
University of North Florida

From the SelectedWorks of Karthikeyan Umapathy

Fall December 12, 2003

Facilitating Conversations among Web Services as
Speech-act based Discourses
Karthikeyan Umapathy, Pennsylvania State University
Sandeep Purao, Pennsylvania State University
Vijayan Sugumaran, Oakland University

Available at: https://works.bepress.com/karthikeyan_umapathy/8/

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://www.unf.edu/
https://works.bepress.com/karthikeyan_umapathy/
https://works.bepress.com/karthikeyan_umapathy/8/

Facilitating Conversations among Web Services as Speech-act based Discourses

Karthikeyan Umapathy, Sandeep Purao
School of Information Sciences and

Technology
Penn State University

kxu110@psu.edu, spurao@ist.psu.edu

Vijayan Sugumaran
School of Business Administration

Oakland University
sugumara@oakland.edu

Abstract
Web services composition is an emerging paradigm for enabling application deployment and

integration within and across organizational boundaries. A landscape of languages and techniques for web
services composition has emerged and is continuously being enriched. The ability to support
conversations taking place between Web Services is an important area that is not yet fully addressed by
the emerging standards. We suggest an approach to derive speech-act based message structures for
conversation support that can complement existing standards.

1. Introduction
The web services technology is defined by loosely coupled, dynamically located software

components deployed on the Web. Web services allow different applications, possibly written in different
software languages and/or located on different parts of the Internet, to effectively find and communicate
with each other. They can reside on different systems and can be implemented using vastly different
technologies, but must be packaged and transported using standard Web protocols, such as XML and
SOAP [Seth 2003]. The standardized, public invocation syntax provided by WSDL, UDDI, and SOAP
along with ontology based DAML-S help service providers to describe their services and clients to search
and invoke the required service.

A language such as BPEL4WS [BPEL4WS 2003] can be used to describe a process that may be
realized with multiple services. For example BPEL4WS may describe a series of services to be invoked
and the order in which they must be processed. However, these languages do not specify how peer-to-peer
interaction between Web Services should take place. The ability to support a conversational mechanism
for interaction between web services is an important area that is not yet addressed by emerging web
service standards. A conversation mechanism for web services provides a more loosely coupled, peer-to-
peer interaction model. These conversations involve multiple steps between parties, often involving
negotiation between them. A peer-to-peer conversation model takes more of a third-person perspective,
quite different from the extant standards of web service composition [Peltz 2003]. There are two
proposals that attempt to support such a collaborative model - Web Service Choreography Interface
(WSCI) and IBM’s Conversational Support for Web Services (CS-WS). Neither, however, provides a
mechanism for message generation to support peer-to-peer interaction that is grounded in existing
theories governing interactions.

Our objective is to develop a methodology to generate messages that can facilitate peer-to-peer
interactions in CS-WS. A speech-act theoretic approach underlies our work. In this paper, we provide a
background of the problem in section 2, describe the methodology and formal specification for the
messages in section 3, and conclude with a discussion of conclusions and future work in section 4.

2. Background

2.1.Web Services Technology Stack
Sleeper [2001] describes a web services technology stack with two layers labeled ‘core’ and

‘emerging.’ The first consists of protocols such as XML and SOAP. The second consists of WSDL,
UDDI, WSFL and other business rules. Clearly, membership in these layers can vary with time. Burg
[2001], on the other hand, makes a distinction between layers with the labels: syntactic and semantic. The

first consists of transport, network protocol and syntax. The second consists of ontology, content,
communication and conversation. Neither view offers a complete picture of the different standards, which
have evolved considerably. A more complete picture must take into account several layers including
concerns such as security and conversations. Figure 1 shows our conceptualization of the Web Service
technology stack. This view is essential to understand the level at which conversation support between
web services may reside, and the assumptions that may underlie such an effort. For example, conversation
support presupposes a process description level such as BPEL4WS or WSFL, and focuses on exchange of
messages based on the order of sequence of interaction described in the process description level.

Figure 1: Web Services Technology Stack

2.2.Conversations and Policies: Vending Machines vs. Telephone Calls
Models for conversation support for web services imitate those for component interactions, in

which components (applications, e-business, agents) are treated as autonomous, loosely coupled entities
which interact by exchanging messages in a conversational context [Hanson 2002a]. In the conversation
model, the interoperability technology consists of two distinct parts: (1) messaging and (2) conversation
model. The conversation model governs formatting of messages sent, the parsing of messages received,
and the sequencing constraints on exchanges of multiple, correlated messages. Typically, a separate
subsystem mediates between the messaging system and the business processes [Hanson 2002b] to
facilitate the conversation model. Figure 2 shows the conversation model for B2B message interactions.

Figure 2: Conversation model for B2B message interactions [Hanson 2002b]

Current models for web service interactions are analogous to a vending machine, in which its
WSDL port types and operations define the various buttons, levers, slots, and so forth, on the front of the
machine. An inspection of the WSDL does not reveal that one must deposit money in the slot before

e-business

e-business

e-business

In
te

rn
et

Messaging
Conversation

support
Business
Processes

e-business

e-business interoperability

Internet Protocol: TCP/IP

Transport Protocol: SOAP, HTTP

Service Description: WSDL, DAML-S

Service Discovery: UDDI

Conversation: CS-WS, WSCI

Security: WS-Security Security

Interaction

Description

Protocol

Process Description: BPEL4WS, WSFL

pushing any of the buttons. Web Service choreography languages such as WSCI [WSCI 2002] attempt to
solve this problem in the same way: in effect, by giving instructions on which buttons to push in what
order. CS-WS, on the other hand, replaces the "vending machine" model with a "telephone call" model.
Two (or more) parties set up a conversational session, exchange various messages in the context of that
conversation, and then, finally, close it down [CS-WS 2003]. Conversation models, thus, adopt a
conversation-centric interaction. This means that messages are sent within an explicit conversational
context that is set up on first contact, maintained for the duration of the conversation, and torn down at the
end. Each new message in a conversation is interpreted in relation to the messages previously exchanged
in that conversation. By adopting conversation-centric interaction, the business process interactions are
represented as multi-step exchanges of correlated messages. A conversation model, thus, supports nesting
and composition of conversational policies to provide a dynamic, adaptable, incremental, open-ended and
extensible mechanism. The crux of the conversation model, however, remains the conversation policy
(CP), which is a machine-readable specification of pattern of message exchanges in a conversation.

A conversation policy (CP) captures pre-programmed interaction patterns. A CP consists of a
message schema, sequencing and timing information, which are best described by a state machine, in
which the sending message (in either direction) is a transition from one conversational state to another.
Conversation Policy XML (cpXML) is an XML dialect proposed by Hanson [Hanson 2002a] to represent
such policies. cpXML is narrowly scoped. It restricts itself to describing message interchanges. It does not
cover the way in which a conversation policy may be bound to the business logic, or the means by which
it may connect to the messaging system. It takes a third-party perspective, describing message exchanges
in terms of “roles” assumed at runtime by the businesses engaged in a conversation. For carrying on a
conversation, each party to a conversation holds its own CP, separately maintains its own internal record
of the conversation’s “current state”, and uses the CP to update that state whenever it sends or receives a
message. Realizing a conversation model, therefore, requires explicit specification of conversation
policies and the ability to transform the conversation rules embedded in a CP into messages that can
facilitate the actual conversation, a discourse, among interacting web services.

2.3.Models of Discourse
The interactions between Web Services can be seen as a task-oriented discourse, where the services

work in concert to reach a goal. A key approach to task oriented discourse is the plan recognition model
[Litman 1987]. In the plan recognition model a task is completed based on domain plan, which defines
the topic of conversations and corresponds to a particular way that an utterance can relate to domain plan.
The basic unit of discourse formation is the discourse constituent unit [Polanyi 1988]. Elemental units of
a “discourse constituent unit” are clauses and discourse operators, which in a conversation can be likened
to speech acts [Polanyi 1988]. Clauses consist of one or more words joined together in a syntactically
legal manner to make an utterance. A speech-act based approach is appropriate for specifying these
utterances because each speech-act consists of an illocutionary force for which expected responses can be
specified. They represent the force of the discourse constituents. Discourse operators give information
about the state of the discourse and the relation between the discourse entities. Formal specification for
the discourse must, therefore, have the qualities of discourse constituent unit. In CS-WS, the conversation
policies specified with say, cpXML, hold the plans of discourse between Web Services. Interaction
between services takes place in the sequence plan in the cpXML. Each conversation made between
services will be based on cpXML. A formal specification of messages must, therefore, underlie the
realization of conversation policies. An explicit formal discourse structure is important for realizing the
goals of task. In order to communicate efficiently with other services, a formal specification is required
for sending and receiving messages and for handling the conversations.

3. Generating Messages to Facilitating Conversations among Web Services
We use a running example to describe our approach. In this example, a customer sends request for

loan to a bank; the request is processed by bank; and customer gets to know from bank whether loan was
approved. In this example there are three Web Services, named to indicate the roles: Customer, Loan

Approver and Loan Application Processor. The sequence starts with the Customer sending the request for
loan. The Loan Approver receives the request and invokes Loan Application Processor service sending it
a request to process the loan application. After processing the request, the Loan Application Processor
sends approval info to Loan Approver, which sends the reply to Customer. Figure 3 shows a graphical
representation of BPEL4WS for loan application process example. BPEL4WS for loan application
process is given in Appendix A. Three separate conversations must be facilitated in this process. Figure
4(a) and 4(b) show two of these peer-to-peer conversations with CS-WS: a) between Customer and Loan
Approver, and b) Loan Approver and Loan Application Processor. Figure 5 shows the conversation policy
for Customer. It is specified as a cpXML for the Customer web service. The cpXML for customer is
provided in Appendix B. The generated messages use FLBC syntax and some sample FLBC messages are
provided in Appendix C. Formal Language for Business Communication (FLBC) [Moore 2001] is based
on Bach and Harnish’s version of speech acts [Bach 1979] for specifying messages between services
because it has the qualities of discourse constituent unit, and it is in XML format. This formal description
defines the interchange vocabulary for the messages that services send, receive and process. FLBC has a
small number of general message types, which are formally defined by their intended effects on the
recipient.

Figure 3: Graphical representation of BPEL4WS for loan application process

Figure 4 (a): Conversation between Customer and Loan Approver

Figure 4 (b): Conversation between Loan Approver and Loan Application Processor

Figure 5: Conversation policy for Customer – loan application process

Start
Send
loan
request

Processing
request

Confirmation
pending

Receive loan
approval info

Terminate:
success

Terminate:
failure

Send acceptance of
loan approval

Send rejection of
loan approval

Loan Approver Loan Application Processor

Request for invoking service

CS-WS CS-WS
Approval Info

CS-WS

Customer Loan Approver

Request for loan

Approval Info
CS-WS

Customer Loan
Approver

Loan Application
Processor

Request for loan (1)

Approval Info (4)

Invoke service (2)

Approval Info (3)

3.1.Generating FLBC message from cpXML
Figure 6 shows the proposed architecture for generating FLBC message from cpXML.

The message generator must work with the CS-WS and the local web service. It uses current
state information and message content as inputs and uses cpXML to generate the message. The
CS-WS invokes the message generation process and sends the message to other web services.
The algorithm for generating FLBC message from cpXML appears following figure 6.

Figure 6: Generation of FLBC message

Algorithm for Generating Messages from Conversation Policies
BEGIN (cpXML, currentState, convStack, messageContent, respTo, interRupt)
Open the conversation policy cpXML

Find stateID with currentState
Set msgID to stateID
Set senderName to sender tag
Set hearerName to other role partner name from the role tag
Set illForce to schema tag
If initialstate tag = currentState

Then Set newConv to “Yes”
Else Set newConv to “No”

Create new FLBC message file
Create flbcmsg tag with msgID attribute as msgID
Create simpleAct tag

Set speaker attribute to speakerName
Set hearer attribute to hearerName

Create illocAct tag with force attribute as illForce
Create predSt tag with language attribute as value of encoding tag

Insert value of messageContent agrument
Create context tag with newConv attribute as newConv
Create convStack with value as value of convStack argument
Create sendingMachine with value as service name
If value of respTo argument isnot null

then create respondingTo with value as respTo
If value of interRupt argument is not null

then create interruptTo with value as interRupt
END

cpXML2

Local Application3

FLBC
generating
application

tool4

FLBC
Message

CS-WS1

1.Manages conversations and handles CP
2.Pre-programmed state machine based interaction patterns
3.Local business application gives message content for conversation
4.Focus of our research work

4. Discussion and Conclusion
It is envisioned that important productivity gains will come from fully automated machine-to-

machine communications. To realize this vision, automated conversation support is a necessary
component. Standard messages that can be generated from the conversation policies are an important
prerequisite for this component. Conversation support for Web Services, therefore, fills in the important
area of handling conversations between Web Services. We have described how an FLBC message can be
generated from a specified conversation policy. We are currently implementing the approach proposed in
this paper.

References
1. Appendix A-C. http://www.Karthikeyan.Umapathy.com/wits2003/witslinks.xml

2. Bach, Kent; and Harnish, Robert (1979). Linguistic Communication and Speech Acts. MIT Press,
Cambridge, MA.

3. BPEL4WS (2003). http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

4. Burg, Bernard (2001) "Agents in the World of Active Web-Services". Digital Cities: pg. 343-356.

5. CS-WS (2003). http://www.research.ibm.com/convsupport/faq.html

6. Gille, Marc (2002). "Workflow Application Architectures: Classification and Characteristics of
Workflow-based Information Systems". Workflow Handbook 2002: p. 39-50.

7. Hanson, James E.; Nandi, Prabir; and Kumaran, Santhosh (2002a) "Conversation Support for
Business Process Integration". In Proc. of the IEEE International Enterprise Distributed Object
Computing Conference (EDOC): pg. 65-74.

8. Hanson, James E.; Nandi, Prabir; and Levine, David W. (2002b) "Conversation-Enabled Web
Services for Agents and E-Business". In Proc. of the International Conference on Internet Computing
(IC-02): pg. 791-796.

9. Litman, Diane J.; and Allen, James F. (1987). "A Plan Recognition Model for Subdialogues in
Conversations". Cognitive Science (11): pg.: 163-200.

10. Moore, Scott A. (1999) "On Conversation Policies and the Need for Exceptions". Autonomous
Agents workshop on specifying and implementing conversation policies.

11. Moore, Scott A. (2001) "A Foundation for Flexible Automated Electronic Communication".
Information Systems Research. 12(1): pg. 34-62.

12. Peltz, Chris (2003) "Web Services Orchestration- a Review of Emerging Technologies, Tools, and
Standards". Hewlett Packard Labs Technical Paper.

13. Polanyi, Livia; (1988). "A Formal Model of the Structure of Discourse". Journal of Pragmatics (12):
pg.: 601-638.

14. Seth, Monaj (2003). http://www.developer.com/services/article.php/1497981

15. Sleeper, Brent; and Robins, Bill (2001) "Defining Web Services". The Stencil Group.

16. WSCI (2002). http://www.w3.org/TR/wsci/

HTTP://WWW-106.IBM.COM/DEVELOPERWORKS/WEBSERVICES/LIBRARY/WS-BPEL/
HTTP://WWW.RESEARCH.IBM.COM/CONVSUPPORT/FAQ.HTML
HTTP://WWW.DEVELOPER.COM/SERVICES/ARTICLE.PHP/1497981
HTTP://WWW.W3.ORG/TR/WSCI/

	University of North Florida
	From the SelectedWorks of Karthikeyan Umapathy
	Fall December 12, 2003

	Facilitating Conversations among Web Services as Speech-act based Discourses
	tmpahBWw2.pdf

