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Abstract

It is a well-known problem that obtaining a correct bandwidth and/or smoothing parameter in non-
parametric regression is difficult in the presence of correlated errors. There exist a wide variety
of methods coping with this problem, but they all criticallydepend on a tuning procedure which
requires accurate information about the correlation structure. We propose a bandwidth selection
procedure based on bimodal kernels which successfully removes the correlation without requiring
any prior knowledge about its structure and its parameters.Further, we show that the form of the
kernel is very important when errors are correlated which isin contrast to the independent and iden-
tically distributed (i.i.d.) case. Finally, some extensions are proposed to use the proposed criterion
in support vector machines and least squares support vectormachines for regression.

Keywords: nonparametric regression, correlated errors, bandwidth choice, cross-validation, short-
range dependence, bimodal kernel

1. Introduction

Nonparametric regression is a very popular tool for data analysis because these techniques impose
few assumptions about the shape of the mean function. Hence, they are extremely flexible tools for
uncovering nonlinear relationships between variables. Given the data{(x1,Y1), . . . ,(xn,Yn)} where
xi ≡ i/n andx∈ [0,1] (fixed design). Then, the data can be written as

Yi = m(xi)+ei , i = 1, . . . ,n, (1)
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whereei =Yi −m(xi) satisfiesE[e] = 0 andVar [e] = σ2 < ∞. ThusYi can be considered as the sum
of the value of the regression function atxi and some errorei with the expected value zero and the
sequence{ei} is a covariance stationary process.

Definition 1 (Covariance Stationarity) The sequence{ei} is covariance stationary if

• E[ei ] = µ for all i

• Cov[ei ,ei− j ] = E[(ei −µ)(ei− j −µ)] = γ j for all i and any j.

Many techniques include a smoothing parameter and/or kernel bandwidth which controls the
smoothness, bias and variance of the estimate. A vast number of techniqueshave been developed to
determine suitable choices for these tuning parameters from data when the errors are independent
and identically distributed (i.i.d.) with finite variance. More detailed information canbe found in
the books of Fan & Gijbels (1996), Davison & Hinkley (2003) and Konishi& Kitagawa (2008)
and the article by Feng & Heiler (2009). However, all the previous techniques have been derived
under the i.i.d. assumption. It has been shown that violating this assumption results in the break
down of the above methods (Altman, 1990; Hermann, Gasser & Kneip, 1992; Opsomer, Wand &
Yang, 2001; Lahiri, 2003). If the errors are positively (negatively)correlated, these methods will
produce a small (large) bandwidth which results in a rough (oversmooth) estimate of the regression
function. The focus of this paper is to look at the problem of estimating the meanfunctionm in the
presence of correlation, not that of estimating the correlation function itself. Approaches describing
the estimation of the correlation function are extensively studied in Hart & Wehrly (1986), Hart
(1991) and Park et al. (2006).

Another issue in this context is whether the errors are assumed to be short-range dependent,
where the correlation decreases rapidly as the distance between two observations increases or long-
range dependent. The error process is said to be short-range dependent if for someτ > 0, δ > 1
and correlation functionρ(·), the spectral densityH(ω) = σ2

2π ∑∞
k=−∞ ρ(k)e−iω of the errors satisfies

(Cox, 1984)
H(ω)∼ τω−(1−δ) asω → 0,

whereA∼ B denotesA is asymptotic equivalent toB. In that case,ρ( j) is of order| j|−δ (Adenst-
edt, 1974). In case of long-range dependence, the correlation decreases more slowly and regression
estimation becomes even harder (Hall, Lahiri & Polzehl, 1995; Opsomer, Wand & Yang, 2001).
Here, the decrease is of order| j|−δ for 0 < δ ≤ 1. Estimation under long-range dependence has
attracted more and more attention in recent years. In many scientific research fields such as astron-
omy, chemistry, physics and signal processing, the observational errors sometimes reveal long-range
dependence. K̈unsch, Beran & Hampel (1993) made the following interesting remark:

“Perhaps most unbelievable to many is the observation that high-quality measurements
series from astronomy, physics, chemistry, generally regarded as prototype of i.i.d. ob-
servations, are not independent but long-range correlated.”

Further, since Kulkarni et al. (2002) have proven consistency for the data-dependent kernel
estimators, that is, correlated errors and/or correlation among the independent variables, there is no
need to alter the kernel smoother by adding constraints. Confirming their results, we show that the
problem is due to the model selection criterion. In fact, we will show in Section 3that there exists
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a simple multiplicative relation between the bandwidth under correlation and the bandwidth under
the i.i.d. assumption.

In the parametric case, ordinary least squares estimators in the presenceof autocorrelation are
still linear-unbiased as well as consistent, but they are no longer efficient (i.e., minimum variance).
As a result, the usual confidence intervals and the test hypotheses cannot be legitimately applied
(Sen & Srivastava, 1990).

2. Problems With Correlation

Some quite fundamental problems occur when nonparametric regression is attempted in the pres-
ence of correlated errors. For all nonparametric regression techniques, the shape and the smoothness
of the estimated function depends on a large extent on the specific value(s)chosen for the kernel
bandwidth (and/or regularization parameter). In order to avoid selecting values for these parameters
by trial and error, several data-driven methods are developed. However, the presence of correlation
between the errors, if ignored, causes breakdown of commonly used automatic tuning parameter
selection methods such as cross-validation (CV) or plug-in.

Data-driven bandwidth selectors tend to be “fooled” by the correlation, interpreting it as reflect-
ing the regression relationship and variance function. So, the cyclical pattern in positively correlated
errors is viewed as a high frequency regression relationship with small variance, and the bandwidth
is set small enough to track the cycles resulting in an undersmoothed fitted regression curve. The
alternating pattern above and below the true underlying function for negatively correlated errors is
interpreted as a high variance, and the bandwidth is set high enough to smooth over the variability,
producing an oversmoothed fitted regression curve.

The breakdown of automated methods, as well as a suitable solution, is illustrated by means of
a simple example shown in Figure 1. For 200 equally spaced observations anda polynomial mean
function m(x) = 300x3(1− x)3, four progressively more correlated sets of errors were generated
from the same vector of independent noise and added to the mean function.The errors are normally
distributed with varianceσ2 = 0.3 and correlation following an Auto Regressive process of order
1, denoted by AR(1), corr(ei ,ej) = exp(−α|xi −x j |) (Fan & Yao, 2003). Figure 1 shows four local
linear regression estimates for these data sets. For each data set, two bandwidth selection methods
were used: standard CV and a correlation-corrected CV (CC-CV) which is further discussed in
Section 3. Table 1 summarizes the bandwidths selected for the four data sets under both methods.

Table 1 and Figure 1 clearly show that when correlation increases, the bandwidth selected by
CV becomes smaller and smaller, and the estimates become more undersmoothed. The bandwidths
selected by CC-CV (explained in Section 3), a method that accounts for the presence of correlation,
are much more stable and result in virtually the same estimate for all four cases.This type of
undersmoothing behavior in the presence of positively correlated errors has been observed with
most commonly used automated bandwidth selection methods (Altman, 1990; Hart, 1991; Opsomer,
Wand & Yang, 2001; Kim et al., 2009).

3. New Developments in Kernel Regression with Correlated Errors

In this Section, we address how to deal with, in a simple but effective way, correlated errors using
CV. We make a clear distinction between kernel methods requiring no positivedefinite kernel and
kernel methods requiring a positive definite kernel. We will also show that the form of the kernel,
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Correlation level Autocorrelation CV CC-CV
Independent 0 0.09 0.09

α = 400 0.14 0.034 0.12
α = 200 0.37 0.0084 0.13
α = 100 0.61 0.0072 0.13

Table 1: Summary of bandwidth selection for simulated data in Figure 1
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(b) α = 400
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(c) α = 200
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(d) α = 100

Figure 1: Simulated data with four levels of AR(1) correlation, estimated with local linear regres-
sion; full line represents the estimates obtained with bandwidth selected by CV;dashed
line represents the estimates obtained with bandwidth selected by our method.

based on the mean squared error, is very important when errors are correlated. This is in contrast
with the i.i.d. case where the choice between the various kernels, based on the mean squared error,
is not very crucial (Ḧardle, 1999). In what follows, the kernelK is assumed to be an isotropic kernel.
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3.1 No Positive Definite Kernel Constraint

To estimate the unknown regression functionm, consider the Nadaraya-Watson (NW) kernel esti-
mator (Nadaraya, 1964; Watson, 1964) defined as

m̂n(x) =
n

∑
i=1

K( x−xi
h )Yi

∑n
j=1K(

x−x j

h )
,

whereh is the bandwidth of the kernelK. This kernel can be one of the following kernels: Epanech-
nikov, Gaussian, triangular, spline, etc. An optimalh can for example be found by minimizing the
leave-one-out cross-validation (LCV) score function

LCV(h) =
1
n

n

∑
i=1

(

Yi − m̂(−i)
n (xi ;h)

)2
, (2)

wherem̂(−i)
n (xi ;h) denotes the leave-one-out estimator where pointi is left out from the training.

For notational ease, the dependence on the bandwidthh will be suppressed. We can now state the
following.

Lemma 2 Assume that the errors are zero-mean, then the expected value of the LCV score func-
tion (2) is given by

E[LCV(h)] =
1
n

E

[

n

∑
i=1

(

m(xi)− m̂(−i)
n (xi)

)2
]

+σ2− 2
n

n

∑
i=1

Cov
[

m̂(−i)
n (xi),ei

]

.

Proof: see Appendix A. �

Note that the last term on the right-hand side in Lemma 2 is in addition to the correlation
already included in the first term. Hart (1991) shows, ifn→ ∞, nh→ ∞, nh5 → 0 and for positively
correlated errors, thatE[LCV(h)]≈ σ2+c/nhwherec< 0 andc does not depend on the bandwidth.
If the correlation is sufficiently strong andn sufficiently large,E[LCV(h)] will be minimized at a
value ofh that is very near to zero. The latter corresponds to almost interpolating the data (see
Figure 1). This result does not only hold for leave-one-out cross-validation but also for Mallow’s
criterion (Chiu, 1989) and plug-in based techniques (Opsomer, Wand & Yang, 2001). The following
theorem provides a simple but effective way to deal with correlated errors. In what follows we will
use the following notation

k(u) =
∫ ∞

−∞
K(y)e−iuydy

for the Fourier Transform of the kernel functionK.

Theorem 3 Assume uniform equally spaced design, x∈ [0,1], E[e] = 0, Cov[ei ,ei+k] = E[eiei+k] =
γk andγk ∼ k−a for some a> 2. Assume that

(C1) K is Lipschitz continuous at x= 0;

(C2)
∫

K(u)du= 1, lim|u|→∞ |uK(u)|= 0,
∫ |K(u)|du< ∞,supu |K(u)|< ∞;

(C3)
∫ |k(u)|du< ∞ and K is symmetric.
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Assume further that boundary effects are ignored and that h→ 0 as n→ ∞ such that nh2 → ∞, then
for the NW smoother it follows that

E[LCV(h)] =
1
n

E

[

n

∑
i=1

(

m(xi)− m̂(−i)
n (xi)

)2
]

+σ2− 4K(0)
nh−K(0)

∞

∑
k=1

γk+o(n−1h−1). (3)

Proof: see Appendix B. �

Remark 4 There are no major changes in the proof if we consider other smootherssuch as Priestley-
Chao and local linear regression. In fact, it is well-known that the local linear estimate is the local
constant estimate (Nadaraya-Watson) plus a correction for local slope of the data and skewness of
the data point under consideration. Following the steps of the proof of Theorem 3 for the correction
factor will yield a similar result.

From this result it is clear that, by taking a kernel satisfying the conditionK(0) = 0, the correla-
tion structure is removed without requiring any prior information about its structure and (3) reduces
to

E[LCV(h)] =
1
n

E

[

n

∑
i=1

(

m(xi)− m̂(−i)
n (xi)

)2
]

+σ2+o(n−1h−1). (4)

Therefore, it is natural to use a bandwidth selection criterion based on a kernel satisfyingK(0) = 0,
defined by

ĥb = argmin
h∈Qn

LCV(h),

whereQn is a finite set of parameters. Notice that ifK is a symmetric probability density function,
thenK(0) = 0 implies thatK is not unimodal. Hence, it is obvious to use bimodal kernels. Such a
kernel gives more weight to observations near to the pointx of interest than those that are far fromx.
But at the same time it also reduces the weight of points which are too close tox. A major advantage
of using a bandwidth selection criterion based on bimodal kernels is the factthat is more efficient in
removing the correlation than leave-(2l +1)-out CV (Chu & Marron, 1991).

Definition 5 (Leave-(2l +1)-out CV) Leave-(2l +1)-out CV or modified CV (MCV) is defined as

MCV(h) =
1
n

n

∑
i=1

(

Yi − m̂(−i)
n (xi)

)2

, (5)

wherem̂(−i)
n (xi) is the leave-(2l +1)-out version of m(xi), that is, the observations(xi+ j ,Yi+ j) for

−l ≤ j ≤ l are left out to estimatêmn(xi).

Taking a bimodal kernel satisfyingK(0) = 0 results in Equation (4) while leave-(2l +1)-out CV
with unimodal kernelK, under the conditions of Theorem 3, yields

E[MCV(h)] =
1
n

E

[

n

∑
i=1

(

m(xi)− m̂(−i)
n (xi)

)2
]

+σ2− 4K(0)
nh−K(0)

∞

∑
k=l+1

γk+o(n−1h−1).

The formula above clearly shows that leave-(2l +1)-out CV with unimodal kernelK cannot com-
pletely remove the correlation structure. Only the firstl elements of the correlation are removed.
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Another possibility of bandwidth selection under correlation, not based onbimodal kernels, is
to estimate the covariance structureγ0,γ1, . . . in Equation (3). Although the usual residual-based
estimators of the autocovariancesγ̂k are consistent,∑∞

k=1 γ̂k is not a consistent estimator of∑∞
k=1 γk

(Simonoff, 1996). A first approach correcting for this, is to estimate∑∞
k=1 γk by fitting a parametric

model to the residuals (and thereby obtaining estimates ofγk) and use these estimates in Equation (3)
together with a univariate kernel. If the assumed parametric model is incorrect, these estimates can
be far from the correct ones resulting in a poor choice of the bandwidth.However, Altman (1990)
showed that, if the signal to noise ratio is small, this approach results in sufficiently good estimates
of correlation for correcting the selection criteria. A second approach,proposed by Hart (1989,
1991), suggests estimating the covariance structure in the spectral domain via differencing the data
at least twice. A third approach is to derive an asymptotic bias-variance decomposition under the
correlated error assumption of the kernel smoother. In this way and under certain conditions on
the correlation function, plug-ins can be derived taking the correlation intoaccount, see Hermann,
Gasser & Kneip (1992), Opsomer, Wand & Yang (2001), Hall & Van Keilegom (2003), Francisco-
Ferńandez & Opsomer (2004) and Francisco-Fernández et al. (2005). More recently, Park et al.
(2006) proposed to estimate the error correlation nonparametrically withoutprior knowledge of the
correlation structure.

3.2 Positive Definite Kernel Constraint

Methods like support vector machines (SVM) (Vapnik, 1999) and least squares support vector ma-
chines (LS-SVM) (Suykens et al., 2002) require a positive (semi) definite kernel (see Appendix C
for more details on LS-SVM for regression). However, the following theorem reveals why a bimodal
kernelK̃ cannot be directly applied in these methods.

Theorem 6 A bimodal kernelK̃, satisfyingK̃(0) = 0, is never positive (semi) definite.

Proof: see Appendix D. �

Consequently, the previous strategy of using bimodal kernels cannot directly be applied to SVM
and LS-SVM. A possible way to circumvent this obstacle, is to use the bandwidth ĥb, obtained from
the bimodal kernel, as a pilot bandwidth selector for other data-driven selection procedures such as
leave-(2l +1)-out CV or block bootstrap bandwidth selector (Hall, Lahiri & Polzehl, 1995). Since
the block bootstrap in Hall, Lahiri & Polzehl (1995) is based on two smoothers, that is, one is used to
compute centered residuals and the other generates bootstrap data, the procedure is computationally
costly. Therefore, we will use leave-(2l + 1)-out CV or MCV which has a lower computational
cost. A crucial parameter to be estimated in MCV, see also Chu & Marron (1991), is l . Indeed, the
amount of dependence between ˆmn(xk) andYk is reduced asl increases.

A similar problem arises in block bootstrap where the accuracy of the method critically depends
on the block size that is supplied by the user. The orders of magnitude of theoptimal block sizes
are known in some inference problems (see Künsch, 1989; Hall, Horowitz & Jing, 1995; Lahiri,
1999; B̈uhlmann & Künsch, 1999). However, the leading terms of these optimal block sizes depend
on various population characteristics in an intricate manner, making it difficultto estimate these
parameters in practice. Recently, Lahiri et al. (2007) proposed a nonparametric plug-in principle to
determine the block size.

For l = 0, MCV is ordinary CV or leave-one-out CV. One possible method to selecta value forl
is to useĥb as pilot bandwidth selector. Define a bimodal kernelK̃ and assumêhb is available, then
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one can calculate

m̂n(x) =
n

∑
i=1

K̃
(

x−xi

ĥb

)

Yi

∑n
j=1 K̃

(

x−x j

ĥb

) . (6)

From this result, the residuals are obtained by

êi =Yi − m̂n(xi), for i = 1, . . . ,n

and choosel to be the smallestq≥ 1 such that

|rq|=
∣

∣

∣

∣

∣

∑n−q
i=1 êi êi+q

∑n
i=1 ê2

i

∣

∣

∣

∣

∣

≤ Φ−1(1− α
2 )√

n
, (7)

whereΦ−1 denotes the quantile function of the standard normal distribution andα is the significance
level, say 5%. Observe that Equation (7) is based on the fact thatrq is asymptotically normal
distributed under the centered i.i.d. error assumption (Kendall, Stuart & Ord, 1983) and hence
provides an approximate 100(1−α)% confidence interval for the autocorrelation. The reason why
Equation (7) can be legitimately applied is motivated by combining the theoretical results of Kim et
al. (2004) and Park et al. (2006) stating that

1
n−q

n−q

∑
i=1

êi êi+q =
1

n−q

n−q

∑
i=1

eiei+q+O(n−4/5).

Oncel is selected, the tuning parameters of SVM or LS-SVM can be determined by using leave-
(2l+1)-out CV combined with a positive definite kernel, for example, Gaussian kernel. We then call
Correlation-Corrected CV (CC-CV) the combination of findingl via bimodal kernels and using the
obtainedl in leave-(2l +1)-out CV. Algorithm 1 summarizes the CC-CV procedure for LS-SVM.
This procedure can also be applied to SVM for regression.

Algorithm 1 Correlation-Corrected CV for LS-SVM Regression

1: Determineĥb in Equation (6) with a bimodal kernel by means of LCV
2: Calculatel satisfying Equation (7)
3: Determine both tuning parameters for LS-SVM by means of leave-(2l +1)-out CV Equation (5)

and a positive definite unimodal kernel.

3.3 Drawback of Using Bimodal Kernels

Although bimodal kernels are very effective in removing the correlation structure, they have an
inherent drawback. When using bimodal kernels to estimate the regressionfunction m, the esti-
matem̂n will suffer from increased mean squared error (MSE). The following theorem indicates the
asymptotic behavior of the MSE of ˆmn(x) when the errors are covariance stationary.

Theorem 7 (Simonoff, 1996)Let Equation(1) hold and assume that m has two continuous deriva-
tives. Assume also thatCov[ei ,ei+k] = γk for all k, whereγ0 = σ2 < ∞ and∑∞

k=1k|γk|< ∞. Now, as
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n→ ∞ and h→ 0, the following statement holds uniformly in x∈ (h,1−h) for the Mean Integrated
Squared Error (MISE)

MISE(m̂n) =
µ2

2(K)h4∫ (m′′(x))2dx
4

+
R(K)[σ2+2∑∞

k=1 γk]

nh
+o(h4+n−1h−1),

where µ2(K) =
∫

u2K(u)du and R(K) =
∫

K2(u)du.

An asymptotic optimal constant or global bandwidthĥAMISE, for m′′(x) 6= 0, is the minimizer of the
Asymptotic MISE (AMISE)

AMISE(m̂n) =
µ2

2(K)h4∫ (m′′(x))2dx
4

+
R(K)[σ2+2∑∞

k=1 γk]

nh
,

w.r.t. to the bandwidth, yielding

ĥAMISE =

[

R(K)[σ2+2∑∞
k=1 γk]

µ2
2(K)

∫
(m′′(x))2dx

]1/5

n−1/5. (8)

We see that̂hAMISE is at least as big as the bandwidth for i.i.d dataĥ0 if γk ≥ 0 for all k ≥ 1. The
following corollary shows that there is a simple multiplicative relationship betweenthe asymptotic
optimal bandwidth for dependent dataĥAMISE and bandwidth for independent dataĥ0.

Corollary 8 Assume the conditions of Theorem 7 hold, then

ĥAMISE =

[

1+2
∞

∑
k=1

ρ(k)

]1/5

ĥ0, (9)

whereĥAMISE is the asymptotic MISE optimal bandwidth for dependent data,ĥ0 is the asymptotic
optimal bandwidth for independent data andρ(k) denotes the autocorrelation function at lag k, that
is, ρ(k) = γk/σ2 = E[eiei+k]/σ2.

Proof: see Appendix E. �

Thus, if the data are positively autocorrelated (ρ(k) ≥ 0 ∀k), the optimal bandwidth under cor-
relation is larger than that for independent data. Unfortunately, Equation(9) is quite hard to use
in practice since it requires knowledge about the correlation structure and an estimate of the band-
width ĥ0 under the i.i.d. assumption, given correlated data. By takingĥAMISE as in Equation (8), the
corresponding asymptotic MISE is equal to

AMISE(m̂n) = cD2/5
K n−4/5,

wherec depends neither on the bandwidth nor on the kernelK and

DK = µ2(K)R(K)2 =

(∫
u2K(u)du

)(∫
K2(u)du

)2

. (10)
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It is obvious that one wants to minimize Equation (10) with respect to the kernelfunctionK. This
leads to the well-known Epanechnikov kernelKepa. However, adding the constraintK(0) = 0 (see
Theorem 3) to the minimization of Equation (10) would lead to the following optimal kernel

K⋆(u) =

{

Kepa(u), if u 6= 0;
0, if u= 0.

Certainly, this kernel violates assumption (C1) in Theorem 3. In fact, an optimal kernel does not
exist in the class of kernels satisfying assumption (C1) andK(0) = 0. To illustrate this, note that
there exist a sequence of kernels{Kepa(u,ε)}ε∈]0,1[, indexed byε, such thatKepa(u) converges to
K⋆(u) and the value of

∫
Kepa(u,ε)2dudecreases to

∫
K⋆(u)2duasε tends to zero. Since an optimal

kernel in this class cannot be found, we have to be satisfied with a so-called ε-optimal class of
bimodal kernelsK̃ε(u), with 0< ε < 1, defined as

K̃ε(u) =
4

4−3ε− ε3

{ 3
4(1−u2)I{|u|≤1}, |u| ≥ ε;
3
4

1−ε2

ε |u|, |u|< ε.

For ε = 0, we defineK̃ε(u) = Kepa(u). Table 2 displays several possible bimodal kernel functions
with their respectiveDK value compared to the Epanechnikov kernel. Although it is possible to
express theDK value forK̃ε(u) as a function ofε, we do not include it in Table 2 but instead, we
graphically illustrate the dependence ofDK on ε in Figure 2a. An illustration of theε-optimal class
of bimodal kernels is shown in Figure 2b.

kernel function Illustration DK

Kepa
3
4(1−u2)I{|u|≤1}
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0.093

Table 2: Kernel functions with illustrations and their respectiveDK value compared to the Epanech-
nikov kernel.IA denotes the indicator function of an eventA.

Remark 9 We do not considerε as a tuning parameter but the user can set its value. By doing
this one should be aware of two aspects. First, one should choose the value of ε so that its DK
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Figure 2: (a)DK as a function ofε for theε-optimal class of kernels. The dot on the left side marks
the Epanechnikov kernel; (b) Illustration of theε-optimal class of kernels forε = 0.3.

value is lower than the DK value of kernelK̃3. This is fulfilled whenε < 0.2. Second, by choosing
ε extremely small (but not zero) some numerical difficulties may arise. We have experimented with
several values ofε and we concluded that the value taken in the remaining of the paper, that is,
ε = 0.1 is small enough and it does not show any numerical problems. In theory, there is indeed a
difference between kernelK̃3 and theε-optimal class of bimodal kernels. However, in practice the
difference is rather small. One can compare it with the i.i.d. case where the Epanechnikov kernel is
the optimal kernel, but in practice the difference with say a Gaussian kernel is negligible.

4. Simulations

In this Section, we illustrate the capability of the proposed method on several toy examples corrupted
with different noise models as well as a real data set.

4.1 CC-CV vs. LCV with Different Noise Models

In a first example, we compare the finite sample performance of CC-CV (withK̃ε andε = 0.1 in
the first step and the Gaussian kernel in the second step) to the classical leave-one-out CV (LCV)
based on the Epanechnikov (unimodal) kernel in the presence of correlation. Consider the following
function m(x) = 300x3(1− x)3 for 0 ≤ x ≤ 1. The sample size is set ton = 200. We consider

two types of noise models: (i) an AR(5) processej = ∑5
l=1 φl ej−l +

√

1−φ2
1Z j whereZ j are i.i.d.

normal random variables with varianceσ2 = 0.5 and zero mean. The data is generated according
to Equation (1). The errorsej for j = 1, . . . ,5 are standard normal random variables. The AR(5)
parameters are set to[φ1,φ2,φ3,φ4,φ5] = [0.7,−0.5,0.4,−0.3,0.2]. (ii) m-dependent modelsei =

r0δi + r1δi−1 with m= 1 whereδi is i.i.d. standard normal random variable,r0 =
√

1+2ν+
√

1−2ν
2 and

r1 =
√

1+2ν−
√

1−2ν
2 for ν = 1/2.

Figure 3 shows typical results of LS-SVM regression estimates for both noise models. Table 3
summarizes the average of the regularization parametersγ̂, bandwidthsĥ and asymptotic squared
error, defined as ASE= 1

n ∑n
i=1(m(xi)− m̂n(xi))

2, for 200 runs for both noise models. By looking
at the average ASE, it is clear that the tuning parameters obtained by CC-CVresult into better
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estimates which are not influenced by the correlation. Also notice the small bandwidths and larger
regularization constants found by LCV for both noise models. This provides clear evidence that the
kernel smoother is trying to model the noise instead of the true underlying function. These findings
are also valid if one uses generalized CV orv-fold CV. Figure 4 and Figure 5 show the CV surfaces
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(b) m-dependence models

Figure 3: Typical results of the LS-SVM regression estimates for both noise models. The thin line
represents the estimate with tuning parameters determined by LCV and the bold lineis
the estimate based on the CC-CV tuning parameters.

AR(5) m-dependence models
LCV CC-CV LCV CC-CV

av. γ̂ 226.24 2.27 1.05×105 6.87
av. ĥ 0.014 1.01 0.023 1.88

av. ASE 0.39 (2.9×10−2) 0.019 (9.9×10−4) 0.90 (8.2×10−2) 0.038 (1.4×10−3)

Table 3: Average of the regularization parametersγ̂, bandwidthŝh and average ASE for 200 runs
for both noise models. The standard deviation is given between parenthesis.

for both model selection methods on the AR(5) noise model corresponding tothe model selection
of the estimate in Figure 3(a). These plots clearly demonstrate the shift of the tuning parameters.
A cross section for both tuning parameters is provided below each surface plot. Also note that the
surface of the CC-CV tends to be flatter than LCV and so it is harder to minimize numerically (see
Hall, Lahiri & Polzehl, 1995).

4.2 Evolution of the Bandwidth Under Correlation

Consider the same function as in the previous simulation and letn = 400. The noise error model
is taken to be an AR(1) process with varying parameterφ =−0.95,−0.9, . . . ,0.9,0.95. For eachφ,
100 replications of sizen were made to report the average regularization parameter, bandwidth and
average ASE for both methods. The results are summarized in Table 4. We used theK̃ε kernel with
ε = 0.1 in the first step and the Gaussian kernel in the second step for CC-CV and the Gaussian
kernel for classical leave-one-out CV (LCV). The results indicate that the CC-CV method is indeed
capable of finding good tuning parameters in the presence of correlated errors. The CC-CV method
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Figure 4: (a) CV surface for LCV; (b) cross sectional view of log(h) for fixed log(γ) = 5.5; (c)
cross sectional view of log(γ) for fixed log(h) = −3.6. The dot indicates the minimum
of the cost function. This corresponds to the model selection of the wiggly estimate in
Figure 3(a).
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Figure 5: (a) CV surface for CC-CV; (b) cross sectional view of log(h) for fixed log(γ) = 0.82; (c)
cross sectional view of log(γ) for fixed log(h) = 0.06. The dot indicates the minimum
of the cost function. This corresponds to the model selection of the smooth estimate in
Figure 3(a).

outperforms the classical LCV for positively correlated errors, that is,φ > 0. The method is capable
of producing good bandwidths which do not tend to very small values as in the LCV case.

In general, the regularization parameter obtained by LCV is larger than the one from CC - CV.
However, the latter is not theoretically verified and serves only as a heuristic. On the other hand,
for negatively correlated errors (φ < 0), both methods perform equally well. The reason why the
effects from correlated errors is more outspoken for positiveφ than for negativeφ might be related
to the fact that negatively correlated errors are seemingly hard to differentiate form i.i.d. errors in
practice.

4.3 Comparison of Different Bimodal Kernels

Consider a polynomial mean functionm(xk) = 300x3
k(1−xk)

3, k= 1, . . . ,400, where the errors are
normally distributed with varianceσ2= 0.1 and correlation following an AR(1) process, corr(ei ,ej)=
exp(−150|xi −x j |). The simulation shows the difference in regression estimates (Nadaraya-Watson)
based on kernels̃K1, K̃3 andK̃ε with ε = 0.1, see Figure 6a and 6b respectively. Due to the larger
DK value ofK̃1, the estimate tends to be more wiggly compared to kernelK̃3. The difference be-
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LCV CC-CVφ
γ̂ ĥ av. ASE γ̂ ĥ av. ASE

-0.95 14.75 1.48 0.0017 7.65 1.43 0.0019
-0.9 11.48 1.47 0.0017 14.58 1.18 0.0021
-0.8 7.52 1.39 0.0021 18.12 1.15 0.0031
-0.7 2.89 1.51 0.0024 6.23 1.21 0.0030
-0.6 28.78 1.52 0.0030 5.48 1.62 0.0033
-0.5 42.58 1.71 0.0031 87.85 1.75 0.0048
-0.4 39.15 1.55 0.0052 39.02 1.43 0.0060
-0.3 72.91 1.68 0.0055 19.76 1.54 0.0061
-0.2 98.12 1.75 0.0061 99.56 1.96 0.0069
-0.1 60.56 1.81 0.0069 101.1 1.89 0.0070
0 102.5 1.45 0.0091 158.4 1.89 0.0092

0.1 1251 1.22 0.0138 209.2 1.88 0.0105
0.2 1893 0.98 0.0482 224.6 1.65 0.0160
0.3 1535 0.66 0.11 5.18 1.86 0.0161
0.4 482.3 0.12 0.25 667.5 1.68 0.023
0.5 2598 0.04 0.33 541.8 1.82 0.033
0.6 230.1 0.03 0.36 986.9 1.85 0.036
0.7 9785 0.03 0.41 12.58 1.68 0.052
0.8 612.1 0.03 0.45 1531 1.53 0.069
0.9 448.8 0.02 0.51 145.12 1.35 0.095
0.95 878.4 0.01 0.66 96.5 1.19 0.13

Table 4: Average of the regularization parameters, bandwidths and average ASE for 100 runs for
the AR(1) process with varying parameterφ

tween the regression estimate based onK̃3 andK̃ε with ε = 0.1 is very small and almost cannot be
seen on Figure 6b. For illustration purposes we did not visualize the resultbased on kernel̃K2. For
the sake of comparison between regression estimates based onK̃1, K̃2,K̃3 andK̃ε with ε = 0.1, we
show the corresponding asymptotic squared error (ASE) in Figure 7 based on 100 simulations with
the data generation process described as above. The boxplot shows that the kernelK̃ε with ε = 0.1
outperforms the other three.

4.4 Real Life Data Set

We apply the proposed method to a time series of the Beveridge (1921) index of wheat prices from
the year 1500 to 1869 (Anderson, 1971). These data are an annual index of prices at which wheat
was sold in European markets. The data used for analysis are the naturallogarithms of the Beveridge
indices. This transformation is done to correct for heteroscedasticity in theoriginal series (no other
preprocessing was performed). The result is shown in Figure 8 for LS-SVM with Gaussian kernel. It
is clear that the estimate based on classical leave-one-out CV (assumption of no correlation) is very
rough. The proposed CC-CV method produces a smooth regression fit. The selected parameters
(γ̂, ĥ) for LS-SVM are(15.61,29.27) and(96.91,1.55) obtained by CC-CV and LCV respectively.
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Figure 6: Difference in the regression estimate (Nadaraya-Watson) (a)based on kernel̃K1 (full

line) andK̃3 (dashed line). Due to the largerDK value of K̃1, the estimate tends to be
more wiggly compared tõK3; (b) based on kernel̃K3 (full line) andε-optimal kernel with
ε = 0.1 (dashed line).
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Figure 7: Boxplot of the asymptotic squared errors for the regression estimates based on bimodal
kernelsK̃1, K̃2, K̃3 andK̃ε with ε = 0.1.

5. Conclusion

We have introduced a new type of cross-validation procedure, based on bimodal kernels, in order to
automatically remove the error correlation without requiring any prior knowledge about its structure.
We have shown that the form of the kernel is very important when errors are correlated. This in
contrast with the i.i.d. case where the choice between the various kernels onthe basis of the mean
squared error is not very important. As a consequence of the bimodal kernel choice the estimate
suffers from increased mean squared error. Since an optimal bimodal kernel (in mean squared
error sense) cannot be found we have proposed aε-optimal class of bimodal kernels. Further, we
have used the bandwidth of the bimodal kernel as pilot bandwidth selector for leave-(2l + 1)-out
cross-validation. By taking this extra step, methods that require a positive definite kernel (SVM
and LS-SVM) can be equipped with this technique of handling data in the presence of correlated
errors since they require a positive definite kernel. Also other kernel methods which do not require
positive definite kernels can benefit from the proposed method.
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Figure 8: Difference in regression estimates (LS-SVM) for standard leave-one-out CV (thin line)
and the proposed method (bold line).
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Appendix A. Proof of Lemma 2

We first rewrite the LCV score function in a more workable form. SinceYi = m(xi)+ei

LCV(h) =
1
n

n

∑
i=1

[

Yi − m̂(−i)(xi)
]2

=
1
n

n

∑
i=1

[

m2(xi)+2m(xi)ei +e2
i −2Yim̂

(−i)
n (xi)+

(

m̂(−i)
n (xi)

)2
]

=
1
n

n

∑
i=1

[

m(xi)− m̂(−i)
n (xi)

]2
+

1
n

n

∑
i=1

e2
i

+
2
n

n

∑
i=1

[

m(xi)− m̂(−i)
n (xi)

]

ei .
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Taking expectations, yields

E[LCV(h)]=
1
n

E

[

n

∑
i=1

(

m(xi)− m̂(−i)
n (xi)

)2
]

+σ2− 2
n

n

∑
i=1

Cov
[

m̂(−i)
n (xi),ei

]

.

Appendix B. Proof of Theorem 3

Consider only the last term of the expected LCV (Lemma 2), that is,

A(h) =−2
n

n

∑
i=1

Cov
[

m̂(−i)
n (xi),ei

]

.

Plugging in the Nadaraya-Watson kernel smoother for ˆm(−i)
n (xi) in the term above yields

A(h) =−2
n

n

∑
i=1

Cov





n

∑
j 6=i

K
(

xi−x j

h

)

Yj

∑n
l 6=i K

( xi−xl
h

) ,ei



 .

By using the linearity of the expectation operator,Yj = m(x j)+ej andE[e] = 0 it follows that

A(h) = −2
n

n

∑
i=1

n

∑
j 6=i

E





K
(

xi−x j

h

)

Yj

∑n
j 6=i K

( xi−xl
h

)ei





= −2
n

n

∑
i=1

n

∑
j 6=i

K
(

xi−x j

h

)

∑n
j 6=i K

( xi−xl
h

) E [eiej ] .

By slightly rewriting the denominator and using the covariance stationary property of the errors
(Definition 1), the above equation can be written as

A(h) =−2
n

n

∑
i=1

n

∑
j 6=i

K
(

xi−x j

h

)

∑n
j=1K

( xi−xl
h

)

−K(0)
γ|i− j|. (11)

Let f denote the design density. The first term of the denominator can be written as

n

∑
j=1

K

(

xi −xl

h

)

= nhf̂ (xi)

= nh f(xi)+nh( f̂ (xi)− f (xi)).

If conditions (C2) and (C3) are fulfilled,f is uniform continuous andh → ∞ asn → ∞ such that
nh2 → ∞, then

| f̂ (xi)− f (xi)| ≤ sup
xi

| f̂ (xi)− f (xi)| P−→0 asn→ ∞,

due to the uniform weak consistency of the kernel density estimator (Parzen, 1962).
P−→ denotes

convergence in probability. Hence, forn→ ∞, the following approximation is valid

nhf̂ (xi)≈ nh f(xi).
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Further, by grouping terms together and using the fact thatxi ≡ i/n (uniform equispaced design)
and assume without loss of generality thatx∈ [0,1], Equation (11) can be written as

A(h) = −2
n

n

∑
i=1

1
nh f(xi)−K(0)

n

∑
j 6=i

K

(

xi −x j

h

)

γ|i− j|

= − 4
nh−K(0)

n−1

∑
k=1

(

n−k
n

)

K

(

k
nh

)

γk.

Next, we show that∑n−1
k=1

(

n−k
n

)

K
(

k
nh

)

γk = K(0)∑∞
k=1 γk+o(n−1h−1) for n→ ∞. Since the kernel

K ≥ 0 is Lipschitz continuous atx= 0

[K(0)+C2x]+ ≤ K(x)≤ K(0)+C1x,

where[z]+ = max(z,0). Then, forK(0)≥ 0 andC1 >C2, we establish the following upperbound

n−1

∑
k=1

(

n−k
n

)

K

(

k
nh

)

γk ≤
n−1

∑
k=1

(

1− k
n

)(

K(0)+C1
k
nh

)

γk

≤
n−1

∑
k=1

K(0)γk+
n−1

∑
k=1

C1
k
nh

γk.

Then, forn→ ∞ and usingγk ∼ k−a for a> 2,

C1

n−1

∑
k=1

k
nh

γk =C1

n−1

∑
k=1

k1−a

nh
= o(n−1h−1).

Hence,
n−1

∑
k=1

(

n−k
n

)

K

(

k
nh

)

γk ≤ K(0)
∞

∑
k=1

γk+o(n−1h−1).

For the construction of the lower bound, assume first thatC2 < 0 andK(0)≥ 0 then

n−1

∑
k=1

(

n−k
n

)

K

(

k
nh

)

γk ≥
n−1

∑
k=1

(

1− k
n

)[

K(0)+C2
k
nh

]

+

γk.

SinceC2 < 0, it follows thatk≤ K(0)
−C2

nhand therefore

n−1

∑
k=1

(

1− k
n

)[

K(0)+C2
k
nh

]

+

γk =

min
(

n−1, K(0)
−C2

nh
)

∑
k=1

(

1− k
n

)(

K(0)+C2
k
nh

)

γk.

Analogous to deriving the upper bound, we obtain forn→ ∞
n−1

∑
k=1

(

n−k
n

)

K

(

k
nh

)

γk ≥ K(0)
∞

∑
k=1

γk+o(n−1h−1).

In the second case, that is,C2 > 0, the same lower bound can be obtained. Finally, from the upper
and lower bound, forn→ ∞, yields

n−1

∑
k=1

(

n−k
n

)

K

(

k
nh

)

γk = K(0)
∞

∑
k=1

γk+o(n−1h−1).
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Appendix C. Least Squares Support Vector Machines for Regression

Given a training set defined asDn = {(xk,Yk) : xk ∈ R
d,Yk ∈ R;k = 1, . . . ,n}. Then least squares

support vector machines for regression are formulated as follows (Suykens et al., 2002)

min
w,b,e

J (w,e) = 1
2wTw+ γ

2

n

∑
k=1

e2
k

s.t. Yk = wTϕ(xk)+b+ek, k= 1, . . . ,n,
(12)

whereek ∈ R are assumed to be i.i.d. random errors with zero mean and finite variance,ϕ : Rd →
R

nh is the feature map to the high dimensional feature space (possibly infinite dimensional) and
w∈ R

nh, b∈ R. The cost functionJ consists of a residual sum of squares (RSS) fitting error and a
regularization term (with regularization parameterγ) corresponding to ridge regression in the feature
space with additional bias term.

However, one does not need to evaluatew andϕ explicitly. By using Lagrange multipliers, the
solution of Equation (12) can be obtained by taking the Karush-Kuhn-Tucker (KKT) conditions for
optimality. The result is given by the following linear system in the dual variables α

(

0 1T
n

1n Ω+ 1
γ In

)

(

b
α

)

=

(

0
Y

)

,

with Y = (Y1, . . . ,Yn)
T , 1n = (1, . . . ,1)T , α = (α1, . . . ,αn)

T andΩkl = ϕ(xk)
Tϕ(xl ) = K(xk,xl ), with

K(xk,xl ) positive definite, fork, l = 1, . . . ,n. According to Mercer’s theorem, the resulting LS-SVM
model for function estimation becomes

m̂n(x) =
n

∑
k=1

α̂kK(x,xk)+ b̂,

whereK(·, ·) is an appropriately chosen positive definite kernel. In this paper we chooseK to be the

Gaussian kernel, that is,K(xk,xl ) = (2π)−d/2exp
(

−‖xk−xl‖2

2h2

)

.

Appendix D. Proof of Theorem 6

We split up the proof in two parts, that is, for positive definite and positive semi-definite kernels.
The statement will be proven by contradiction.

• Suppose there exists a positive definite bimodal kernelK̃. This leads to a positive definite
kernel matrixΩ. Then, all eigenvalues ofΩ are strictly positive and hence the trace ofΩ is
always larger than zero. However, this is in contradiction with the fact thatΩ has all zeros on
its main diagonal. Consequently, a positive definite bimodal kernelK̃ cannot exist.

• Suppose there exists a positive semi-definite bimodal kernelK̃. Then, at least one eigenvalue
of the matrixΩ is equal to zero (the rest of the eigenvalues is strictly positive). We have now
two possibilities, that is, some eigenvalues are equal to zero and all eigenvalues are equal
to zero. In the first case, the trace of the matrixΩ is larger than zero and we have again
a contradiction. In the second case, the trace of the matrixΩ is equal to zero and also the
determinant ofΩ equals zero (since all eigenvalues are equal to zero). But the determinant
can never be zero since there is no linear dependence between the rowsor columns (there is a
zero in each row or column).
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Appendix E. Proof of Corollary 8

From Equation (8) it follows that

ĥAMISE =

[

R(K)σ2

nµ2
2(K)

∫
(m′′(x))2dx

+
2R(K)∑∞

k=1 γk

nµ2
2(K)

∫
(m′′(x))2dx

]1/5

=

[

ĥ5
0+

σ2R(K)

nµ2
2(K)

∫
(m′′(x))2dx

2∑∞
k=1 γk

σ2

]1/5

=

[

1+2
∞

∑
k=1

ρ(k)

]1/5

ĥ0.
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