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Abstract
Herbivory by both grazing and browsing ungulates shapes the structure and functioning of

terrestrial ecosystems worldwide, and both types of herbivory have been implicated in

major ecosystem state changes. Despite the ecological consequences of differences in

diets and feeding habits among herbivores, studies that experimentally distinguish effects

of grazing from spatially co-occurring, but temporally segregated browsing are extremely

rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how

domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) af-

fect sagebrush-dominated plant communities that historically covered ~62 million ha in

North America. We sampled plant community properties and found that after 22 years graz-

ing and browsing elicited perceptible changes in overall plant community composition and

distinct responses by individual plant species. In the woody layer of the plant community, re-

lease from winter and spring wild ungulate herbivory increased densities of larger Wyoming

big sagebrush (Artemisia tridentata, ssp.wyomingensis) at the expense of small sage-

brush, while disturbance associated with either cattle or wild ungulate activity alone was suf-

ficient to increase bare ground and reduce cover of biological soil crusts. The perennial

bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release

from summer cattle grazing, and in turn appeared to competitively suppress another more

grazing tolerant perennial grass, Sandberg’s blue grass (Poa secunda). Grazing by domes-

tic cattle also was associated with increased non-native species biomass. Together, these

results illustrate that ungulate herbivory has not caused sagebrush plant communities to un-

dergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, pe-

rennial-dominated system where plant community changes can occur very slowly, our

results provide insights into potential long-term trajectories of these plant communities

under different large herbivore regimes. Our results can be used to guide long-term man-

agement strategies for sagebrush systems and improve habitat for endemic wildlife species

such as sage-grouse (Centrocercus spp.).
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Introduction
Large ungulate herbivory shapes the physiognomy and functioning of terrestrial ecosystems
worldwide. Both grazing and browsing can profoundly influence the structure and composition
of plant communities [1–6] with far-reaching consequences for multiple taxa [7–11], including
other ungulate herbivores [12–15]. The presence of grazers, such as cattle, has been implicated
in major ecosystem state shifts, including woody plant encroachment and apparently perma-
nent conversions from native to non-native plant communities [16–19] (but see [20–22]). Yet
despite the potential for additive or antagonistic effects among different ungulates on plant
communities (e.g., [23]), the effects of browsing have been underemphasized in the scientific
grazing literature and often times completely ignored.

Large herbivores can have contrasting effects on plant community composition and dynam-
ics through their behavior and diet preferences [24, 25], both of which can vary seasonally [26,
27]. Cattle are globally distributed domestic grazers that efficiently digest herbaceous material
(i.e., mostly grasses and some forbs). Heavy use by grazers such as cattle can reduce or elimi-
nate perennial grasses, thereby shifting plants towards dominance by woody species (Fig. 1)
[28–30] or less palatable herbaceous species [31, 32]. While some wild ungulate grazers (e.g.,
equids and Bovini) may have effects on plant communities very similar to domestic cattle,
other wild ungulates are browsers (e.g., North American mule deer [Odocoileus hemionus])
that feed primarily on woody species and forbs [33] or mixed feeders (e.g., elk [Cervus ela-
phus]) that both graze and browse and show a variable and broad diet range [34–36]. In highly
seasonal systems the feeding behavior of ungulate herbivores varies temporally whereby ani-
mals browse woody plants more in winter or spring when herbaceous forage is unavailable [27,
37]. Browsing can exert major controls over woody plant dynamics and may directly oppose
the effects of grazing on state changes between woody- and grass-dominated states (Fig. 1)
[38–40]. Large ungulate herbivores also have the potential to reduce plant community resis-
tance to disturbance and invasion by undesirable plant species, for instance by preferentially
foraging on the most palatable plants, increasing bare ground or damaging biological soil crusts
via hoof action [41–44]. The relative roles of different types of large herbivores in invasion dy-
namics, however, have received little attention in the scientific literature [43].

Rarely are the effects of grazing and browsing herbivores distinguished within a single study
[45–50] (but see [51]). An abundance of studies focus on the experimental effects of livestock
grazing (e.g., [2, 20, 52–54]). Of those that use controlled replication, most make comparisons
between treatments to which livestock grazers do vs. do not have access. Typically wild ungu-
lates are allowed access to both treatment types, thereby controlling for, but not exploring the
potentially important role of wild ungulates (which can include grazers, browsers, and/or
mixed feeders) in plant community dynamics. Other studies experimentally test the effects of
wild ungulates in the absence of domestic grazers [55–59] (but see [15, 54]), a land manage-
ment scenario which is becoming increasingly uncommon. Experimentally investigating the
roles of large herbivores with contrasting feeding habits within a single system in a controlled
setting will provide insights into the mechanisms behind plant-herbivore dynamics and man-
agement options for multi-use landscapes.

Here we use a set of long-term exclosures to determine how cattle (which in our study are
grazers that use the site primarily in summer) vs. wild ungulates (which in our study are brows-
ers and mixed feeders that use the study site mainly in winter and spring) affect sagebrush-
dominated plant communities. These plant communities provide critical ecological services
and habitat for endemic plant and wildlife species, but presently cover less than half of their
original 60 million ha in the Intermountain West of North America [60–63]. We focus on com-
munities dominated by Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), for
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which there are no published studies that use controlled experimentation to distinguish domes-
tic grazer and wild ungulate (primarily Rocky mountain elk and mule deer) effects on plant
community dynamics. In particular we test how different types of herbivory influence a) shrubs
and grasses, the dominant components of the plant community (Fig. 1), and b) non-native spe-
cies and ground cover (including biological soil crusts) that can further influence plant
community dynamics.

Materials and Methods

Site Description
This study was conducted at Deseret Land and Livestock (DLL), a private ranch headquartered
13 km south of Woodruff, UT, USA (41° 24’N; 111° 13’W). Our experimental sites are domi-
nated by Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and were

Fig 1. Conceptual model. Conceptual model of interactions among browsing, grazing, woody plants, and perennial grasses. Model assumes that wild
ungulates (top left) will both browse and graze, while cattle (top right) will primarily graze. Solid arrows indicate direct effects and assume net negative effects
of herbivory and competition on plant biomass. Dashed arrows indicate indirect effects of browsing and grazing mediated through competition between
woody plants (bottom left) and perennial grasses (bottom right). Browsing and grazing, depending on their timing, intensities, interactions, and net effects,
can shift plant communities between woody- and grass-dominated states.

doi:10.1371/journal.pone.0118016.g001
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intentionally located in lower elevation areas that are used by cattle in the spring and summer
(May—September) and by wild ungulates predominantly in the winter and early spring (No-
vember—March). The primary native ungulates on DLL are elk (Cervus elaphus), mule deer
(Odocoileus hemionus), and to a lesser extent, pronghorn (Antilocarpa americana). Both elk
and deer migrate to higher elevations during the summer and descend to lower elevations in
the winter. Elk are considered mixed feeders, and the proportion of their diets made up of
browse increases in the winter, particularly under snowier conditions [27]. Deer, considered
browsers, rely heavily on woody material in the winter [27]. The main grass species at the
study site are bluebunch wheatgrass (Pseudoroegneria spicata), Indian ricegrass (Achnatherum
hymenoides), Sandberg’s bluegrass (Poa secunda), needle and thread (Hesperostipa comata)
and bottlebrush squirreltail (Elymus elymoides). The main forbs are spiny phlox (Phlox hoodii),
pussytoes (Antennaria spp.), and milk vetch (Astragalus spp.). The primary non-natives are
bur buttercup (Ceratocephala testiculata), desert alyssum (Alyssum desertorum), and cheatgrass
(Bromus tectorum). Plant species nomenclature and nativity are based on the USDA PLANTS
database [64].

Our study focused on three livestock pastures (Dip, Neponset, and Kate) ranging in size
from 567–1200 ha. Neponset (1980 m, 6–10% slopes, sandy loam soils) and Kate (2010 m,
4–10% slopes, fine sandy loam soils) pastures are typically grazed on a 5 year rest-rotation
schedule. These pastures are grazed by cattle in May or June for three years and in October or
November for one year, and then are rested for the fifth year. Dip pasture (2010 m, 6–15%
slopes, loam soils) typically is grazed in both the early (May) and late (September) growing sea-
son and is rarely rested. The average duration for grazing on each pasture is 10 days to three
weeks, depending on forage production and herd size; average cattle herd size per pasture is
1000–1500 head of cattle (Mike Meek, DLL Ranch Manager, Pers. Comm.). Rainfall for the
year (July—June) preceding our sample periods was 70.1% of the 20-year average for 2012 and
85.2% for 2013. Rainfall for the 4 months (March—June) preceding our sample periods was
25.7% of the 20-year average for 2012 and 37.8% for 2013.

Study design
In 1991 and 1992, we established a set of three 90 m x 90 m plots in each of the three study pas-
tures. Within each pasture, one 90 m x 90 m plot was assigned to each of the following treat-
ment types: 1) Total exclosure (no large ungulates allowed), 2) Cattle exclosure (access by wild
ungulates only), and 3) Control (access by wild ungulates and cattle). Total exclosures were
constructed with 2.5 m high barbwire fencing (20 strand spaced 20 cm vertically) to fence out
all ungulates. Cattle exclosures were constructed with low (1.5 m) barbwire fencing (three
strands spaced 50 cm vertically) to allow wild ungulates to traverse the fence; additionally one
entire side of each cattle exclosure was opened during the majority of the year (when livestock
were not in the pasture) to facilitate wild ungulate access. Wild ungulate use of our study pas-
tures is highest during November—March when wild ungulates focus their foraging activity in
these lower elevation areas. Control plots were unfenced.

In July of 2012 and 2013, we sampled vegetation, ground cover, and ungulate use along five
50 m transects in the central 60 m x 60 m study area of each 90 m x 90 m plot. The five tran-
sects were ten meters apart, oriented perpendicular to the overall slope of the plot. Vegetation
frequency data were collected in five evenly spaced 1 m x 1 m quadrats per transect (n = 25 per
plot). We recorded densities of live and dead shrubs by height class (<15 cm, 15–50 cm,
50–100 cm, 100–200 cm) in 4 m wide belts along each transect. Densities of perennial bunch-
grasses (identified to species) and cattle, elk, deer, pronghorn and lagomorph pellet groups
(identified to species by shape and size) were recorded along 2 m wide belt transects. To assess
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water runoff and erosion potential we measured gap size between the basal growth of perennial
plants along a 50 m transect (sensu [65]). We sampled ground cover (below any vegetation) in
twenty-pin 25 cm2 pin frames. Pin frames were placed every 5 m along each transect (n = 50
per plot). We classified pin hits into five class types: biological soil crust (non-moss), biological
soil crust (moss), litter, bare ground and physical (non-biological) crust.

Plant biomass data were collected from late June to mid-July in 1992 (baseline data) and
again in 2012 and 2013 in the core 60 m x 60 m study areas of each plot. This core study area
was subdivided into nine 20 m x 20 m subplots. In each sampling year, one of the nine subplots
per exclosure was randomly selected for biomass harvesting. Within the selected subplots, all
live aboveground biomass of rooted and overhanging plants was harvested per species within
three randomly located 10 cm x 5 m biomass transects. The harvested biomass was sorted to
only include the current year’s growth which was then dried for 48 hours at 50°C and weighed.

Statistical Analyses
Plant community level analyses were based on frequency data which were summarized by first
determining a frequency value for each transect (occurrence in 0–5 quadrats) and then averag-
ing the five transect values to determine a plot level value. Species that occurred in<5% of the
225 plots were removed from the analyses. We used nonmetric multidimensional scaling
(NMDS) to ordinate average frequency values for plant species in our 9 plots (3 treatments x 3
pastures) (S1 File). We then performed individual NMDS analyses for each pasture (3 treat-
ments x 5 transects, in this case averaging by transect rather than plot) (S2 File). NMDS is a ro-
bust unconstrained ordination method that uses plant occurrence data alone to identify
ordination axes and explain plant community variation [66]. We used the metaMDS function
in the Vegan library (version 2.0–8) for R (version 3.0.1). This function produces ordinations
based on multiple random starts to avoid local minima and rotates axes to maximize variance
along the first axis. We also used the Adonis function to perform a permutational multivariate
analysis of variance (permANOVA) testing simultaneous response of all plant species to a) the
effects of Pasture and Treatment and b) the effects of Treatment within each Pasture (permuta-
tions = 999). We set alpha values of 0.1 and used Bray-Curtis (Sorenson) dissimilarity matrices
for all analyses.

Plant biomass data were organized into five growth forms: Shrubs, Grasses, Forbs, Non-
native annuals, and Total (i.e., all growth forms combined). These data were analyzed with gen-
eralized linear mixed models (GLMMs) [67]. Fixed effects included herbivore treatment (Total
exclosure, Cattle exclosure, or Control), year (2012 or 2013), treatment�year interaction, base-
line biomass (measured in 1992), and treatment�baseline biomass interaction. Non-significant
(p> 0.1) treatment�baseline biomass interactions were removed from models. Random factors
included pasture and plot nested within pasture, and we used an autoregressive AR(1) covari-
ance structure to address the non-independence of repeated surveys within the same subplot.
Response variables were variance-weighted when necessary to meet model assumptions, and
Tukey post-hoc tests were used. Analyses were run in R 3.0.1 (package nlme [67]). Results are
reported as untransformed means ± 1 S.E. We then performed Cohen’s d effect size analyses
(described below) for each growth form in each year.

We used Cohen’s d (also known as Hedges’ g) effect size analysis [68, 69] for analysis of all
other data. A d statistic was calculated separately for Cattle vs. Control and Total vs. Control
comparisons within each pasture. We calculated d statistics using the following equation:

d ¼ m2 � m1

spooled
; 1
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where the pooled standard deviation (spooled) is calculated as:

spooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þs22 þ ðn1 � 1Þs21

n1 þ n2 � 2

s
; 2

where mi is the transect mean, ni is the number of transects, s2i is the plot variance; subscripts 1
and 2, respectively, are values from the Control plot and treatment exclosure plot (in this case,
either Cattle or Total) [68, 69]. We then calculated a mean d statistic across pastures for 1) Cat-
tle vs. Control and 2) Total vs. Control comparisons, and calculated a 90% confidence interval
(CI) for each mean [70]. Effect size analyses are widely used to combine results from multiple
studies, which is conceptually similar to combining results from multiple sites or blocks as we
have done here [71].

Ethics statement
This study took place on privately owned land. The owner, Deseret Land and Livestock, ap-
proved all field activities. No protected species were sampled.

Results
Pellet counts (Table 1) and effect sizes analyses of pellet densities indicate that Total exclosure
treatments were effective at excluding deer (CI90 = -14.7 to -0.5.16), elk (CI90 = -46.72 to -10.17),
pronghorn (CI90 = -8.59 to -1.81), and cattle (CI90 = -8.3 to -5.65). Cattle exclosure treatments
successfully excluded cattle (CI90 = -6.58 to -5.08), but allowed pronghorn (CI90 = -2.66 to 0.51);
deer and elk use of Cattle exclosure plots were not as high as in Control plots but were still signif-
icantly greater than in Total exclosures (deer CI90 = -2.43 to -0.04; elk CI90 = -8.26 to -1.96).
Lagomorphs were not excluded from Total (CI90 = -2.90 to 3.25) or Cattle (CI90 = 0.26 to 2.65)
exclosure treatments. Overall use of the site by pronghorn was low relative to deer and elk
(Table 1).

Community level analyses
Plant community composition varied more among pastures than herbivore treatments, as indi-
cated by a two-dimensional NMDS solution of plant frequency data that produced a good fit
after one iteration (Fig. 2; stress = 0.08; R2 = 0.97). PermANOVA results further support these
results, indicating a significant effect of “pasture” (pseudo-F2,4 = 0.01; Fig. 2b) and non-signifi-
cant “herbivore treatment” effect (pseudo-F2,4 = 0.65; Fig. 2a).

NMDS plant community analyses for individual pastures, however, revealed distinctions
among different herbivore treatments. Three-dimensional NMDS solutions for Kate and Dip
pastures indicated that Total exclosure plots were distinct from Cattle and Control plots
(Fig. 2c,e); distinctions were less clear for Neponset (Fig. 2d). Fits were good to fair (Kate
stress = 0.11, R2 = 0.99; Neponset stress = 0.096, R2 = 0.91; Dip stress = 0.098; R2 = 0.91). Re-
sults of permANOVA indicated highly significant treatment effects in Kate (pseudo-F2,12 =
0.001) and Dip (pseudo-F2,12 = 0.001) pastures (Fig. 2c,e), and less significant treatment effects
in Neponset (pseudo-F2,12 = 0.07) pasture (Fig. 2d).

Examination of species richness data (derived from frequency plots) across all pastures indi-
cate that cattle reduced plant species richness. Cattle exclosure treatments reduced richness rel-
ative to Control plots (CI90 = -1.33 to-0.61), whereas Total exclosure treatments did not
significantly alter species richness relative to Control plots (CI90 = -3.13 to 1.59).
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Fig 2. NMDS results. Non-metric Multidimensional Scaling (NMDS) results depicting sample points and convex hulls for (a) three herbivore treatments and
(b) three pastures in relation to plant species community composition (n = 125 frequency frames per sample point); and (c-e) treatments within individual
pastures (n = 25 frequency frames per sample point). Total, Cattle, and Control treatments exclude, respectively, all large herbivores, cattle only, and no
large herbivores.

doi:10.1371/journal.pone.0118016.g002
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Biomass
Shrub, Grass, Forb and Total biomass were significantly lower in the drier year, 2012 (Fig. 3;
Shrubs F1,6 = 136.91, p<.0001; Grass F1,6 = 24.81, p = 0.003; Forbs F1,6 = 3.80, p = 0.099; Total
biomass F1,6 = 17.34, p = 0.006), and Non-native biomass was too low for analysis during this
year. Effect size analyses also revealed significant effects of Cattle, but not Total exclusion treat-
ments in 2012 (Table 2). In particular, Cattle exclusion significantly increased Grass biomass
relative to Controls. Cattle exclusion also decreased Total biomass, a pattern most likely driven
by non-significant treatment effects on Shrub biomass (Table 2), which made up 78% of
Total biomass.

The wetter year (2013) revealed significant effects of Total exclusion that were not evident
in 2012. In 2013, both Total biomass and Shrub biomass were higher in Total exclosure plots
than in all other treatment-year combinations (Fig. 3; Total biomass F2,6 = 7.27, p = 0.03;
Shrubs F2,6 = 17.38, p = 0.003). Effect size analyses of 2013 biomass also indicate lower forb
biomass in Total relative to Control plots (Table 2). The wetter year also revealed patterns in
non-native species (that had been too low in biomass to analyze in the drier year). In particular,

Fig 3. Plant Biomass.Mean biomass ± 1 S.E. in (a) 2012 and (b) 2013 of different plant growth forms (Total [i.e., all groups combined], Shrubs, Grasses,
Forbs, and Non-natives) across three herbivore treatments. “Total Ex” denotes exclusion of large herbivore wildlife and cattle, “Cattle Ex” denotes exclusion
of only cattle (but not wild herbivores), and “Control” denotes no exclusion i.e., access by both types of herbivore. Asterisks indicate treatment-year
combinations that are significantly different (p< 0.10) than all other treatment-year combinations within a given plant growth form.

doi:10.1371/journal.pone.0118016.g003

Table 1. Dung pellet groups.

TOTAL CATTLE CONTROL

Deer 1.33 ± 1.33 116 ± 36.3 142.67 ± 47.68

Elk 0 ± 0 137.33 ± 9.61 265.33 ± 51.24

Pronghorn 0 ± 0 32 ± 12.86 46.67 ± 25.96

Cattle 0 ± 0 18.67 ± 5.33 130.67 ± 6.67

Lagomorphs 1120 ± 269.59 1188 ± 124.00 1086.67 ± 124.71

Mean densities (# per ha) ±1 SE for pellet groups by species across three herbivore treatments: 1) Total exclosure plots that exclude both cattle and wild

ungulates, 2) Cattle exclosure plots that exclude only cattle, and 3) Control plots where no large herbivores are excluded.

doi:10.1371/journal.pone.0118016.t001
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in 2013, non-native biomass (comprised of 51% C. testiculata, 47% A. desertorum, and 2% B.
tectorum) was significantly lower in Cattle and Total exclosure plots relative to Control plots
(Table 2). The overall effect size was greatest for Total treatments, but the variability was too
great to be significantly different than Cattle exclosure treatments.

Species and growth form analyses
Densities of three perennial grasses varied with respect to herbivore treatment (Fig. 4a,
Table 3). Effect size analyses indicate that densities of the perennial bunchgrass E. elymoides in-
creased in both Cattle and Total exclosure plots compared to controls (Fig. 4a). The most com-
mon grass, P. secunda, showed the opposite pattern and was lower in the two exclosure
treatments than in the controls (Fig. 4a). The grass P. spicata was reduced by cattle exclusion.
Achnatherum hymenoides andH. comata did not respond significantly to herbivore treatment.

Densities of A. tridentata ssp. wyomingensis varied across herbivore treatments and shrub
size classes (Fig. 4b, Table 3). The Total herbivore exclusion treatment, the only treatment to
exclude wildlife, was characterized by a higher number of mid-sized (50–100 cm) individuals
and lower number of small (<15 cm) individuals relative to control plots. The Cattle exclusion
treatment (to which wildlife did have access), did not significantly differ from Control. There
were no significant effect size differences for the 15–50 cm and 100–200 cm size classes, though
they followed similar trends to<15 cm and 50–100 cm size classes, respectively.

Gap size analyses indicate that plots where both cattle and wildlife were excluded (i.e., Total
exclusion plots) had a significantly higher proportion of 50–100 gaps, but lower proportion of
very large (200 cm+) gaps (Fig. 4c). The infilling of very large gaps (and resulting increase in
smaller gaps) is consistent with the absolute increases in densities of 50–100 cm A. tridentata
ssp. wyomingensis shrubs (Table 3) and the grass E. elymoides (Table 3) in Total exclosure plots
relative to control plots.

Effect size analyses indicated that cover of all biological soil crust groups combined was in-
creased by Total exclusion plots, likely driven by moss, the only group with cover high enough
for individual analysis (Fig. 4d). Amount of bare soil was significantly lower in both treatments
that excluded cattle (Fig. 4d). There were no significant effect size differences for either litter or
physical crust (Fig. 4d).

Discussion
Grazing and browsing ungulates co-habit rangelands worldwide and can have distinct and
sometimes contrasting effects on plant community trajectories [45, 48, 49, 72, 73]. This is the
first published study to experimentally address and demonstrate, within a single study, the ef-
fects of long-term manipulation of both wild ungulates (including browsers and mixed feeders)
and domestic grazers on Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), a
dominant land cover type of conservation concern [60–63] in the western U.S.A. Here we have
revealed, after only twenty-two years, distinct effects of a domestic grazer and native ungulates
on major plant species and growth forms, including long-lived native perennial species, annual
invasive species, and biological soil crusts. These changes to specific plant functional groups
and soil crusts were accompanied by perceptible effects of wild ungulate exclusion on overall
plant community composition (as assessed by NMDS) in this sagebrush community. At two of
three sites, overall plant community composition differed in the one treatment that excluded
vs. two treatments that allowed wild ungulate access (Fig. 2c,e), illustrating a clear wild ungu-
late effect and a relatively small domestic grazer effect. Distinctions among the three herbivore
treatments were weaker (but still significant to the 0.1 level) for the third site (Fig. 2d), possibly
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Fig 4. Effect size analyses. Effect size analyses of (a) perennial grass (Achnatherum hymenoides [ACHY], Elymus elymoides [ELEL], Hesperostipa comata
[HECO], Poa secunda [POSE], Pseudoroegneria spicata [PSSP]) density, (b) sagebrush (A. tridentata ssp.wyomingensis) density, (c) inter-plant gap size,
and (d) soil cover across herbivore treatments. “Total Ex” denotes exclusion of all large herbivores, and “Cattle Ex” denotes exclusion of only cattle (but not
wild herbivores). If symbol is above the zero line, then magnitude of response is greater in the treatment exclosure than in the control. If symbol is below the
zero line, then response is less than in the control. Error bars show 90%CI. If error bars do not equal or cross zero line, then difference is
considered significant.

doi:10.1371/journal.pone.0118016.g004

Table 2. Biomass effect sizes.

YEAR 2012 2013

TOTAL BIOMASS Total -0.32 ± 1.56 3.81 ± 3.64

Cattle -0.68 ± 0.56 0.59 ± 1.83

SHRUBS Total -0.53 ± 1.84 4.23 ± 4.48

Cattle -1.16 ± 1.24 0.06 ± 1.49

GRASSES Total -0.18 ± 1.80 -0.01 ± 0.90

Cattle 1.51 ± 1.48 -0.007 ± 0.1.91

FORBS Total 0.42 ± 0.58 -1.52 ± 1.04

Cattle -0.31 ± 2.39 -0.50 ± 1.02

NON-NATIVES Total — -2.54 ± 2.41

Cattle — -1.21 ± 0.91

Means and 90% confidence intervals for Cohen’s d effect size analyses of annual biomass in 2012 and

2013. “Total” denotes effect of exclusion of all large herbivores relative to Control plots (where no large

herbivores are excluded), and “Cattle” denotes effects of exclusion of only cattle (but not wild herbivores)

relative to Control plots. Bold values indicate treatments with confidence intervals that do not overlap zero

and are considered significantly different from control.

doi:10.1371/journal.pone.0118016.t002
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because of greater heterogeneity in soil type and landscape position among plots, or because of
lower overall plant productivity (pers. obs) and herbivore use (Table 1) at the site.

Specific wildlife effects
Wildlife effects on plant community composition appeared to be driven at least partially by
browsing of woody species. Wild ungulates showed size-class-specific effects on Wyoming big
sagebrush (A. tridentata ssp. wyomingensis) densities across all sites. The dominant herbivores
in the study area that browse on woody species in the winter are elk and mule deer. As might
be expected from examples of browsing effects in a variety of ecosystems [38–40, 74], release
from browsing increased densities of the most common adult-sized sagebrush (50–100 cm) in
our study. This coincided with lower relative densities of small sagebrush (<15 cm). Small
sagebrush in wildlife exclusion plots likely represent mostly new recruits that were suppressed
by either a) adult shrubs or b) grasses (sensu [75]) that were also released from herbivory in
wildlife exclusion plots. Small sagebrush in wildlife accessible plots on the other hand likely
represent a combination of new recruits and older individuals maintained in short stature by
recurrent browsing [38, 76]. Regardless, our results reveal that removal of browsing animals—a

Table 3. Plant densities, gaps, and soil cover.

TOTAL CATTLE CONTROL

Perennial grass densitya

ACHY 497.4 ± 229.6 297.4 ± 155.4 248 ± 123.6

ELEL 500 ± 69.4 364 ± 37.2 201.4 ± 60.2

HECO 553.4 ± 268.2 1036 ± 544.6 1208 ± 548

POSE 1898.6 ± 368.6 2462.6 ± 436 2758.6 ± 379.2

PSSP 259 ± 188.6 147.8 ± 61.6 301.6 ± 119.6

Sagebrush densitya

<15 cm 42 ± 4.2 90.7 ± 2.4 458.7 ± 366.5

15–50 cm 821.3 ± 178 1098 ± 349.9 952.7 ± 260.5

50–100 cm 1253.3 ± 142.2 993.3 ± 138.6 994.7 ± 95.5

100–200 cm 44.7 ± 31.7 54.7 ± 47.8 51.3 ± 49.3

Inter-plant gapsb

25–50 cm 74.12 ± 3.88 72.7 ± 1.53 78.13 ± 1.42

50–100 cm 64.8 ± 6.31 62.32 ± 3.08 65.96 ± 3.89

100–200 cm 43.18 ± 7.53 37.58 ± 5.24 44.63 ± 5.57

200+ cm 19.6 ± 5.81 15.3 ± 4.41 18.31 ± 5.86

Soil coverc

All biocrust 2.66 ± 0.25 2.16 ± 0.25 1.62 ± 0.15

Moss biocrust 1.84 ± 0.27 1.27 ± 0.13 1.27 ± 0.12

Litter 11.75 ± 0.94 13.36 ± 0.67 12.69 ± 0.94

Bare 1.44 ± 0.22 1.31 ± 0.22 2.06 ± 0.15

Physical crust 4.59 ± 1.11 3.67 ± 0.28 3.89 ± 0.98

Means ±1 SE for perennial grass densities by species, sagebrush (Artemisia tridentata ssp. wyomingensis) densities by size class, inter-plant gaps by

total length in each gap size class, and soil cover types across three herbivore treatments: 1) Total exclosure plots that exclude both cattle and wild

ungulates, 2) Cattle exclosure plots that exclude only cattle, and 3) Control plots where no large herbivores are excluded.
a #/ha
b total cm
c # pin hits (of 20)

doi:10.1371/journal.pone.0118016.t003
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phenomenon that could occur due to unintentional species losses or intentional management
decisions—increases dominance by larger-statured woody species and presumably competition
for resources (e.g., light) necessary for establishment and growth of smaller individuals. This
pattern is typical of “bush encroachment” which is often (but not always) associated with
rangeland degradation regionally and globally [19, 77, 78], and in this system could negatively
affect endemic wildlife species such as sage-grouse [79].

Release from wild ungulate herbivory also increased annual biomass of shrubs (Fig. 3b), of
which the majority (78–79%) were Wyoming big sagebrush. These results suggest a suppressive
effect of browsing in the wildlife-accessible plots. This pattern was only evident during the wet-
ter year (2013), perhaps because both production and browsing were lower across all treat-
ments during the drier year. Although it is not possible to parse out the relative contributions
of long-term changes in shrub density (described above) vs. short-term browsing effects on an-
nual shrub biomass patterns, it is clear that shrub biomass is greater in the absence of browsers.

Interestingly, although woody species can suppress grasses [19, 77, 78], in this case grass
production was not reduced by increased shrub production. This result provides further evi-
dence that some perennial grasses—at least when they are ungrazed—are not necessarily out-
competed by woody species [80, 81], particularly under favorable moisture conditions. Alterna-
tively, release from grazing (by cattle, elk, or both) may have compensated for any shrub-driven
reductions in grass production. Forb production, on the other hand, appeared to be reduced by
shrubs, though sagebrush effects on forbs have been reported to range from neutral [80] to fa-
cilitative elsewhere [82, 83]. Forbs are especially important to management of sagebrush sys-
tems due to their potential to offer resistance against undesirable invasive annual plants such
as cheatgrass (B. tectorum) [84] and to their role in the diets of species of concern such as sage-
grouse [79]. Our results provide evidence that managing for sufficient wild ungulate popula-
tions may be a critical component of maintaining productive and structurally diverse sagebrush
stands and key habitat characteristics for native species conservation.

Specific cattle effects
Cattle grazing influenced individual species and certain plant growth forms within the herba-
ceous plant community. Although these effects were not yet associated with significant differ-
ences in overall plant community composition, they provide insights into potential plant
community trajectories and future communities. The early successional shallow-rooted bunch-
grass, bottlebrush squirretail (E. elymoides), showed a positive response to release from cattle
grazing and in turn appeared to competitively suppress the more common shallow-rooted
grass, Sandberg’s blue grass (P. secunda). Increased P. secunda dominance under grazed condi-
tions is a regionally common pattern for this abundant, grazing-tolerant grass [85] (but see
[41]). Another bunchgrass, needle and thread (H. comata), did not respond significantly to
grazing exclusion, likely because it is only a moderately preferred forage species for livestock
[64]. Although densities of the more grazing-sensitive perennial bunchgrass, bluebunch wheat-
grass (P. spicata) would have been expected to increase under grazing release in both herbivore
exclusion plot types [85], densities did not increase in Total exclusion plots, likely due to in-
creased shrub competition. Most surprising was that densities of P. spicata were significantly
reduced in Cattle exclusion plots relative to grazed Control plots. Historically, elk (mixed feed-
ers) may have preferentially grazed in Cattle exclusion plots (compared to Controls) to avoid
competition with cattle, thereby increasing grazing pressure on highly palatable P. spicata. Cat-
tle-wildlife competition and compensatory increases in wildlife habitat use have been shown in
other exclosure studies [14, 73]. In the case of our study, historic compensatory responses by
elk (and the consequent reduction in desirable P. spicata forage) may help explain the slight
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present-day aversion elk showed to our cattle exclusion plots (Table 1). These types of patterns
can only be revealed by study designs that explicitly distinguish effects of different types
of herbivory.

Our study also revealed year-dependent effects of cattle grazing. Release from cattle grazing
increased grass biomass during the drier year, 2012, when forage would have been most limit-
ing and grazing pressure highest across the landscape. In the same plots, however, total bio-
mass decreased (relative to Control plots), likely reflecting a (non-significant) decrease in
shrub production associated with increased grass competition [86].

Additive and synergistic cattle-wildlife effects
Due to our experimental design and because Total and Cattle exclusion effect sizes did not dif-
fer significantly from each other, we cannot rule out the possibility that the effects of “wild un-
gulate” removal discussed above are actually additive or synergistic effects of removing both
cattle and wild ungulates from Total exclosure plots. For example, although cattle are consid-
ered “grazers” they can browse on woody material [87], and perhaps shrubs only respond posi-
tively when they are released from both wild and domestic herbivore browsing. Plant
community responses in Cattle exclusion plots also may reflect more than the direct effects of
removing cattle. Plant community responses in these plots may be the product of synergistic
cattle-wild ungulate effects. For example, as described above for P. spicata, the plant communi-
ty effects of cattle removal may elicit compensatory behavioral responses by wild ungulates.

Different seasonal use patterns by wild ungulates vs. cattle also can result in apparent non-
additivity of herbivory effects. Whereas cattle grazing occurred during active growing periods,
grazing effects of the mixed feeder at our study site, elk, would have occurred during winter
and early spring when grasses and are forbs are dormant. This timing would have mitigated
negative wild ungulate effects on herbaceous plants. Likewise, winter (dormant season) use of
the study area by wild ungulates may have amplified negative effects of browsing on shrubs by
inhibiting shrub regrowth [38] or compensatory responses like secondary chemical defenses
against herbivory [88]. In addition, winter herbivory can result in net nutrient inputs to soils
that stimulate grass production or quality and improve grass compensatory response to grazing
later in the growing season [89]. The seasonal dichotomy in range use by wild vs. domestic live-
stock is widespread across western North America and in other systems dominated by Artemi-
sia [90], suggesting that the overall browsing and grazing impacts we observed may be typical
for sagebrush communities.

Invasive species, inter-plant gap sizes, and biological soil crusts
One potential source of concern for land managers is that non-native species biomass was
higher in plots accessible by domestic grazers during the wetter year. Exotic species invasions
are arguably the primary threat to sagebrush-dominated systems in the Intermountain West of
North America [91], and inappropriate livestock management practices as well as overabun-
dance of wild herbivores are cited as contributing to invasions by undesirable species in ecosys-
tems worldwide [5, 16, 43, 44, 92, 93]. In the present study we have not shown evidence of
widespread invasion attributable to grazing; rather we have shown evidence of Wyoming big
sagebrush plant communities with a small non-native species component that is more strongly
expressed during wetter years—but most strongly in the presence of domestic grazers. Howev-
er, even low levels of invasion can become more problematic following major disturbance
(e g., extended drought), and those species that are limited by elevation or moisture [42] may
increase in prevalence in warmer climate conditions predicted for this area [94]. Moreover, cat-
tle grazing had a negative effect on E. elymoides, a species that is a strong competitor with
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invasive B. tectorum. A populous and more diverse native plant community is a potential form
of resistance against invasive species [95] (but see [93]) and we did find lower overall plant spe-
cies richness in plots accessible by cattle.

Smaller inter-plant gap sizes between perennial plants often are associated with increased
biotic resistance to disturbance and invasive species [41, 96]. We found that gap sizes were
smaller in plots where wildlife were excluded, consistent with our result of higher shrub cover
in these plots. Despite the potential for small inter-plant gaps to provide resistance against
non-native species [41], increased invasive biomass in our study was associated with cattle
rather than wild ungulate activity. This suggests that, when wild herbivores are present, and/or
when the plant community is relatively uninvaded, gap size may not be an ideal early indicator
or correlate of invasion risk.

Cover of biological soil crusts, an indicator of soil condition [97, 98], was higher in the Total
herbivore exclusion treatment. Crusts create microsites for germination of a diversity of native
plants that are typically desired for their conservation value and resistance against exotic spe-
cies [41, 99, 100]. Our results suggest that the presence of wild ungulates alone (i.e., even in the
absence of cattle) creates sufficient disturbance to limit biological soil crust cover. Given that
the site likely evolved under wildlife herbivory (including grazers, browsers and mixed feeders),
however, the level of soil crust disturbance we detected likely falls within the natural range of
variability for the area. Cattle exclusion plots, on the other hand, did not significantly increase
soil crust cover (relative to Control plots). But we cannot rule out cattle activity as an important
driver of biological soil crust cover because cattle accessible plots showed significantly higher
bare ground, which would have been driven at least in part by non-significant loss of soil crust
cover. Cattle activity in other ecosystems has been shown to decrease biological soil crust cover
and increase safe sites for establishment of one pervasive invader, B. tectorum [41, 85, 101],
though it is possible that our study area is more resilient to crust disturbance because it is wet-
ter and more productive. Nonetheless, our results suggest an important consideration in man-
aging for biological soil crusts is total large herbivore pressure, particularly livestock which are
more readily managed than wildlife. Continued efforts to untangle the effects of large ungulates
on biological soil crusts are important throughout sagebrush-dominated systems that typically
support both free-roaming wild ungulate herbivores and domestic livestock.

Conclusions
Although twenty-two years of herbivore treatments did not cause dramatic state shifts in this
sagebrush community, they did reveal distinctive domestic grazer vs. wild ungulate effects on
plant communities and insights into potential future trajectories of these plant and soil crust
communities. Our results point to the importance of wild ungulate suppression of woody plant
densities and sizes. Combined with the positive wildlife effects on forbs, these results suggest
that long-term conservation of Wyoming big sagebrush plant communities may require suffi-
cient wildlife browsing to maintain productive sagebrush stands. Also of note are the positive
effects of cattle activity on non-native biomass and negative effects on the native bunchgrass,
E. elymoides. This native species and its congeners are relatively good competitors against the
widespread invasive annual B. tectorum in sagebrush systems [102, 103].

Our results also provide evidence that herbivore effects on plant communities, including in-
vasive species, can vary considerably across superficially similar site conditions in Wyoming
big sagebrush plant communities [1, 20, 104]. Our experimental approach allowed us to identi-
fy a role of wild ungulates (which often is conflated with cattle) in shrub-grass dynamics. Valu-
able future work would entail using a similar approach to examine sagebrush sites across a
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broad range of environmental conditions and identify mechanisms for cross-site variability of
herbivory effects.

Supporting Information
S1 File. Plant frequency by treatment.Mean plant frequencies for each of three treatments
(DX = no large ungulates allowed, LX = cattle excluded, accessible by wild ungulates only,
OX = accessible by cattle and wild ungulates) for each of three sites (Kate, Dip, Neponset).
Each treatment plot had five transects with five 1 m x 1 m quadrats per transect. Species codes
follow USDA Plant Database codes (http://plants.usda.gov/); AF53 is an unidentified
annual forb.
(DOCX)

S2 File. Plant frequency by transect. Plant frequencies for five transects (n = five 1 m x 1 m
quadrats per transect) at each of three treatments (DX = no large ungulates allowed, LX = cattle
excluded, accessible by wild ungulates only, OX = accessible by cattle and wild ungulates) for
each of three sites (Kate, Dip, Neponset). Species codes follow USDA Plant Database codes
(http://plants.usda.gov/); AF53 is an unidentified annual forb.
(DOCX)
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