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Logistic regression is foremost used to model a binary (0/1) variable based on one or more other 

variables, called predictors. The binary variable being modeled is generally referred to as the 

response variable, and I refer to it as such here. For a model to fit the data well, it is assumed that 

the predictors are uncorrelated with one another, that they are significantly related to the 

response, and that the observations or data elements of a model are also uncorrelated. The 

response is also assumed to fit closely to an underlying probability distribution from which the 

response is a theoretical sample. The goal of a model is to estimate the true parameters of the 

underlying PDF of the model based on the response as adjusted by its predictors.  In the case of 

logistic regression, the response is binary (0/1) and follows a Bernoulli probability distribution. 

Since the Bernoulli distribution is a subset of the more general binomial distribution, logistic 

regression is recognized as a member of the binomial family of regression models. A 

comprehensive analysis of these relationships is provided in Hilbe (2009).  

    In this short monograph I assume that the reader is familiar with the basics of regression. I 

address only the fundamentals of interpreting a logistic model, and on how to predict the 

probability that the response has a value of 1 given a specific set of predictor values. 

Interpretation of logistic model coefficients usually involves their exponentiation, which allows 

them to be understood as odds ratios. This capability is unique to the class of logistic models. 

The fact that a logistic model can be used to assess the odds ratio of predictors, and also can be 

used to determine the probability of the response occurring based on specific predictor values, 

called covariate patterns, is the prime reason it has enjoyed such popularity in the statistical 

community for the past several decades.       

    I shall use the medpar data to demonstrate how a simple binary response (0,1) logistic model 

can be interpreted. The medpar data can be found in my COUNT package on CRAN, as well as 

in the data packages associated with most of my books . I only present the basics here, but this 

explanation should give you a sense for how models estimated using logistic regression can be 

interpreted. The modeling is done using R.  I have used R version 3.0.1.  However, if you are 

using an older version of R you should still get the same results.   

   I am assuming that you have installed the packages that are used in this monograph. Look for 

all library functions and be sure that they have been installed prior to replicating the example 

shown here. Of course, it is not necessary to duplicate what I have done - you can use another 

example following the same logic.  

  I want to emphasize that I am not discussing the more detailed methods that can be used to 

check or manipulate a model to effect a more satisfactory model. This model and explanation is 

for pedagogical purposes only.  

   The medpar data is from the US national database on hospital records for  Medicare patients. 

The data comes from the 1991 Arizona component of the MedPar database, and represents data 

from one DRG, or Diagnostic Related Group. Hospitals are reimbursed by the federal 

government based on the type of DRG. I first constructed the data set to use when conducting 

workshops for the Health Care Financing System (HCFA) in 1992. All variables or information 

in the data that could be used to violate the privacy rights of the patients whose hospital records 
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are part of the medpar data set were excluded. The variables included in the example I use in 

this monograph are described as  

 

response  :   died    1=patient died within 48 hours of admission; 0=not die 

predictors:   white  1=patient identifies themselves as white; 0 = as non-white 

                    hmo    1= patient belongs to a Health Maintenance Organization; 0=not belong  

                    type    1=elective admission; 2= urgent admission; 3=emergency admission 
 

others not included in example model 

                   los       length of stay in hospital 

                   age80  1=patient age 80 and over; 0=younger than 80. 
 

We begin by loading the medpar data from the COUNT package, which consists of 1495 

observations.  
 

> library(COUNT) 

> data(medpar) 

> head(medpar)   # displays the values for the first 6 observations 
 

  los hmo white died age80 type type1 type2 type3 provnum 

1   4   0     1    0     0    1     1     0     0  030001 

2   9   1     1    0     0    1     1     0     0  030001 

3   3   1     1    1     1    1     1     0     0  030001 

4   9   0     1    0     0    1     1     0     0  030001 

5   1   0     1    1     1    1     1     0     0  030001 

6   4   0     1    1     0    1     1     0     0  030001 

 

I model died on white, hmo, and levels of type, with level 1 as the reference level. I have 

combined two functions -- the glm function and summary function. glm estimates the 

parameters and provides associated statistics. The summary function  prints the model results to 

the screen in a fairly standard manner. Confidence intervals are not displayed. Another function 

is needed to calculate and display them afterwards.  
 

> summary(mymodel <- glm(died ~ white + hmo + factor(type),  

+                                data=medpar, 

+                                family=binomial) 

+ ) 

 

Call: 

glm(formula = died ~ white + hmo + factor(type), family = binomial,  

    data = medpar) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.1594  -0.8853  -0.8853   1.4795   1.6615   
 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)   -1.09058    0.20535  -5.311 1.09e-07 *** 

white          0.35617    0.20712   1.720  0.08551 .   

hmo            0.04758    0.15032   0.317  0.75161     

factor(type)2  0.33963    0.14217   2.389  0.01690 *   

factor(type)3  0.64421    0.21582   2.985  0.00284 **  
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1922.9  on 1494  degrees of freedom 

Residual deviance: 1907.9  on 1490  degrees of freedom 

AIC: 1917.9 

 

Number of Fisher Scoring iterations: 4 

 

Interpretation of the coefficients of a logistic regression differ from the interpretation of 

coefficients from a normal linear regression model. A coefficient of a traditional linear 

regression predictor is interpreted as the change in the value of the response given a one unit 

increase in value of the predictor. The coefficients, or slopes, of a logistic regression model 

indicate, on the other hand, the change in value of the log-odds of the response given a one-unit 

increase in value of a predictor. For binary (0/1) predictors, the one-unit increase is from level 0 

to level 1. For a categorical predictor, the one-unit change is from the specified reference level to 

the level of the predictor associated with the coefficient. For a continuous predictor the one-unit 

change is from the lower of two contiguous values to the next higher value.  

     Referring to the model output above, note that the p-values of white (0.08551) and hmo 

(0.75161) are both greater than 0.05. This tells us that the predictors do NOT significantly 

contribute to the understanding of the response, died.  Both levels of type are significant; i.e., 

they contribute to patient deaths in the hospital. type1 (an elective hospital admission) is the 

reference. type2 is an urgent admit and type3 is an emergency admission. If white were 

significant, we could interpret it as meaning that when comparing white patients and non-white 

patients, being white adds 0.356 points to the log odds of death.  White patients have a .365 

greater log-odds of death in the hospital compared to non-white patients.  For type, an 

urgent admission (type2) results in a 0.34 increase in the log-odds of death compared to a patient 

who was admitted as an elective admission. Patients admitted as emergency patients increase the 

log-odds of death by 0.64 compared to an elective admission. Again, because the p-value of the 

type predictors are less than 0.05, they are significant (at the 0.05 level - sometimes called the 

"alpha=0.05 level", or α=0.05).  

    We now exponentiate the coefficients, which are odds ratios. This is the preferred way to 

interpret logistic parameter estimates.  Reparameterizing the model in terms of odds ratios has no 

bearing at all on the significance of the predictors, just how they are interpreted.  

 
> exp(coef(mymodel)) 

  (Intercept)         white           hmo factor(type)2 factor(type)3  

    0.3360218     1.4278500     1.0487290     1.4044229     1.9044888  

 

INTERPRETATION OF ODDS RATIOS 
 

    The levels of type  are the only predictors that are significant. The model tells us that urgent 

admit patients have some 40% greater odds of death (1.4044) compared to elective patients, 

holding other predictor values constant. Emergency patients have some 90% greater odds of 

death (1.9045) compared to elective patients, holding other values constant.   

     The confidence intervals of coefficients can also be used to assess significance. If a 

coefficient is 0, it has no impact or influence on the response. The confidence intervals inform us 

that if we repeated the analysis a very large number of times, the true coefficient would be within 
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the range of the lower and upper levels of the interval 95 times out of 100.  If  the interval 

includes zero (0), the predictor is NOT significant. This is important to remember.  When 

assessing the significance of odds ratios, a predictor is not significant if the confidence interval 

includes one (1).  For example, if the confidence interval of the odds ratio of a predictor is from 

0.80 to 1.45, the predictor is not significant. The p-value of the predictor will also be greater than 

0.05.  

     We use the confint function to obtain profile confidence intervals. These are confidence 

intervals based on the likelihood ratio test. You can obtain the standard "model" confidence 

intervals by using the confint.default function instead. These will be the same as what is 

provided when using Stata, SAS and other software. Both the "profile likelihood" confidence 

intervals and "model" confidence intervals are given below. Refer to Hilbe & Robinson (2013) 

for an analysis of profile likelihood and R code for its implementation.  
 

> confint(mymodel) 

Waiting for profiling to be done... 

                    2.5 %     97.5 % 

(Intercept)   -1.50483653 -0.6975616 

white         -0.04101036  0.7731985    <= includes 0 

hmo           -0.25026597  0.3396431    <= includes 0 

factor(type)2  0.05929754  0.6171057 

factor(type)3  0.21869574  1.0670262 

 

Standard or "Model" confidence intervals 
 

> confint.default(mymodel) 

                    2.5 %     97.5 % 

(Intercept)   -1.49305866 -0.6880998 

white         -0.04978675  0.7621264    <= includes 0 

hmo           -0.24704044  0.3421984    <= includes 0 

factor(type)2  0.06096888  0.6182840 

factor(type)3  0.22121121  1.0672161 

 

Recall that to convert model coefficient values to odds ratios, the coefficient must be 

exponentiated. The same is the case for the confidence intervals of an odds ratio.  Below are the 

odds ratios and both types of confidence intervals for the titanicgrp data.  
 

ODDS RATIO 
> exp(coef(mymodel)) 

  (Intercept)         white           hmo factor(type)2 factor(type)3  

    0.3360218     1.4278500     1.0487290     1.4044229     1.9044888  

 

ODDS RATIO PROFILE CONFIDENCE INTERVALS 
> exp(confint(mymodel)) 

Waiting for profiling to be done... 

                  2.5 %    97.5 % 

(Intercept)   0.2220536 0.4977977 

white         0.9598192 2.1666852     <= includes 1 

hmo           0.7785937 1.4044462     <= includes 1 

factor(type)2 1.0610909 1.8535556 

factor(type)3 1.2444526 2.9067227 
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ODDS RATIO MODEL CONFIDENCE INTERVALS 
> exp(confint.default(mymodel)) 

                  2.5 %    97.5 % 

(Intercept)   0.2246844 0.5025301 

white         0.9514323 2.1428278 

hmo           0.7811091 1.4080397 

factor(type)2 1.0628658 1.8557408 

factor(type)3 1.2475869 2.9072746 

 

Compare the model output, including model confidence intervals for odds ratios with Stata 

output. They are numerically identical. Note that I use the nohead option with Stata's glm 

command so that only the table of estimates is displayed. The eform option is given to produce a 

table of odds ratios and associated statistics. nolog inhibits a display of the iteration log. 
 

. glm died white hmo i.type, fam(bin) nolog nohead eform 

 

---------------------------------------------------------------------------------- 

                 |                 OIM 

            died | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

           white |    1.42785   .2957429     1.72   0.086      .951432    2.142828 

             hmo |   1.048729   .1576437     0.32   0.752     .7811091     1.40804 

                 | 

            type | 

   Urgent Admit  |   1.404423   .1996736     2.39   0.017     1.062866    1.855741 

Emergency Admit  |   1.904489   .4110297     2.98   0.003     1.247587    2.907275 

                 | 

           _cons |   .3360218   .0690023    -5.31   0.000     .2246843    .5025302 

---------------------------------------------------------------------------------- 

 

To re-iterate, odds ratios and their confidence intervals are obtained by exponentiation of the 

model coefficients and their standard errors. Profile confidence intervals of odds ratios are 

obtained the same way.  However, the standard errors of odds ratios are not obtained by 

exponentiation of the model standard errors. Rather, statisticians use what is called the delta 

method for calculating the standard errors of odds ratios. In the case of logistic regression it is 

simple, and involves multiplying the model standard errors by the associated odds ratios.  In R 

you must do this by hand; there is no built-in method using glm to display a table of odds ratios, 

its standard error, and other related statistics. The standard errors of the mymodel odds ratios  

may be calculated using the delta method as, 
 

> OR <- exp(coef(mymodel))                  # vector of model odds ratios 

> stderr <- sqrt(diag(vcov(mymodel)))       # model SEs 

> #  stderr <- coef(summary(mymodel))[,2]     alternative calculation of SEs 

> ORsea <- OR*stderr 

> ORsea 

  (Intercept)         white           hmo factor(type)2 factor(type)3  

   0.06900222    0.29574271    0.15764369    0.19967359    0.41102971 

 

The above values are identical with the standard errors of the Stata odds ratios.  

     The data may have more correlation in it than is allowed under the assumptions of the 

binomial probability function. Probability functions assume that each observation is independent 

of all other observations.  Given that patients come from difference providers (hospitals), it may 

be the case that the relationship of death to type of admission, as well as race and insurance 

status may be more similar within providers than between providers. When this is the case, the 
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data may be correlated, and the standard error biased. When this happens a predictor may appear 

to significantly contribute to model when it in fact does not. We need to check for this situation. 

    A standard way to both test, and adjust for, extra correlation in the data is to scale the standard 

errors by the Pearson dispersion statistic. The dispersion is the Pearson statistic divided by the 

residual degrees of freedom.  The residual degrees of  freedom is the number of observations in 

the model less predictors, including the intercept. Scaling involves multiplying the model 

standard errors by the square root of the dispersion.  

    The Pearson dispersion is not given in glm output; you need to calculate it. The Pearson 

statistic is such an important statistic in dealing with this class of models that this is a real fault 

with the software. In any case, we may calculate the Pearson statistic (PR), the dispersion 

statistic (disp), model standard errors (stderr), and scaled standard errors (scalese) using the 

following code.  
 

> PR <- resid(mymodel, type = "pearson") 

> N <- nrow(medpar) 

> P <- length(coef(mymodel)) 

> disp <- sum(PR^2) / (N - P) 

> stderr <- coef(summary(mymodel))[,2] 

> stderr 

  (Intercept)         white           hmo factor(type)2 factor(type)3  

    0.2053504     0.2071245     0.1503188     0.1421748     0.2158215 

> scalese <- stderr*sqrt(disp) 

> scalese 

  (Intercept)         white           hmo factor(type)2 factor(type)3  

    0.2056617     0.2074384     0.1505466     0.1423903     0.2161486 

 

The R model for a logistic regression with scaled standard errors is shown below. Compare the 

scaled standard errors we calculated by hand with the standard errors of the quasibinomial 

model. They are the same.  
 

> summary(scaledlogit <- glm(died ~ white + hmo + factor(type),  

+                                data=medpar, 

+                                family=quasibinomial)) 

 

Call: 

glm(formula = died ~ white + hmo + factor(type), family = quasibinomial,  

    data = medpar) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.1594  -0.8853  -0.8853   1.4795   1.6615   

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   -1.09058    0.20566  -5.303 1.31e-07 *** 

white          0.35617    0.20744   1.717  0.08619 .   

hmo            0.04758    0.15055   0.316  0.75202     

factor(type)2  0.33963    0.14239   2.385  0.01720 *   

factor(type)3  0.64421    0.21615   2.980  0.00293 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for quasibinomial family taken to be 1.003034) 
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    Null deviance: 1922.9  on 1494  degrees of freedom 

Residual deviance: 1907.9  on 1490  degrees of freedom 

AIC: NA 

 

Finally, another standard way of dealing with correlated data is by applying a robust or sandwich 

variance estimator to the model standard errors. That is, the standard errors are adjusted by a 

sandwich or robust estimator. Many statisticians, including myself, recommend that applying 

robust estimators for the standard errors should be the default manner of displaying model 

output.  If the data is not correlated, or otherwise biased, then the adjustment is extinguished and 

no difference exists between them.  

    In order to develop a model with robust standard errors the sandwich library must be installed 

and loaded. The model is then run as usual, followed by a line that converts model standard 

errors to sandwich errors.  
 

> library(sandwich) 

> summary(roblogit <- glm(died ~ white + hmo + factor(type),  

                               family=binomial,  

                               data=medpar)) 

> sqrt(diag(vcovHC(roblogit, type = "HC0"))) 

  (Intercept)         white           hmo factor(type)2 factor(type)3  

    0.2028963     0.2054485     0.1508660     0.1421628     0.2158494 
 

Note that software packages at times calculate sandwich standard errors using slightly different 

algorithms. For example, the robust or sandwich standard errors given for the above R model are 

close to those displayed in Stata output, with a digit difference occurring at the ten-thousand’s 

place - certainly nothing to be concerned with. SAS output differs slightly from both R and Stata.  
 

. glm died white hmo i.type, fam(bin) nolog vce(robust) 

 

---------------------------------------------------------------------------------- 

                 |               Robust 

            died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

           white |   .3561698   .2055172     1.73   0.083    -.0466366    .7589762 

             hmo |    .047579   .1509165     0.32   0.753    -.2482119    .3433699 

                 | 

            type | 

   Urgent Admit  |   .3396264   .1422104     2.39   0.017     .0608992    .6183537 

Emergency Admit  |   .6442136   .2159216     2.98   0.003     .2210151    1.067412 

                 | 

           _cons |  -1.090579   .2029642    -5.37   0.000    -1.488382   -.6927766 

---------------------------------------------------------------------------------- 

 

Again, white and hmo are seen to not contribute to the model. Because of this fact, if we exclude 

hmo, for instance, from the model, the other standard errors and their associated p-values remain 

very close to, or are very nearly the same, in value. And again, scaling or applying a robust 

estimator to the standard errors does not change the values of their associated coefficients, or 

odds ratios.  
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PREDICTION  
 

The linear predictor is obtained using the post-estimation predict function. It is defined as  

 

                     

 

   

                 

 

where x'β is the matrix form of the statistic. The relationship of the linear predictor, η, or x'β, and 

the predicted probability, which is also called the fitted value, is: 

 

       
  

    
                 

  

   

                   

 

log(μ/(1-μ)) is referred to as the logistic link function, or logit function. μ is the fitted value, and 

is defined as the log of the odds ; i.e., μ /(1  μ). The inverse of this relationship is  

 

  
 

          
     

      

        
 

 

which is termed the logistic inverse link function. The linear predictor may be calculated for the 

above model as 

 
> eta <- predict(mymodel) 

> summary(eta) 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

-1.09100 -0.73440 -0.73440 -0.65550 -0.68680 -0.04262  

 

The fitted values, or probability that died==1, rests between 0 and 1. We may obtain them as 
 

> mu <- 1/(1+exp(-eta)) 

> summary(mu) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.2515  0.3242  0.3242  0.3431  0.3347  0.4893 

 

We may also obtain the fitted or predicted probability that died==1 by using the saved statistic 

fitted.value.  We may obtain the values using the code,   
 

fit <- mymodel$fitted.value 

summary(fit) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.2515  0.3242  0.3242  0.3431  0.3347  0.4893 

 

Note that the predicted probabilities are identical in value to the by-hand method used earlier.  

    The final major point to discuss is the confidence interval surrounding the fitted value, or 

probability. It cannot be obtained as simple as it is when dealing with a normal linear regression. 

For a logistic model we must accommodate the nonlinearity that is implicit in the model.        

  The key point to remember when calculating the standard error of the prediction is that it should 

initially be based on the linear predictor, or eta, and then converted to the probability scale. 
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Calculating the standard error of the linear predictor first will help establish their Gaussian form, 

which better carries through when the inverse logistic link function maps them from the  linear 

predictor scale to the probability or response scale. 

   I will demonstrate how to calculate the confidence intervals of µ (mu), the predicted 

probability that died==1,  using the mymodel object we estimated earlier. Recall that it was 

obtained using the following code.  

 
mymodel <- glm(died ~ white + hmo + factor(type), family=binomial, data=medpar) 

                                 

We next calculate the standard error of the linear predictor. We use the predict function with the 

type=”link” and se.fit=TRUE options to place the predictions on the scale of the linear 

predictor, and to guarantee that the lpred object is in fact the standard error of the linear 

prediction.   
 

lpred <- predict(mymodel, newdata=medpar, type="link", se.fit=TRUE) 

 

Now we calculate the confidence interval of the linear predictor. We use a 95% confidence 

interval, which is standard in for health care and social science research. We assume that both 

sides of the distribution are used in determining the confidence interval, which means that 0.025 

is taken from each tail of the distribution. In terms of the normal distribution,   we see that  

 
 > qnorm(0.975) ### 0.975 is the 2.5% upper tail, with the same from the lower tail  
[1] 1.959964 

 

up <- lpred$fit + (1.96 * lpred$se.fit) 

lo <- lpred$fit - (1.96 * lpred$se.fit) 

eta <- lpred$fit 

 

We may use the inverse logistic link function, to convert the above three statistics to the 

probability scale. We could also use the true inverse logit link function, exp(x)/(1+exp(x)) or 

1/(1+exp(-x)) , to convert these to the probability scale. It is easier to simply use the linkinv 

fcuntion. A summary of each is displayed based on the following code.  
 

upci <- mymodel$family$linkinv(up) 

mu <- mymodel$family$linkinv(eta) 

loci <- mymodel$family$linkinv(lo) 

summary(loci) 

summary(mu) 

summary(upci) 

 

> summary(loci) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.1796  0.2946  0.2946  0.2967  0.2946  0.3790  

> summary(mu) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.2515  0.3242  0.3242  0.3431  0.3347  0.4893  

> summary(upci) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.3345  0.3553  0.3553  0.3931  0.3975  0.6108 

 

To contrast R, Stata has an option to its predict command that specifically calculates the standard 

error of the prediction. We may obtain the same statistics using the Stata code below 

   
use medpar 

glm died hmo white i.type, family(bin) nolog 
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predict eta, xb                  // linear predictor; eta 

predict se_eta, stdp             // standard error of the prediction 

gen mu = exp(eta)/(1+exp(eta))   // or: predict mu 

gen low = eta - invnormal(0.975) * se_eta 

gen up  = eta + invnormal(0.975) * se_eta 

gen lci = exp(low)/(1+exp(low)) 

gen uci = exp(up)/(1+exp(up)) 

 

sum lci mu uci 

 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

         lci |      1495    .2966823    .0392547   .1796257   .3789932 

          mu |      1495    .3431438    .0478897   .2515092   .4893474 

         uci |      1495    .3930506    .0635593    .334456   .6107746 

  

A plot of the predicted probability on a continuous predictor such as “length of hospital stay”, or 

los, may be displayed together with the surrounding confidence interval.  Following the model,  
 
grlos <- glm(died ~ los, family=binomial, data=medpar) 

we may use the same code as above to calculate the predicted probability and confidence 

intervals. We need only change the name of mymodel to grlos; e.g.,  
 

lpred <- predict(grlos, newdata=medpar, type="link", se.fit=TRUE) 

 

The fit (mu) and confidence intervals are calculated as, 

 
> summary(loci) 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

0.004015 0.293000 0.328700 0.312900 0.350900 0.364900  

> summary(mu) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

0.01988 0.31910 0.35310 0.34310 0.38140 0.40320  

> summary(upci) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

0.09265 0.34640 0.37820 0.37540 0.41280 0.44260 

 

A simple R plot of the predicted probability of death for day in the hospital for patients in this 

data is displayed as: 
 

layout(1) 

plot(los, mu, col=1) 

lines(los, loci, col=2, type='p') 

lines(los,upci, col=3, type='p') 
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Using the Stata code 

 
     . scatter mu lci uci los 
 

produces the same simple figure.  

     A summary of the functions used in the above discussion can be found in the table below. 

You can paste them into your New Script editor, which is the second selection in the main Files 

menu. 

   Additional strategies and code for developing logistic regression functions independent of the 

glm may be found in Hilbe & Robinson (2013). Another very good way to learn about 

developing R code for generalized linear models (GLM) and generalized linear mixed models 

(GLMM) from both a traditional frequency-based and from a Bayesian perspective using JAGS, 

see Zuur, Hilbe, and Ieno (2013).  Note that modeling data using a logistic regression entails 

much more evaluation than presented here. I have only touched on the basics of model 

interpretation and prediction. I recommend Hilbe (2009) for a comprehensive analysis and 

guideline for all aspects of modeling this class of data. The book also discusses a number of 

extensions to the basic logistic model.  

 

R FUNCTIONS FOR BINARY LOGISTIC REGRESSION 
=========================================================== 

library(COUNT) 

data(medpar) 

attach(medpar) 

summary(mymodel <- glm(died ~ white + hmo + factor(type),  

                              data=medpar, 

                              family=binomial)) 

exp(coef(mymodel))              # display coefficients to odds ratio 

confint(mymodel)                # profile-based confidence intervals 

confint.default(mymodel)        # model-based confidence intervals 

 

# odds ratio CI 

exp(confint(mymodel))           # confidence intervals of odds ratios 

 

# odds ratio SE 

OR <- exp(coef(mymodel))                  # vector of model odds ratios 
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stderr <- sqrt(diag(vcov(mymodel)))       # model SEs 

#  stderr <- coef(summary(mymodel))[,2]     alternative calculation of SE 

ORse <- OR*stderr                         # SE of odds ratios 

ORse 

 

# scaled SEs 

PR <- resid(mymodel, type = "pearson")    # Pearson residuals 

N <- nrow(medpar)                         # observations in model 

P <- length(coef(mymodel))                # number of model predictors 

disp <- sum(PR^2) / (N - P)               # Pearson dispersion 

stderr <- coef(summary(mymodel))[,2]      # model SEs 

scalese <- stderr*sqrt(disp)              # scaled SEs 

scalese 

 

summary(scaledlogit <- glm(died ~ white + hmo + factor(type),  

                                  data=medpar, 

                                  family=quasibinomial)) 

 

# robust or sandwich SEs 

library(sandwich) 

summary(roblogit <- glm(died ~ white + hmo + factor(type),  

                               family=binomial,  

                               data=medpar)) 

sqrt(diag(vcovHC(roblogit, type = "HC0"))) 

 

# linear predictor, or logit 

summary(eta <- predict(mymodel)) 

 

# fitted value, or predicted probability that died==1 

fit <- mymodel$fitted.value 

summary(fit) 

 

# model of died on predictors, calc fit and its CI 

lpred <- predict(mymodel, newdata=medpar, type="link", se.fit=TRUE) 

up <- lpred$fit + (1.96 * lpred$se.fit) 

lo <- lpred$fit - (1.96 * lpred$se.fit) 

eta <- lpred$fit 

upci <- mymodel$family$linkinv(up) 

mu <- mymodel$family$linkinv(eta) 

loci <- mymodel$family$linkinv(lo) 

summary(loci) 

summary(mu) 

summary(upci) 

 
# model of died on los, predicting fit and CI of fit 

grlos <- glm(died ~ los, family=binomial, data=medpar)) 

lpred <- predict(grlos, newdata=medpar, type="link", se.fit=TRUE) 

up <- lpred$fit + (1.96 * lpred$se.fit) 

lo <- lpred$fit - (1.96 * lpred$se.fit) 

eta <- lpred$fit 

upci <- grlos$family$linkinv(up) 

mu <- grlos$family$linkinv(eta) 

loci <- grlos$family$linkinv(lo) 

summary(loci) 

summary(mu) 

summary(upci) 

 

# simple plot of predicted probability of died, and its CI 

layout(1) 

plot(los, mu, col=1) 

lines(los, loci, col=2, type='p') 

lines(los,upci, col=3, type='p') 

=============================================================== 
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