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Abstract

It is a well-known problem that obtaining a correct bandWwidhd/or smoothing parameter in non-
parametric regression is difficult in the presence of cateal errors. There exist a wide variety
of methods coping with this problem, but they all criticatlgpend on a tuning procedure which
requires accurate information about the correlation strec We propose a bandwidth selection
procedure based on bimodal kernels which successfullyvesihe correlation without requiring
any prior knowledge about its structure and its parameteusther, we show that the form of the
kernel is very important when errors are correlated whigch gontrast to the independent and iden-
tically distributed (i.i.d.) case. Finally, some extemsare proposed to use the proposed criterion
in support vector machines and least squares support weaithines for regression.

Keywords: nonparametric regression, correlated errors, bandwidilte, cross-validation, short-
range dependence, bimodal kernel

1. Introduction
Nonparametric regression is a very popular tool for data analysis ethese techniques impose
few assumptions about the shape of the mean function. Hence, theytrmely flexible tools for

uncovering nonlinear relationships between variables. Given the{@ata1), ..., (Xn, Yn)} where
xi =i/nandx € [0, 1] (fixed design). Then, the data can be written as

Yi—mx)+e, i=1..n, )
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whereg = Y, —m(x) satisfiesE[€] = 0 andVar [e] = 6% < ». ThusY; can be considered as the sum
of the value of the regression functionxatand some errog with the expected value zero and the
sequencde } is a covariance stationary process.

Definition 1 (Covariance Stationarity) The sequencées } is covariance stationary if
e E[g]=pforalli

o Covle,e_j|=E[(ea —W(a-j—W] =y foralliand any j.

Many techniques include a smoothing parameter and/or kernel bandwidith wimtrols the
smoothness, bias and variance of the estimate. A vast number of techin&yedseen developed to
determine suitable choices for these tuning parameters from data whemdreage independent
and identically distributed (i.i.d.) with finite variance. More detailed information lmamound in
the books of Fan & Gijbels (1996), Davison & Hinkley (2003) and Koni&hKitagawa (2008)
and the article by Feng & Heiler (2009). However, all the previous tectasdiave been derived
under the i.i.d. assumption. It has been shown that violating this assumptidts riesthe break
down of the above methods (Altman, 1990; Hermann, Gasser & Kneip,, I®&>mer, Wand &
Yang, 2001; Lahiri, 2003). If the errors are positively (negativelgjrelated, these methods will
produce a small (large) bandwidth which results in a rough (oversmostih)ae of the regression
function. The focus of this paper is to look at the problem of estimating the foeationmin the
presence of correlation, not that of estimating the correlation function.ispfiroaches describing
the estimation of the correlation function are extensively studied in Hart &riwéh986), Hart
(1991) and Park et al. (2006).

Another issue in this context is whether the errors are assumed to beahget-dependent,
where the correlation decreases rapidly as the distance between tweatloss increases or long-
range dependent. The error process is said to be short-rangeddepdérfor somet > 0,0 > 1
and correlation functiop(-), the spectral densiti (w) = %:[Z[f:,m p(k)e~'® of the errors satisfies
(Cox, 1984)

—~(1-5)

H(w) ~ tw asw— 0,

whereA ~ B denotesA is asymptotic equivalent tB. In that casep(j) is of order|j|~® (Adenst-
edt, 1974). In case of long-range dependence, the correlatioeades more slowly and regression
estimation becomes even harder (Hall, Lahiri & Polzehl, 1995; Opsomard\&aYang, 2001).
Here, the decrease is of ordgf2 for 0 < 8 < 1. Estimation under long-range dependence has
attracted more and more attention in recent years. In many scientific fediedals such as astron-
omy, chemistry, physics and signal processing, the observationes esometimes reveal long-range
dependence. #nsch, Beran & Hampel (1993) made the following interesting remark:

“Perhaps most unbelievable to many is the observation that high-qualityurezaents
series from astronomy, physics, chemistry, generally regardedastppe of i.i.d. ob-
servations, are not independent but long-range correldted.

Further, since Kulkarni et al. (2002) have proven consistency ferddita-dependent kernel
estimators, that is, correlated errors and/or correlation among the irdgerariables, there is no
need to alter the kernel smoother by adding constraints. Confirming theitssese show that the
problem is due to the model selection criterion. In fact, we will show in SectithraBthere exists
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a simple multiplicative relation between the bandwidth under correlation and tusviith under
the i.i.d. assumption.

In the parametric case, ordinary least squares estimators in the presentecorrelation are
still linear-unbiased as well as consistent, but they are no longer eff{Gien minimum variance).
As a result, the usual confidence intervals and the test hypothesest tenlegitimately applied
(Sen & Srivastava, 1990).

2. Problems With Correlation

Some quite fundamental problems occur when nonparametric regressitengted in the pres-
ence of correlated errors. For all nonparametric regression teaws)ithe shape and the smoothness
of the estimated function depends on a large extent on the specific vathe&gn for the kernel
bandwidth (and/or regularization parameter). In order to avoid seleddings for these parameters
by trial and error, several data-driven methods are developedettowthe presence of correlation
between the errors, if ignored, causes breakdown of commonly usenhatic tuning parameter
selection methods such as cross-validation (CV) or plug-in.

Data-driven bandwidth selectors tend to be “fooled” by the correlatiderpreting it as reflect-
ing the regression relationship and variance function. So, the cyclittalpan positively correlated
errors is viewed as a high frequency regression relationship with smmelhea, and the bandwidth
is set small enough to track the cycles resulting in an undersmoothed fittedsiem curve. The
alternating pattern above and below the true underlying function for wefjatiorrelated errors is
interpreted as a high variance, and the bandwidth is set high enough tthsoveo the variability,
producing an oversmoothed fitted regression curve.

The breakdown of automated methods, as well as a suitable solution, is illddisateeans of
a simple example shown in Figure 1. For 200 equally spaced observatioaspafyhomial mean
function m(x) = 300¢3(1 — x)3, four progressively more correlated sets of errors were generated
from the same vector of independent noise and added to the mean fufi¢tearrors are normally
distributed with variance? = 0.3 and correlation following an Auto Regressive process of order
1, denoted by AR(1), cote, e)) = exp(—a|x —X;|) (Fan & Yao, 2003). Figure 1 shows four local
linear regression estimates for these data sets. For each data set, twadtiasdlection methods
were used: standard CV and a correlation-corrected CV (CC-CV)hnikid¢urther discussed in
Section 3. Table 1 summarizes the bandwidths selected for the four datadetoth methods.

Table 1 and Figure 1 clearly show that when correlation increases, tiusvidth selected by
CV becomes smaller and smaller, and the estimates become more undersmoogheaindwidths
selected by CC-CV (explained in Section 3), a method that accounts fordbenze of correlation,
are much more stable and result in virtually the same estimate for all four casés.type of
undersmoothing behavior in the presence of positively correlatedsenas been observed with
most commonly used automated bandwidth selection methods (Altman, 1990;%%drtCpsomer,
Wand & Yang, 2001; Kim et al., 2009).

3. New Developments in Kernel Regression with Correlated Ewors

In this Section, we address how to deal with, in a simple but effective veaglated errors using
CV. We make a clear distinction between kernel methods requiring no podéfite kernel and
kernel methods requiring a positive definite kernel. We will also show tleatdim of the kernel,
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Correlation level | Autocorrelation Cv cc-cv
Independent 0 0.09 0.09
o =400 0.14 0.034 0.12
o =200 0.37 0.0084| 0.13
o =100 0.61 0.0072| 0.13

Table 1: Summary of bandwidth selection for simulated data in Figure 1

0 0.2 0.4 06 08 1 0 0.2 0.4 0.6 08 1
X X

(a) Uncorrelated (b) a =400

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

(c)a =200 (d)a =100
Figure 1: Simulated data with four levels of AR(1) correlation, estimated witH lotar regres-
sion; full line represents the estimates obtained with bandwidth selected bgaSked
line represents the estimates obtained with bandwidth selected by our method.

based on the mean squared error, is very important when errorsragéated. This is in contrast
with the i.i.d. case where the choice between the various kernels, baseel medm squared error,
is not very crucial (Frdle, 1999). In what follows, the kerri€lis assumed to be an isotropic kernel.
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3.1 No Positive Definite Kernel Constraint

To estimate the unknown regression functionconsider the Nadaraya-Watson (NW) kernel esti-
mator (Nadaraya, 1964; Watson, 1964) defined as

ZlZJ 1K

whereh is the bandwidth of the kern&l. This kernel can be one of the following kernels: Epanech-
nikov, Gaussian, triangular, spline, etc. An optirhaan for example be found by minimizing the
leave-one-out cross-validation (LCV) score function

n

LCV/(h) = i; (V- ﬁ\g—i)()q;h))27 @)

whererrﬁ_i)(xi;h) denotes the leave-one-out estimator where poisitleft out from the training.

For notational ease, the dependence on the bandWwidili be suppressed. We can now state the
following.

Lemma 2 Assume that the errors are zero-mean, then the expected value afthedore func-
tion (2) is given by

E[LCV(h)]:iE[ (m(xi) 'y )(X.)

+02-= ZlCov[ %) ] )
Proof: see Appendix A. |

Note that the last term on the right-hand side in Lemma 2 is in addition to the comelatio
already included in the first term. Hart (1991) shows i 0, nh— o, nh° — 0 and for positively
correlated errors, th&|LCV (h)] ~ 02+ c/nhwherec < 0 andc does not depend on the bandwidth.
If the correlation is sufficiently strong amdsufficiently large,E[LCV (h)] will be minimized at a
value ofh that is very near to zero. The latter corresponds to almost interpolatingathe(ske
Figure 1). This result does not only hold for leave-one-out cradistation but also for Mallow’s
criterion (Chiu, 1989) and plug-in based techniques (Opsomer, Warah§,Y2001). The following
theorem provides a simple but effective way to deal with correlatedseriomhat follows we will

use the following notation
= / K(y)e " dy

for the Fourier Transform of the kernel functién

Theorem 3 Assume uniform equally spaced desigs,[®, 1], E[e] = 0, Cov|e, e k] = Elaa k] =
Yk andyi ~ k~2 for some a> 2. Assume that

(C1) Kis Lipschitz continuous at=x 0;
(C2) [K(u)du=1,limjy e JuK(W)] =0, f [K(w)]|du< e,sup, [K(u)| < e;

(C3) [|k(u)|du< o and K is symmetric.
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Assume further that boundary effects are ignored and that®as n— c such that nA — o, then
for the NW smoother it follows that

n

E[LCV(h)] = % E [; (mox) — rh((”(m))z

4K(0) & 1
+02_hh_7K(0)kZlyk+0(n 'h l)- 3)

Proof. see Appendix B. |

Remark 4 There are no major changes in the proof if we consider other smoathetsas Priestley-
Chao and local linear regression. In fact, it is well-known that the localdinestimate is the local
constant estimate (Nadaraya-Watson) plus a correction for local slbgigeadata and skewness of
the data point under consideration. Following the steps of the proof afféne 3 for the correction
factor will yield a similar result.

From this result it is clear that, by taking a kernel satisfying the condKi@) = 0, the correla-
tion structure is removed without requiring any prior information about it<gire and (3) reduces

to
n

E[LCV(h)] = % E [zi <m(Xi) - m&—w(m)>z

+0?+o(n"th1). (4)

Therefore, it is natural to use a bandwidth selection criterion based emallsatisfyind(0) = 0,
defined by

hp = argminLCV (h),

heQu

whereQ, is a finite set of parameters. Notice thaKifis a symmetric probability density function,
thenK(0) = 0 implies thatk is not unimodal. Hence, it is obvious to use bimodal kernels. Such a
kernel gives more weight to observations near to the panfiinterest than those that are far from
But at the same time it also reduces the weight of points which are too clasA toajor advantage
of using a bandwidth selection criterion based on bimodal kernels is thin&iés more efficient in
removing the correlation than leavel-(21)-out CV (Chu & Marron, 1991).

Definition 5 (Leave-@l + 1)-out CV) Leave-gl + 1)-out CV or modified CV (MCV) is defined as
1 n ( ) 2
e A —I A
MoV = £ 3 (%-m0)) ©

wherem((i)(xi) is the leave-Zl + 1)-out version of i), that is, the observation&j, Y ) for

—| <'j <l are left out to estimatén(X;).

Taking a bimodal kernel satisfying(0) = O results in Equation (4) while leavet(2 1)-out CV
with unimodal kerneK, under the conditions of Theorem 3, yields

4K(0) ¢ 11
nh_K(O)k:ZHVk—i-O(n h™).

The formula above clearly shows that leavé-{21)-out CV with unimodal kerneK cannot com-
pletely remove the correlation structure. Only the firslements of the correlation are removed.

n

EMCV(h)] = % E [Zl <m(Xi) — ﬁ'l;(]_i)()(i)>2

+0%—
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Another possibility of bandwidth selection under correlation, not basduirandal kernels, is
to estimate the covariance structygys, ... in Equation (3). Although the usual residual-based
estimators of the autocovariancgsare consistenty_; Yk is not a consistent estimator §f_; vk
(Simonoff, 1996). A first approach correcting for this, is to estinjgte; yk by fitting a parametric
model to the residuals (and thereby obtaining estimatgg ahd use these estimates in Equation (3)
together with a univariate kernel. If the assumed parametric model is ictditese estimates can
be far from the correct ones resulting in a poor choice of the bandwitittuever, Altman (1990)
showed that, if the signal to noise ratio is small, this approach results in soffjcgpod estimates
of correlation for correcting the selection criteria. A second appropaiposed by Hart (1989,
1991), suggests estimating the covariance structure in the spectral daendifierencing the data
at least twice. A third approach is to derive an asymptotic bias-variarsmgmsition under the
correlated error assumption of the kernel smoother. In this way and wedain conditions on
the correlation function, plug-ins can be derived taking the correlationaictount, see Hermann,
Gasser & Kneip (1992), Opsomer, Wand & Yang (2001), Hall & Van Kgila (2003), Francisco-
Ferrandez & Opsomer (2004) and Francisco-Rewtez et al. (2005). More recently, Park et al.
(2006) proposed to estimate the error correlation nonparametrically wiphioutkknowledge of the
correlation structure.

3.2 Positive Definite Kernel Constraint

Methods like support vector machines (SVM) (Vapnik, 1999) and lepsires support vector ma-
chines (LS-SVM) (Suykens et al., 2002) require a positive (semi) iteternel (see Appendix C
for more details on LS-SVM for regression). However, the following theoreveals why a bimodal
kernelK cannot be directly applied in these methods.

Theorem 6 A bimodal kerneK, satisfyingK(O) =0, is never positive (semi) definite.

Proof: see Appendix D. |

Consequently, the previous strategy of using bimodal kernels caneotlgibe applied to SVM
and LS-SVM. A possible way to circumvent this obstacle, is to use the batitiwjdobtained from
the bimodal kernel, as a pilot bandwidth selector for other data-driventsm procedures such as
leave{2l + 1)-out CV or block bootstrap bandwidth selector (Hall, Lahiri & Polzehl, 39%ince
the block bootstrap in Hall, Lahiri & Polzehl (1995) is based on two smostlieat is, one is used to
compute centered residuals and the other generates bootstrap datac#uripe is computationally
costly. Therefore, we will use leav@ + 1)-out CV or MCV which has a lower computational
cost. A crucial parameter to be estimated in MCV, see also Chu & Marron 1891 Indeed, the
amount of dependence betwemg(Xx) andY is reduced akincreases.

A similar problem arises in block bootstrap where the accuracy of the methiodity depends
on the block size that is supplied by the user. The orders of magnitude optimeal block sizes
are known in some inference problems (sdm&ch, 1989; Hall, Horowitz & Jing, 1995; Lahiri,
1999; Bihimann & Kiinsch, 1999). However, the leading terms of these optimal block sizesdep
on various population characteristics in an intricate manner, making it difticudstimate these
parameters in practice. Recently, Lahiri et al. (2007) proposed aanamgtric plug-in principle to
determine the block size.

Forl =0, MCV is ordinary CV or leave-one-out CV. One possible method to seleatue for
is to usehb as pilot bandwidth selector. Define a bimodal ketdelnd assumbb is available, then
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one can calculate

I (X) = (6)

From this result, the residuals are obtained by
&=Yi—rm(x), fori=1....n
and choosé¢ to be the smallesi > 1 such that

N—0 2 a
|rq| _ Zizlqaa-i-q
&

whered~! denotes the quantile function of the standard normal distributiomasithe significance
level, say 5%. Observe that Equation (7) is based on the factrdhatasymptotically normal
distributed under the centered i.i.d. error assumption (Kendall, Stuart & I9&B) and hence
provides an approximate 10D— a)% confidence interval for the autocorrelation. The reason why
Equation (7) can be legitimately applied is motivated by combining the theoretstdts®f Kim et

al. (2004) and Park et al. (2006) stating that

< quf%_ 2),

(7)

1 1 4/5
3 88q=—— > 88+ O(M 7).
n—q 88T g 2, 88O )

Oncel is selected, the tuning parameters of SVM or LS-SVM can be determinedity leswve-
(2l +1)-out CV combined with a positive definite kernel, for example, GaussiarekeWe then call
Correlation-Corrected CV (CC-CV) the combination of findinga bimodal kernels and using the
obtained in leave{2l + 1)-out CV. Algorithm 1 summarizes the CC-CV procedure for LS-SVM.
This procedure can also be applied to SVM for regression.

Algorithm 1 Correlation-Corrected CV for LS-SVM Regression

1: Determinehy, in Equation (6) with a bimodal kernel by means of LCV

2: Calculatd satisfying Equation (7)

3. Determine both tuning parameters for LS-SVM by means of leave-{3-out CV Equation (5)
and a positive definite unimodal kernel.

3.3 Drawback of Using Bimodal Kernels

Although bimodal kernels are very effective in removing the correlationcsire, they have an
inherent drawback. When using bimodal kernels to estimate the regrdasiction m, the esti-
mateni, will suffer from increased mean squared error (MSE). The followirgptem indicates the
asymptotic behavior of the MSE afi,(X) when the errors are covariance stationary.

Theorem 7 (Simonoff, 1996)Let Equation(1) hold and assume that m has two continuous deriva-
tives. Assume also th@ov[e, e ] = Yk for all k, whereyp = 62 < o and S k=1 K|Yk| < . Now, as
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KERNEL REGRESSION IN THEPRESENCE OFCORRELATED ERRORS

n— co and h— 0, the following statement holds uniformly irexh, 1 — h) for the Mean Integrated
Squared Error (MISE)

_ (KR (M'())2dx  R(K)[0%+ 25 1 W]

MISE(r) . -

+o(h*+n~tht),

where 3(K) = [U?K(u)du and RK) = [K?(u)du.

An asymptotic optimal constant or global bandwidifysg, for m”’(x) £ 0, is the minimizer of the
Asymptotic MISE (AMISE)

_ lJl%(K)h“f(mf’(x))z0|><+ R(K)[0® + 25 1 W]
4 nh ’

AMISE(1iy,)
w.r.t. to the bandwidth, yielding

o 1/5
RI[0%+ 257 %] us

2(K) (' (x) 2dlx .

hamise =

We see thabayse is at least as big as the bandwidth for i.i.d dbgaf Yk > O0forallk> 1. The
following corollary shows that there is a simple multiplicative relationship betwieemsymptotic
optimal bandwidth for dependent ddtase and bandwidth for independent ddia

Corollary 8 Assume the conditions of Theorem 7 hold, then

. 1/5
hamise = [1+2 z p(k)] ho, 9)
Fes

wherehawise is the asymptotic MISE optimal bandwidth for dependent dagas the asymptotic
optimal bandwidth for independent data apik) denotes the autocorrelation function at lag k, that

is, p(k) = Y/0” = E[@i&41]/0%.
Proof: see Appendix E. |

Thus, if the data are positively autocorrelatgdk) > 0 Vk), the optimal bandwidth under cor-
relation is larger than that for independent data. Unfortunately, Equéjois quite hard to use
in practice since it requires knowledge about the correlation structaramestimate of the band-
width ho under the i.i.d. assumption, given correlated data. By taﬁ}m% as in Equation (8), the
corresponding asymptotic MISE is equal to

AMISE(fy,) = cDZ/°n4/5,

wherec depends neither on the bandwidth nor on the keknahd

Dk = po(K)R(K)? = (/uZK(u)du> (/Kz(u)du>2. (10)
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It is obvious that one wants to minimize Equation (10) with respect to the kemetionK. This
leads to the well-known Epanechnikov kerifgha However, adding the constrait0) = O (see
Theorem 3) to the minimization of Equation (10) would lead to the following optimadede

wron | Kepdu), if u#0;
K(“)_{o,p if u=0.

Certainly, this kernel violates assumption (C1) in Theorem 3. In fact, &mapkernel does not
exist in the class of kernels satisfying assumption (C1) K@) = 0. To illustrate this, note that
there exist a sequence of kerngksep(U, €) }ecjo.1/, iNdexed bye, such thatepsu) converges to
K*(u) and the value of KepdU, £)2du decreases t¢ K* (u)?du ase tends to zero. Since an optimal
kernel in this class cannot be found, we have to be satisfied with a so-eadiptimal class of
bimodal kernelsﬁs(u), with 0 < € < 1, defined as

Relt) = 5551 31 Wlusy, 2
4-3—€3 | 3LEu, ul <.

Fore = 0, we defineKe(u) = KepfU). Table 2 displays several possible bimodal kernel functions

with their respectiveDk value compared to the Epanechnikov kernel. Although it is possible to

express thé value forK(u) as a function o, we do not include it in Table 2 but instead, we

graphically illustrate the dependencelf one€ in Figure 2a. An illustration of the-optimal class

of bimodal kernels is shown in Figure 2b.

kernel function Illustration Dk
Kepa SA—-W)ly<y 0.072
Ki | 630(4u? — 1)2u*l gy <1/2) 0.374
Ko %ﬁuz exp(—u?) 0.134
K3 2 |uf exp(—|u)) 0.093

Table 2: Kernel functions with illustrations and their respedivevalue compared to the Epanech-
nikov kernel.l5 denotes the indicator function of an evént

Remark 9 We do not consideg as a tuning parameter but the user can set its value. By doing
this one should be aware of two aspects. First, one should choose the afaso that its Lk
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Figure 2: (a)Dk as a function of for thee-optimal class of kernels. The dot on the left side marks
the Epanechnikov kernel; (b) Illustration of th@ptimal class of kernels far= 0.3.

15

value is lower than the P value of kerneKs. This is fulfilled wherg < 0.2. Second, by choosing

€ extremely small (but not zero) some numerical difficulties may arisehate experimented with
several values of and we concluded that the value taken in the remaining of the paper, that is,
€ = 0.1is small enough and it does not show any numerical problems. Inyhtmare is indeed a
difference between kernkk and thee-optimal class of bimodal kernels. However, in practice the
difference is rather small. One can compare it with the i.i.d. case where tApdepnikov kernel is

the optimal kernel, but in practice the difference with say a Gaussian kisrnegligible.

4. Simulations

In this Section, we illustrate the capability of the proposed method on sevgeddamples corrupted
with different noise models as well as a real data set.

4.1 CC-CV vs. LCV with Different Noise Models

In a first example, we compare the finite sample performance of CC-CV Kyitinde = 0.1 in

the first step and the Gaussian kernel in the second step) to the classieablee-out CV (LCV)
based on the Epanechnikov (unimodal) kernel in the presence ofatmmne Consider the following
function m(x) = 3003(1 — x)3 for 0 < x < 1. The sample size is set to= 200. We consider

two types of noise models: (i) an AR(5) process= zf’:lc,qej,| + 4 /1—([)%2] whereZ; are i.i.d.
normal random variables with variancd = 0.5 and zero mean. The data is generated according
to Equation (1). The errorg; for j = 1,...,5 are standard normal random variables. The AR(5)
parameters are set {@1, ¢z, @3, ¢, @] = [0.7,—0.5,0.4,—-0.3,0.2]. (ii) m-dependent modelg =

rodi +r18i_1 with m= 1 whereg; is i.i.d. standard normal random variablg~= Y22 $v1-2 gng
ry = YH2 VN fory = 1/2,

Figure 3 shows typical results of LS-SVM regression estimates for basie meodels. Table 3
summarizes the average of the regularization param&téxmdwidthsﬁ and asymptotic squared
error, defined as ASE %z{‘zl(m(xi) — 1fn(x))?, for 200 runs for both noise models. By looking
at the average ASE, it is clear that the tuning parameters obtained by Crestit into better
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estimates which are not influenced by the correlation. Also notice the smallidths and larger
regularization constants found by LCV for both noise models. This previtéar evidence that the
kernel smoother is trying to model the noise instead of the true underlyirgidan These findings
are also valid if one uses generalized CWsdbpld CV. Figure 4 and Figure 5 show the CV surfaces

PN W A g o N o

Y, (%)

0 0.2 0.4 0.6 0.8 1

(@) AR(5)
Figure 3: Typical results of the LS-SVM regression estimates for botlemoadels. The thin line

represents the estimate with tuning parameters determined by LCV and the bakl line
the estimate based on the CC-CV tuning parameters.

(b) mdependence models

AR(5) m-dependence models
LCV CC-cVv LCV CC-cv
av.y 226.24 2.27 1.05x 10° 6.87
av.h 0.014 1.01 0.023 1.88
av. ASE || 0.39 (29x 10°?) | 0.019 (99 x 10~%) || 0.90 (82 x 10?) | 0.038 (14 x 10°9)

Table 3: Average of the regularization paramet{erbandwidthsﬁ and average ASE for 200 runs
for both noise models. The standard deviation is given between parisnthes

for both model selection methods on the AR(5) noise model correspondihg taodel selection
of the estimate in Figure 3(a). These plots clearly demonstrate the shift ofrtimg tparameters.
A cross section for both tuning parameters is provided below each sufac Also note that the
surface of the CC-CV tends to be flatter than LCV and so it is harder to minimizerically (see
Hall, Lahiri & Polzehl, 1995).

4.2 Evolution of the Bandwidth Under Correlation

Consider the same function as in the previous simulation amil4e#t00. The noise error model

is taken to be an AR(1) process with varying parameter—0.95,—0.9,...,0.9,0.95. For eachy,

100 replications of siza were made to report the average regularization parameter, bandwidth and
average ASE for both methods. The results are summarized in Table 4.ed/éheX; kernel with

€ = 0.1 in the first step and the Gaussian kernel in the second step for CC-€tharGaussian
kernel for classical leave-one-out CV (LCV). The results indicatettimCC-CV method is indeed
capable of finding good tuning parameters in the presence of corretates. &he CC-CV method
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’zlo(%lghf s

Figure 4: (a) CV surface for LCV; (b) cross sectional view of (legfor fixed logly) = 5.5; (c)
cross sectional view of lag) for fixed logh) = —3.6. The dot indicates the minimum
of the cost function. This corresponds to the model selection of the wigginate in
Figure 3(a).
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10362
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Figure 5: (a) CV surface for CC-CV; (b) cross sectional view of lgdor fixed log(y) = 0.82; (c)
cross sectional view of Idg) for fixed logh) = 0.06. The dot indicates the minimum
of the cost function. This corresponds to the model selection of the smstitiage in
Figure 3(a).

outperforms the classical LCV for positively correlated errors, thagis0. The method is capable
of producing good bandwidths which do not tend to very small values ag ib@V case.

In general, the regularization parameter obtained by LCV is larger thamth&am CC - CV.
However, the latter is not theoretically verified and serves only as a leui@n the other hand,
for negatively correlated errorg & 0), both methods perform equally well. The reason why the
effects from correlated errors is more outspoken for posigittean for negativep might be related
to the fact that negatively correlated errors are seemingly hard toatifiate form i.i.d. errors in
practice.

4.3 Comparison of Different Bimodal Kernels

Consider a polynomial mean function(x.) = 300¢(1—x)3, k= 1,...,400, where the errors are
normally distributed with varianoe? = 0.1 and correlation following an AR(1) process, derre;) =
exp(—150x —Xj|). The simulation shows the difference in regression estimates (Nadaratgaivy
based on kernellsl, K3 andK; with € = 0.1, see Figure 6a and 6b respectlvely Due to the larger
Dk value ofKy, the estimate tends to be more wiggly compared to kefgelThe difference be-
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" LCV CC-CV

7 h [av.ASE| ¢ h | av. ASE
0.95| 14.75| 1.48| 0.0017 | 7.65 | 1.43| 0.0019
-0.9 || 11.48| 1.47| 0.0017 || 14.58 | 1.18 | 0.0021
-0.8 || 7.52 | 1.39| 0.0021 || 18.12 | 1.15| 0.0031
-0.7 || 2.89 | 1.51| 0.0024 | 6.23 | 1.21| 0.0030
-0.6 || 28.78| 1.52| 0.0030 | 5.48 | 1.62| 0.0033
-0.5 || 42.58| 1.71| 0.0031 || 87.85 | 1.75| 0.0048
-0.4 || 39.15| 1.55| 0.0052 || 39.02 | 1.43| 0.0060
-0.3 || 72.91| 1.68| 0.0055 || 19.76 | 1.54 | 0.0061
-0.2 || 98.12| 1.75| 0.0061 || 99.56 | 1.96 | 0.0069
-0.1 || 60.56| 1.81 | 0.0069 || 101.1 | 1.89 | 0.0070
0 | 102.5] 1.45| 0.0091 || 158.4 | 1.89 | 0.0092
0.1 || 1251 | 1.22| 0.0138 || 209.2 | 1.88 | 0.0105
0.2 || 1893 | 0.98| 0.0482 || 224.6 | 1.65| 0.0160
0.3 || 1535 | 0.66| 0.11 5.18 | 1.86 | 0.0161
0.4 || 482.3| 0.12| 025 | 667.5| 1.68| 0.023
05 || 2598 | 0.04| 033 | 541.8 | 1.82| 0.033
0.6 || 230.1| 0.03| 036 | 986.9 | 1.85| 0.036
0.7 || 9785 | 0.03| 041 | 1258 | 1.68| 0.052
0.8 || 612.1] 0.03| 0.45 1531 | 1.53 | 0.069
0.9 || 448.8| 0.02| 051 | 145.12| 1.35| 0.095
0.95 || 878.4| 0.01| 0.66 965 | 1.19| 0.3

Table 4. Average of the regularization parameters, bandwidths andgev&SE for 100 runs for
the AR(1) process with varying parametgr

tween the regression estimate base&gmandK with € = 0.1 is very small and almost cannot be
seen on Figure 6b. For illustration purposes we did not visualize the texsedt on kerned,. For
the sake of comparison between regression estimates baséd Kn Kz andK; with € = 0.1, we
show the corresponding asymptotic squared error (ASE) in Figureedlwas100 simulations with
the data generation process described as above. The boxplot skweetkerneK, with € = 0.1
outperforms the other three.

4.4 Real Life Data Set

We apply the proposed method to a time series of the Beveridge (1921) ihddveat prices from
the year 1500 to 1869 (Anderson, 1971). These data are an andaaldhprices at which wheat
was sold in European markets. The data used for analysis are the tagardhms of the Beveridge
indices. This transformation is done to correct for heteroscedasticity riti@al series (no other
preprocessing was performed). The resultis shown in Figure 8 f&\V& with Gaussian kernel. It
is clear that the estimate based on classical leave-one-out CV (assuniptoarrelation) is very
rough. The proposed CC-CV method produces a smooth regressiorhétselected parameters
(¥, h) for LS-SVM are(15.61,29.27) and(96.91, 1.55) obtained by CC-CV and LCV respectively.
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0 0.2 0.4 06 08 1 0 0.2 0.4 0.6 0.8 1
X X

a b
Figure 6: Difference in Eh)e regression estimate (Nadaraya-V\ga)tsorna@)d on kerneKy (full
line) andK3 (dashed line). Due to the largBi value ofKj, the estimate tends to be
more wiggly compared tEs; (b) based on kernd{; (full line) ande-optimal kernel with
€ = 0.1 (dashed line).
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Figure 7: Boxplot of the asymptotic squared errors for the regressitimates based on bimodal
kernelsKq, Ky, Kz andK¢ with € = 0.1.

5. Conclusion

We have introduced a new type of cross-validation procedure, badgithodal kernels, in order to
automatically remove the error correlation without requiring any prior kndgéeabout its structure.
We have shown that the form of the kernel is very important when errers@related. This in
contrast with the i.i.d. case where the choice between the various kerntils basis of the mean
squared error is not very important. As a consequence of the bimodalla&hoice the estimate
suffers from increased mean squared error. Since an optimal bimedatlkin mean squared
error sense) cannot be found we have propose@ptimal class of bimodal kernels. Further, we
have used the bandwidth of the bimodal kernel as pilot bandwidth selectteave({2| + 1)-out
cross-validation. By taking this extra step, methods that require a poséiigtd kernel (SVM
and LS-SVM) can be equipped with this technique of handling data in themresof correlated
errors since they require a positive definite kernel. Also other kerntidade which do not require
positive definite kernels can benefit from the proposed method.
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Figure 8: Difference in regression estimates (LS-SVM) for standangeleae-out CV (thin line)
and the proposed method (bold line).
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Appendix A. Proof of Lemma 2

We first rewrite the LCV score function in a more workable form. Sivice m(x;) + &

> Y~ (6)°

[mz )+ 2m(x)e + e — 2k (x) + (r?\(m_i)(n))z]
3 [mix

m(x ‘i-}+ Zlef

LCV(h) =
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Taking expectations, yields

n

E[LCV (h)]= % E [Zl (m(xi) - rﬁ((i)(xi))z

+0%— i_iCov [rﬁﬁfi)(xi),a] .
=

Appendix B. Proof of Theorem 3

Consider only the last term of the expected LCV (Lemma 2), that is,

2 < (1)
=——3 Cov |y "(X),&a].
n 2,00V [ 0.
Plugging in the Nadaraya-Watson kernel smoothenﬁtj)(xi) in the term above yields

ZlCov {; zl; X;)Y’ ]

By using the linearity of the expectation operatgr= m(x;) +e; andE[e] = 0 it follows that

A = 23S LJS X'x.)Y‘) ]
soa k()

- 7721221# Xi— x| Elee].

By slightly rewriting the denominator and using the covariance stationaryepsopf the errors
(Definition 1), the above equation can be written as

<)

:“Zl;z, K (5E) k() -

Let f denote the design density. The first term of the denominator can be written as

éK <’“ h"') — nhf(x)

= nhf(x)+nh(f(x)— f(x)).

If conditions (C2) and (C3) are fulfilledf, is uniform continuous antl — © asn — o such that
nh? — oo, then

\f( i) — f(X )\<sup]f(x.)—f(x.)|—>0 asn — oo,

due to the uniform weak consistency of the kernel density estimator (Rar262). P, denotes
convergence in probability. Hence, for— o, the following approximation is valid

nhf(x) ~ nhf(x).
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Further, by grouping terms together and using the factsthati/n (uniform equispaced design)
and assume without loss of generality that [0, 1], Equation (11) can be written as

2 n

A= g ko 2 () v
- ()< ()

Next, we show thay i—1 (") K (£ ) v = K(0) Ti_; W +0(n~*h~1) for n — . Since the kernel

n
K > 0 is Lipschitz continuous at=0

[K(0) +Cox], < K(x) <K(0)+Cyx,

where[z]; = max(z,0). Then, forK(0) > 0 andC; > C,, we establish the following upperbound
nl/n-k k nt k k
_ < _ —
205 < &) (<oreg)y
n-1 k
< ZK )Yk + ZC1 Y

Then, forn — o and usingyk ~ k=2 fora > 2,

n—1 k n-1p1-a

Gy —%w=CY — =o(nth?).
kZl nh k; nh
Hence,
n1/n_k K © _
—_ < ~*h™).
k;( - )K(nh)vk K(0) 5 erof h

For the construction of the lower bound, assume first@aat 0 andK(0) > 0 then

(19 (e () o]

SinceC; < 0, it follows thatk < ( )nh and therefore

ne1 m|n<n 1, 0>nh>

55 kel v 5 (1) (koe )

Analogous to deriving the upper bound, we obtainrfer o

S Eearogaren

In the second case, that &; > 0, the same lower bound can be obtained. Finally, from the upper
and lower bound, fon — oo, yields

() (o s
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Appendix C. Least Squares Support Vector Machines for Regressn
Given a training set defined &, = {(x, Yk) : X € RY Y e Rik=1,.. .,n}. Then least squares
support vector machines for regression are formulated as follow&éBaet al., 2002)
mgn](we =IwTw+Y Zeﬁ
st Ye= WT¢(xk)+b+a<, k=1,...,n,

(12)

whereg, € R are assumed to be i.i.d. random errors with zero mean and finite varganfé, —
R™ is the feature map to the high dimensional feature space (possibly infinite dimeahsand
w e R™, b e R. The cost functiory consists of a residual sum of squares (RSS) fitting error and a
regularization term (with regularization paramefecorresponding to ridge regression in the feature
space with additional bias term.

However, one does not need to evaluatand¢ explicitly. By using Lagrange multipliers, the
solution of Equation (12) can be obtained by taking the Karush-Kuhikei &K T) conditions for
optimality. The result is given by the following linear system in the dual vargdle

<£‘QEW)<§>:<$)’

withY = (Y,....Y0) ", In=(1,..., D)7, a = (ay,...,0n)" andQy = ¢ () Td(x) = K(Xk, %), with
K(x«, X ) positive definite, fok,| = 1,...,n. According to Mercer’s theorem, the resulting LS-SVM
model for function estimation becomes

n
= 3 G (x,%) +b
k=1

whereK (-, ) is an appropriately chosen positive definite kernel. In this paper weseliot be the
Gaussian kernel, that it,(x, %) = (2m)~9/2 exp(M)_

Appendix D. Proof of Theorem 6

We split up the proof in two parts, that is, for positive definite and positaraigefinite kernels.
The statement will be proven by contradiction.

e Suppose there exists a positive definite bimodal keknelThis leads to a positive definite
kernel matrixQ. Then, all eigenvalues @ are strictly positive and hence the trace(bfs
always larger than zero. However, this is in contradiction with the fact@Hzs all zeros on
its main diagonal. Consequently, a positive definite bimodal ké€reinnot exist.

e Suppose there exists a positive semi-definite bimodal kétn&hen, at least one eigenvalue
of the matrixQ is equal to zero (the rest of the eigenvalues is strictly positive). We hawve n
two possibilities, that is, some eigenvalues are equal to zero and all digesnae equal
to zero. In the first case, the trace of the mafdixs larger than zero and we have again
a contradiction. In the second case, the trace of the m@tiix equal to zero and also the
determinant of2 equals zero (since all eigenvalues are equal to zero). But the detatmina
can never be zero since there is no linear dependence between the mienns (there is a
zero in each row or column).

1973



DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

Appendix E. Proof of Corollary 8

From Equation (8) it follows that

- B R(K)o? < >z°° w 1Y°
hamise = 2K [ ZdX—I— (K k=1 de]
~ [res 02R<K> zzkzlvk e
U0 nK) S(m(x)2dx 02
- ° 1/5
= 1+2Zp(k)] ho.
k=1
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