) and that the measure-
ments are changing over time (S5). The two causal links from these health nodes indi-
cate that relationship. Failure modes H FG TXERROR and H FG TXOVR indicate an

13

Description Formula
S1: The FG packet transmission rate NR

tot is
appropriate: about 64 per second.

63 ≤ NR
tot ≤ 66

S2: The number of bad packets NR
b is low, no

more than one bad packet every 30 seconds.
�[0,30](N

R
b = 0 ∨ (NR

b ≥ 1 U[0,30]NR
b = 0))

S3: The bad packet rateNR
b does not appear to

be increasing; we do not see a pattern of three
bad packets within a short period of time.

¬(♦[0,30]N
R
b ≥ 2 ∧ ♦[0,100]N

R
b ≥ 3)

S4: The FG sensor is working, i.e., the data
appears good. Here, we use a simple, al-
beit noisy sanity check by monitoring if the
aircraft heading vector with respect to the
x and y coordinates (Hdx, Hdy) calculated
by the flight computer using the magnetic
compass and inertial measurements roughly
points in the same direction (same quadrant)
as the normalized fluxgate magnetometer read-
ing (FGNx , FG

N
y). To avoid any false positive

evaluations due to a noisy sensor, we filter the
input signal.

((Hdx ≥ 0→ FGNx ≥ 0)∧
(Hdx < 0→ FGNx < 0))∨
((Hdy ≥ 0→ FGNy ≥ 0)∧
(Hdy < 0→ FGNy < 0))

S5: We have a subformula Eul that states if
the UAS is moving (Euler rates of pitch p, roll
q, and yaw r are above the tolerance thresh-
olds θ = 0.05) then the fluxgate magnetome-
ter should also register movement above its
threshold θFG = 0.005. The formula states
that this should not fail more than three times
within 100 seconds of each other.

Eul := (|p| > θ ∨ |q| > θ ∨ |r| > θ)→
(|FGx| > θFG ∨ |FGy| > θFG∨
|FGz| > θFG)

¬(¬Eul ∧ (♦[2,100](¬Eul ∧ ♦[2,100]¬Eul)))

S6: Whenever a logging event occurs, the CPS
has received a good or a bad packet. S6 needs
a sampling rate of at least 64Hz.

Elog → ((Elogg ∧ ¬Elogb) ∨ (Elogb ∧ ¬Elogg)

S′
6: This case study uses a 1Hz sampling rate.

We are losing precision and S6 becomesNR
g +

NR
b = NR

tot = 64.

NR
tot = 64

Table 2: Temporal formula specifications that are translated into paired runtime ob-
servers for the fluxgate magnetometer (FG) health model

error in the transmission circuit/software and overflow of the transmission buffer of the
fluxgate magnetometer, respectively. The final two failure modes H FC RXOVR and
H FC RXUR concern the receiver side of the CPS and denote problems with receiver
buffer overflow and receiver buffer underrun, respectively.

Figure 6B shows the reasoning results of this case study, where the wrong configu-
ration setting of the fluxgate magnetometer produces an increasing number of bad pack-
ets. The posterior of the node H FG TXOVR is substantially lower, compared to the
other health nodes, indicating that a problem in the fluxgate magnetometer’s transmitter
component is most likely. So, debugging and repair attempts or on-board mitigation can
be focused on this specific component, thus our SHM could have potentially avoided
the extended ground time of the Swift UAS. This situation also indicates that, with a

14

A

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

Node Health of . . .
H FG magnetometer sensor
H FC RxUR Receiver underrun in CPS
H FC RxOVR Receiver overrun in CPS
H FG TxOVR Transmitter overrun in FG
H FG TxErr Transmitter error in FG

B

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

C

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

D

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

Fig. 6. A: Bayesian network for our example with legend of health nodes. B, C, D: posterior
probabilities (lighter shading corresponds to values closer to 1.0) for different input conditions.

smaller likelihood, this failure might have been caused by some kind of overrun of the
receiver circuit in the flight computer, or specific errors during transmission.

Figures 6C, D show the use of prior information to help disambiguate failures.
Assume that we detected that the FG data are not changing, i.e., S5 = false, de-
spite the fact that the aircraft is moving. This could have two causes: the sensor it-
self is broken, or something in the software is wrong and no packets are reaching
the receiver, causing an underrun there. When this evidence is applied (red indicates
false, green indicates true), the posterior of all nodes is close to 1 (white); only H FG
and H FC RXUR show values around 0.5 (gray), indicating that these two failures
cannot be properly distinguished. This is not surprising, since we set the priors to
P (Hsensor = ok) = P (H FC RxUR) = 0.99. Making the sensor less reliable,
i.e., P (Hsensor = ok) = 0.95, now enables the BN to clearly disambiguate both fail-
ure modes. Further disambiguation information is provided by S5, which indicates that
we actually receive valid (i.e., UAS is moving) packets.

τ 0 1 2 3 4 5

NR
b ≥ 3

NR
b ≥ 2

NR
b ≥ 1

NR
b = 0

τ 0 1 2 3 4 5

S3

S2

S1

τ = 1 τ = 2 τ = 3

H FC RxOVR
ok 99.47% 17.27% 65.52%
bad 0.53% 82.73% 34.48%

H FG TxOVR
ok 99.88% 81.82% 31.03%
bad 0.12% 18.18% 68.97%

H FG TxErr
ok 90.00% 90.00% 62.07%
bad 10.00% 10.00% 37.93%

Fig. 7. Recorded traces: sensor signals (left), trace of S1 . . . S3 (middle). Data of health nodes
(right) reflecting the buffer overflow situation shown in 6B.

As the case study is based on a real event, we ran it on our hardware and extracted a
trace of the sensor signals and specifications. Figure 7 shows a small snippet from this
trace. The results of the atChecker evaluation of certain sensor signals can be seen on the
left. On the right we show the results of S1 to S3. The system model delivers different
health estimations during this trace. While at τ = 1 the system is perfectly healthy, at
τ = 2 the rate of bad packets drastically increases. More than 3 bad packets have been
received within 30 seconds. While the violation of S3 would suggest a receiver overrun
at this time, the indication for a buffer overflow becomes concrete at τ = 3. This is

15

indicated in the table on the right in Figure 7. The high probability of a transmitter
overrun at the fluxgate magnetometer side with the reduced confidence of an error-free
transition, leads to determining a root cause at the fluxgate magnetometer buffer.

7 Conclusion

We have presented an FPGA-based implementation for our health management frame-
work called rt-R2U2 for the runtime monitoring and analysis of important safety and
performance properties of a complex unmanned aircraft, or other autonomous systems.
A combination of temporal logic observer pairs and Bayesian networks makes it possi-
ble to define expressive, yet compact health models. Our hardware implementation of
this health management framework using efficient special-purpose processors allows us
to execute our health models in real time. Furthermore, new or updated health models
can be loaded onto the FPGA quickly between missions without having to re-synthesize
its entire configuration in a time-consuming process.

We have demonstrated modeling and analysis capabilities on a health model, which
monitors the serial communication between the payload computer and sensors (e.g., an
on-board fluxgate magnetometer) on NASA’s Swift UAS. Using data from an actual
test flight, we demonstrated that our health management system could have quickly
detected a configuration problem of the fluxgate magnetometer as the cause for a buffer
overflow—the original problem grounded the aircraft for two days until the root cause
could be determined.

Our rt-R2U2 system health management framework is applicable to a wide range
of embedded systems, including CubeSats and rovers. Our independent hardware im-
plementation allows us to monitor the system without interfering with the previously-
certified software. This makes rt-R2U2 amenable both for black-box systems, where
only the external connections/buses are available (like the Swift UAS), and monitor-
ing white-box systems, where potentially each variable of the flight software could be
monitored.

There is of course a question of trade-offs in any compositional SHM framework
like the one we have detailed here: for any combination of data stream and off-nominal
behavior, where is the most efficient place to check for and handle that off-nominal
behavior? Should a small wobble in a data value be filtered out via a standard analog
filter, accepted by a reasonably lenient temporal logic observer, or flagged by the BN
diagnostic reasoner? In the future, it would be advantageous to complete a study of
efficient design patterns for compositional temporal logic/BN SHM and map the types
of checks we need to perform and the natural variances in sensor readings that we need
to allow for their most efficient implementations.

Future work will also address the challenges of automatically generating health
models from requirements and design documents, and carrying out flight tests with
our FPGA-based rt-R2U2 on-board. In a next step, the output of rt-R2U2 could be con-
nected to an on-board decision-making component, which could issue commands to
loiter, curtail the mission, execute an emergency landing, etc.. Here, probabilistic infor-
mation and confidence intervals calculated by the Bayesian networks of our approach
can play an important role in providing solid justifications for decisions made.

16

References

1. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In: LICS. pp.
390–401. IEEE Computer Society Press (1990)

2. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In: Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence (IJCAI). pp. 1306–
1312 (2005)

3. Darwiche, A.: A differential approach to inference in Bayesian networks. Journal of the
ACM 50(3), 280–305 (2003)

4. Darwiche, A.: Modeling and reasoning with Bayesian networks. In: Modeling and Reasoning
with Bayesian Networks (2009)

5. Drusinsky, D.: The temporal rover and the ATG rover. In: SPIN. Lecture Notes in Computer
Science, Vol. 1885, pp. 323–330. Springer Verlag (2000)

6. Ippolito, C., Espinosa, P., Weston, A.: Swift UAS: An electric UAS research platform for
green aviation at NASA Ames Research Center. In: CAFE EAS IV (April 2010)

7. Johnson, S., Gormley, T., Kessler, S., Mott, C., Patterson-Hine, A., Reichard, K., Philip Scan-
dura, J.: System Health Management: with Aerospace Applications. Wiley & Sons (2011)

8. Majzoobi, M., Pittman, R.N., Forin, A.: gNOSIS: Mining FPGAs for verification (2011)
9. Mengshoel, O.J., Chavira, M., Cascio, K., Poll, S., Darwiche, A., Uckun, S.: Probabilistic

model-based diagnosis: An electrical power system case study. IEEE Trans. on Systems,
Man and Cybernetics, Part A: Systems and Humans 40(5), 874–885 (2010)

10. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the mop runtime
verification framework. International Journal on Software Tools for Technology Transfer
14(3), 249–289 (2012)

11. Musliner, D., Hendler, J., Agrawala, A.K., Durfee, E., Strosnider, J.K., Paul, C.J.:
The challenges of real-time AI. IEEE Computer 28, 58–66 (January 1995), cite-
seer.comp.nus.edu.sg/article/musliner95challenges.html

12. Pearl, J.: A constraint propagation approach to probabilistic reasoning. In: UAI. pp. 31–42.
AUAI Press (1985)

13. Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware runtime monitoring for de-
pendable COTS-based real-time embedded systems. RTSS pp. 481–491 (2008)

14. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: monitoring embedded systems.
Innovations in Systems and Software Engineering 9(4), 235–255 (2013)

15. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs
for system health management of real-time systems. In: Proceedings of the 20th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science (LNCS), Vol. 8413, pp. 357–372. Springer-
Verlag (April 2014)

16. Schumann, J., Mbaya, T., Mengshoel, O.J., Pipatsrisawat, K., Srivastava, A., Choi, A., Dar-
wiche, A.: Software health management with Bayesian networks. Innovations in Systems
and Software Engineering 9(2), 1–22 (2013)

17. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: To-
wards real-time, on-board, hardware-supported sensor and software health management for
unmanned aerial systems. In: Proceedings of the 2013 Annual Conference of the Prognostics
and Health Management Society (PHM2013). pp. 381–401 (October 2013)

18. Srivastava, A.N., Schumann, J.: Software health management: a necessity for safety critical
systems. Innovations in Systems and Software Engineering 9(4), 219–233 (2013)

19. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for SystemC. Formal
Methods in System Design 41(3), 236–268 (2012)

View publication statsView publication stats

https://www.researchgate.net/publication/270571445

	Iowa State University
	From the SelectedWorks of Kristin Yvonne Rozier
	2014

	Runtime Observer Pairs and Bayesian Network Reasoners On-board FPGAs: Flight-Certifiable System Health Management for Embedded Systems
	tmpNCc2nh.pdf

