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Modeling overdispersed binomial data can be developed by assuming that the binomial mean 

parameter is itself beta distributed. That is, we provide a prior beta distribution to μ, the logistic 

model probability of success (1). The beta distribution, unlike the binomial, is a doubly bounded 

two parameter distribution. This second parameter is employed in the model to adjust for any 

extra-binomial correlation found in the data. The two-parameter model, which is based on a 

mixture of beta and binomial distributions, is known as beta-binomial regression. 

    The binomial distribution below is expressed in terms of parameter μ. This is standard when 

the binomial distribution is being modeled as a generalized linear model (GLM), otherwise the 

parameter is typically symbolized as π. Since I will use the glm functions in Stata and R when 

modeling the binomial component of the beta binomial, we shall employ μ in place of π.  
 

BINOMIAL PDF 

          
 
             

                                                                                  (1) 

The  
 
   choose function is the binomial coefficient, which is the normalization term of the 

binomial probability distribution function (PDF). It guarantees that the function sums to 1.0. This 

form of the function may also be expressed in terms of factorials,  
 

 
 
    

  

        
 

                                                                                                                                                     (2) 

which is easily recognized from basic algebra as a combination. Both terms can be interpreted as 

describing the number of ways that y successes can be distributed among n trials, or 

observations. Note though that the mean parameter, μ, is not a term in the coefficient,  

  Factorials may also be calculated in terms of factorial or gamma functions. In Stata the 

appropriate functions to use for calculating factorials are the log-factorial and log-gamma 

functions. For example, factorial 5 is 120; ie 1*2*3*4*5. We must exponentiate the natural log in 

both cases to obtain a factorial. In the case of the gamma function, 1 must be added to the 

number being factorialized. For example: 
 

. di exp(lnfactorial(5)) 

120 
 

. di exp(lngamma(5+1)) 

120 
 

Using the Greek symbol Γ for a gamma function, Γ(), the binomial normalization term from (2) 

above may be expressed as: 
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The log-likelihood function for the binomial model can then be expressed as: 

 

                                                           

                                                                                                                                                       (4) 

   The beta distribution is used as the basis of modeling proportional data. That is, beta data is 

constrained between 0 and 1 - and can be thought of in this context as the proportion obtained by 

dividing the binomial numerator by the denominator. The Beta PDF is given below in terms of 

two shape parameters, a and b, although there are a number of different parameterizations.  
 

BETA PDF 
  

         
      

        
              

                                                                                   (5)                                                    

where a is the number of successes and b the number of failures.  The initial term in the function 

is the normalization constant, comprised of gamma functions.  

   The above function can also be parameterized in terms of μ. Since we plan on having the 

binomial parameter, μ, itself distributed as beta, we can parameterize the beta PDF as  
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Notice that the kernal of the beta distribution is similar to that of the binomial kernal. 

 

                           

                                                                                                                                                      (7) 

Even the coefficients of the beta and binomial are similar in structure. In probability theory such 

a relationship is termed conjugate. The beta distribution is conjugate to the binomial. This is a 

very useful property when mixing distributions, since it generally allows for easier estimation. 

Conjugacy plays a particularly important role in Bayesian modeling where a prior conjugate 

(beta) distribution of a model coefficient, which is considered to be a random variable, is mixed 

with the (binomial) likelihood to form a (beta-binomial) posterior distribution.       

     The mean and variance of the beta PDF may be given as: 
 

                                           
 

   
            

  

             
 

                                                                                 (8,9)                                                                             

As mentioned before, the beta binomial distribution is a mixture of the binomial and beta 

distributions. The binomial parameter, μ, is distributed as beta, which adjusts for extra-binomial 

correlation in the data. Such overdispersion can be due to clustering effects; ie. that various sets 

of observations in the data are more similar to one another than than they are to other sets in the 

data, or to the data as whole. Overdispersion may also be due to proneness in the data, excessive 

zero counts in the binomial numerator, needed additional predictors, or a number of other 

reasons. In any case, the mixture can be obtained by multiplying the two distributions.  
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The result is the beta-binomial probability function.  

 

BETA BINOMIAL  
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The kernel of the distribution may also be expressed in terms of gamma functions, but this is not 

useful when developing a statistical model. I provide it here since it is many times found in beta 

binomial literature, particularly in Bayesian statistics. 
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The beta binomial mean and variance are 

 

                                                  
  

   
            

          

             
 

                                                                                                                                                                                                            (13.14) 

An alternative parameterization may be given in terms of μ and σ, with μ=a/(a+b). 
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wiih y=0,1,2,...n,  and 0<μ<1, and σ>0. 

     Under this parameterization, the mean and variance of the beta binomial are: 
 

                                                          
 

   
       

                                                                                                                                                                                               (16,17) 

This is the parameterization that is used in the Stata betabin command (Hardin & Hilbe, 2013) 

and in R's gamlss function (Rigby & Stasinopoulos, 2005) 

 

EXAMPLES 
 

To begin we shall use a beta model to estimate the parameters of proportional data. The beta 

model is appropriate when the variable to be modeled has values between 0 and 1, representing 

the proportion of successes for a specific covariate pattern or counts per time period or area.  

     We shall use the grouped Titanic disaster data for an example of a beta regression. However, 

we must divide the number of passengers who survived the wreck by the number of passengers 

having the same pattern of covariates. For the data below, there was only one passenger who was 

a first class female child - and she survived. 14 passengers survived of the 31 female children 3rd 

class passengers. The data is stored in the titanixgrp file 
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R: Modeling beta regression 
========================================= 
library(Hmisc); library(foreign) 

titanic <- read.dta("c://ado/titanicgrp.dta") 

titanic ; attach(titanic) ; table(class) 

y <- survive/cases            # create y as the proportion 

cbind(y,survive,cases)        # list of y an binomial variables 

y[y==1] <- .9999              # replace .9999 for 1's in y    

class03 <- factor(titanic$class,  

     levels=c("3rd class", "2nd class", "1st class")) # change reference 

library(betareg)              # use of betareg model 

summary(mymod <- betareg(y ~ age + sex + class03, data=titanic)) 

library(gamlss)               # use of gamlss model 

summary(mybeta <- gamlss(y ~ age + sex + class03, data=titanic,  

          sigma.fo=~1, family=BEOI, method=RS())) 

========================================= 
 

. use titanicgrp,clear 

. l 

     +----------------------------------------------+ 

     | survive   cases      age     sex       class | 

     |----------------------------------------------| 

  1. |       1       1    child   women   1st class | 

  2. |      13      13    child   women   2nd class | 

  3. |      14      31    child   women   3rd class | 

  4. |       5       5    child     man   1st class | 

  5. |      11      11    child     man   2nd class | 

     |----------------------------------------------| 

  6. |      13      48    child     man   3rd class | 

  7. |     140     144   adults   women   1st class | 

  8. |      80      93   adults   women   2nd class | 

  9. |      76     165   adults   women   3rd class | 

 10. |      57     175   adults     man   1st class | 

     |----------------------------------------------| 

 11. |      14     168   adults     man   2nd class | 

 12. |      75     462   adults     man   3rd class | 

     +----------------------------------------------+ 

 

Using Stata we observe the data without labels,  
 

. list, nolab 

 

     +-------------------------------------+ 

     | survive   cases   age   sex   class | 

     |-------------------------------------| 

  1. |       1       1     0     0       1 | 

  2. |      13      13     0     0       2 | 

  3. |      14      31     0     0       3 | 

  4. |       5       5     0     1       1 | 

  5. |      11      11     0     1       2 | 

     |-------------------------------------| 

  6. |      13      48     0     1       3 | 

  7. |     140     144     1     0       1 | 

  8. |      80      93     1     0       2 | 

  9. |      76     165     1     0       3 | 

 10. |      57     175     1     1       1 | 

     |-------------------------------------| 

 11. |      14     168     1     1       2 | 

 12. |      75     462     1     1       3 | 

     +-------------------------------------+ 
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Since I would like to have third class passengers as the reference level for the categorical 

variable, class, we factor or level it to create separate dummy or indicator variables, each of 

which is formatted as 0,1.  
 

. tab class, gen(class) 

 

  passenger | 

  class:1-3 |      Freq.     Percent        Cum. 

------------+----------------------------------- 

  1st class |          4       33.33       33.33 

  2nd class |          4       33.33       66.67 

  3rd class |          4       33.33      100.00 

------------+----------------------------------- 

      Total |         12      100.00 

 

Now we can divide survive (the passengers who survived) by the number of observations sharing 

the identical covariate pattern (cases). Each observation in the Titanic data is a distinct covariate 

pattern. The result of the division, y, is a proportion - a division of the binomial numerator by its 

denominator.  
 

. gen y=survive/cases 

. list survive cases y 

 

     +----------------------------+ 

     | survive   cases          y | 

     |----------------------------| 

  1. |       1       1          1 | 

  2. |      13      13          1 | 

  3. |      14      31   .4516129 | 

  4. |       5       5          1 | 

  5. |      11      11          1 | 

     |----------------------------| 

  6. |      13      48   .2708333 | 

  7. |     140     144   .9722222 | 

  8. |      80      93   .8602151 | 

  9. |      76     165   .4606061 | 

 10. |      57     175   .3257143 | 

     |----------------------------| 

 11. |      14     168   .0833333 | 

 12. |      75     462   .1623377 | 

     +----------------------------+ 

 

We spot a problem. It could have been identified when comparing survive and cases, but there 

are 4 y's with a value of 1. The beta distribution requires that all response values are between 0 

and 1. The solution is to recode these values as 0.999. Then we can model the data. The Stata 

betafit command was created by Maartin Buis (Univ of Tuebingen), Nicholas Cox (Durham 

Univ) and Stephen Jenkins (London School of Economics and Political Science), and is provided 

on the book's web site. 
 

. replace y=.9999 if y==1 

 

. betafit y, mu(age sex class2 class1) nolog 

 

ML fit of beta (mu, phi)                          Number of obs   =         12 

                                                  Wald chi2(4)    =      13.34 

Log likelihood =  25.126578                       Prob > chi2     =     0.0097 
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------------------------------------------------------------------------------ 

           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |  -2.287329   .7299636    -3.13   0.002    -3.718032   -.8566269 

         sex |  -1.203256   .6961577    -1.73   0.084      -2.5677    .1611883 

      class2 |   2.204885   .8739525     2.52   0.012     .4919693      3.9178 

      class1 |   2.662907    .943594     2.82   0.005     .8134968    4.512317 

       _cons |   1.094288   .8183261     1.34   0.181    -.5096019    2.698178 

-------------+---------------------------------------------------------------- 

     /ln_phi |   1.108147   .4674121     2.37   0.018     .1920359    2.024258 

-------------+---------------------------------------------------------------- 

         phi |   3.028741    1.41567                      1.211714     7.57049 

------------------------------------------------------------------------------ 

 

The R output using the betareg function provides the same result as Stata.  

 
> mymod <- betareg(y ~ age + sex + class03, data=titanic) 

> summary(mymod) 

 

Coefficients (mean model with logit link): 

                 Estimate Std. Error z value Pr(>|z|)     

(Intercept)        1.0943     0.6576   1.664 0.096122 .   

ageadults         -2.2873     0.6503  -3.517 0.000436 *** 

sexman            -1.2032     0.5997  -2.006 0.044813 *   

class032nd class   2.2049     0.7711   2.859 0.004246 **  

class031st class   2.6629     0.7921   3.362 0.000774 *** 

 

Phi coefficients (precision model with identity link): 

      Estimate Std. Error z value Pr(>|z|)   

(phi)    3.029      1.318   2.299   0.0215 * 

 

Type of estimator: ML (maximum likelihood) 

Log-likelihood: 25.13 on 6 Df 

Pseudo R-squared: 0.7598 

 

Using the gamlss package (Rigby and Stasinopoulos, 2005) we can duplicate the results of Stata 

and betareg, acknowledging that rounding errors give us slightly different - but statistically 

identical - output.  

 
> summary(mybeta) 

******************************************************************* 

Family:  c("BEOI", "One Inflated Beta")  

 

Call:  gamlss(formula = y ~ age + sex + class03, sigma.formula = ~1,   

    family = BEOI, data = titanic, method = RS())  

 

Fitting method: RS()  

------------------------------------------------------------------- 

Mu link function:  logit 

Mu Coefficients: 

                  Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)          1.090      0.8178    1.332   0.24023 

ageadults           -2.275      0.7296   -3.118   0.02631 

sexman              -1.190      0.6960   -1.709   0.14808 

class032nd class     2.194      0.8731    2.513   0.05366 

class031st class     2.647      0.9426    2.808   0.03762 
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------------------------------------------------------------------- 

Sigma link function:  log 

Sigma Coefficients: 

  Estimate  Std. Error     t value    Pr(>|t|)   

   1.10111     0.46787     2.35347     0.06528   

 

------------------------------------------------------------------- 

Nu link function:  logit  

Nu Coefficients: 

  Estimate  Std. Error     t value    Pr(>|t|)   

-1.843e+01   2.899e+03  -6.359e-03   9.952e-01   

 

------------------------------------------------------------------- 

No. of observations in the fit:  12  

Degrees of Freedom for the fit:  7 

      Residual Deg. of Freedom:  5  

                      at cycle:  8  

  

Global Deviance:     -50.25368  

            AIC:     -36.25368  

            SBC:     -32.85933 

 

Note that the gamlss dispersion parameter value of 1.10111 is statistically the same as betareg 

and betafit output. The estimate is given in log form. Exponentiating 1.10111 produces a value of 

3.01 

   The greater the value of the proportion the more likely a passenger is a female child, and the 

more likely they are of a superior passenger class. This information is not particularly helpful for 

understanding criteria of survival in this case, although there are data situations for which  beta 

model make good sense. If we only have proportional data the beta model may be the only 

regression model we can use.  

    Prior to concluding our look at beta models, we should determine the extent of extra 

correlation in the data by employing a robust or sandwich variances adjustment, which results in 

the output below. Note that the adjustment does little to the values of the standard errors. The p-

values (Wald statistics) are therefore nearly the same.  
 

. betafit y, mu(age sex class2 class1) nolog vce(robust) 

 

------------------------------------------------------------------------------ 

             |               Robust 

           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |  -2.287329   .6682538    -3.42   0.001    -3.597083   -.9775758 

         sex |  -1.203256   .6802613    -1.77   0.077    -2.536543    .1300319 

      class2 |   2.204885   .9155048     2.41   0.016     .4105283    3.999241 

      class1 |   2.662907   .9157482     2.91   0.004     .8680736     4.45774 

       _cons |   1.094288   .9632493     1.14   0.256     -.793646    2.982222 

-------------+---------------------------------------------------------------- 

     /ln_phi |   1.108147   .2682577     4.13   0.000     .5823714    1.633922 

-------------+---------------------------------------------------------------- 

         phi |   3.028741    .812483                      1.790279    5.123933 

------------------------------------------------------------------------------ 

 

Robust variance and scaling do not work well with betareg and gamlss. Since beta regression is 

itself not our foremost concern in this monograph, I'll pass on additional discussion.  
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Before considering the use of  a beta binomial model on grouped binomial data it is necessary to 

determine if the binomial data is overdispersed. In particular, we shall model the Titanic data 

using a grouped logistic model to determine if the data is overdispersed. If it is, we cannot in 

general trust the coefficients or standard errors of the resulting model. Other links can be used, 

and we can adjust the standard errors to account for the excess variability. We'll look at these 

alternatives first.   

    We model the data using a grouped logistic model. The glm command provides accurate 

estimates. R's glm function is also the function of choice for grouped logistic models. The eform 

option provides odds ratios to be displayed, and nolog depresses a print out of the iteration log 

that is by default displayed when a model is estimated.  

 

R  Logistic regression models 
========================================================== 
died <- cases - survive  

summary(jhlogit <- glm(cbind(survive,died) ~ age + sex + class03,  

                   data=titanic, family=binomial)) 

exp(coef(jhlogit))    # Odds ratios 

library(COUNT) 

modelfit(jhlogit)     # same as Stata abic command 

summary(sclogit <- glm(cbind(survive,died) ~ age + sex + class03,  

        data=titanic, family=quasibinomial))    # scaled SEs 

OR <- exp(coef(sclogit)); OR  

library(sandwich) 

rse <- sqrt(diag(vcovHC(jhlogit, type = "HC0"))) # robust SEs 

ORrse <- OR*rse; ORrse     # robust SE for odds ratios 

========================================================== 
 

. glm survive age sex class2 class1, fam(bin cases)eform nolog 

 

Generalized linear models                          No. of obs      =        12 

Optimization     : ML                              Residual df     =         7 

                                                   Scale parameter =         1 

Deviance         =  110.8437538                    (1/df) Deviance =  15.83482 

Pearson          =  100.8828206                    (1/df) Pearson  =  14.41183 <= 

 

Variance function: V(u) = u*(1-u/cases)            [Binomial] 

Link function    : g(u) = ln(u/(cases-u))          [Logit] 

 

                                                   AIC             =  13.14728 

Log likelihood   = -73.88365169                    BIC             =  93.44941 

------------------------------------------------------------------------------ 

             |                 OIM 

     survive | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   .3479809   .0844397    -4.35   0.000     .2162749    .5598924 

         sex |   .0935308   .0135855   -16.31   0.000     .0703585    .1243347 

      class2 |   2.129343   .3731801     4.31   0.000     1.510315    3.002091 

      class1 |    5.84959   .9986265    10.35   0.000     4.186109    8.174107 

       _cons |   3.652859   .9053449     5.23   0.000     2.247327    5.937442 

------------------------------------------------------------------------------ 

 

. abic 

 

AIC Statistic   =   13.14727           AIC*n      = 157.7673 

BIC Statistic   =   13.65514           BIC(Stata) = 160.19183 
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The dispersion statistic has a value of 14.4, indicating extensive overdispersion. An equi-

dispersed model -- one meeting the distributional assumptions of the model -- would have a 

dispersion statistic of approximately 1.0.  The AIC statistic is 157.77, which we can later 

compare with a model of the data using beta binomial regression.  

   Note that the p-values appear to indicate that all of the predictors are significant contributors to 

understanding the response; ie predictors for survival. As we have shown earlier though, we need 

to at first scale the standard errors by the dispersion to determine the extent of the extra-binomial 

correlation in the data.  The R quasi-binomial family provides the same results. The nohead  

option suppresses a display of  header statistics, which are identical to the statistics above.  
 

 

. glm survive age sex class2 class1, fam(bin cases) nolog eform scale(x2) nohead 

 

------------------------------------------------------------------------------ 

             |                 OIM 

     survive | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   .3479809   .3205576    -1.15   0.252      .057205    2.116784 

         sex |   .0935308   .0515744    -4.30   0.000     .0317386    .2756263 

      class2 |   2.129343     1.4167     1.14   0.256     .5779923    7.844574 

      class1 |    5.84959   3.791078     2.73   0.006     1.642358     20.8345 

       _cons |   3.652859   3.436953     1.38   0.169     .5777532    23.09529 

------------------------------------------------------------------------------ 

(Standard errors scaled using square root of Pearson X2-based dispersion.) 

 

 

We find that age is no longer a significant predictor, nor is class2. this means that class1 and 

class2 are togther the reference level for class1. There is no statistical difference in 2nd and 3rd 

classs passengers with respect to survival. First class passengers, however, have nearly 6 times 

greater odds of survival than 3rd class passengers -- as well as 2nd and 3rd class passengers 

together.  It appears from the output that first class females survived the Titanic accident 

significantly higher than other passengers. We know from independent sources that this is indeed 

what happened.  

   To confirm what we found using scaled standard errors, we'll employ a robust variance 

adjustment to the standard errors. 
 

. glm survive age sex class2 class1, fam(bin cases) nolog eform vce(robust) nohead 

 

------------------------------------------------------------------------------ 

             |               Robust 

     survive | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   .3479809   .2592807    -1.42   0.157     .0807839    1.498946 

         sex |   .0935308   .0461042    -4.81   0.000     .0355935     .245775 

      class2 |   2.129343   1.320289     1.22   0.223     .6316292    7.178426 

      class1 |    5.84959   3.189964     3.24   0.001     2.008809    17.03383 

       _cons |   3.652859   2.905024     1.63   0.103     .7685894    17.36087 

------------------------------------------------------------------------------ 

 

The results are consistent with the "quasibinomial" or scaled model. We can be sure that based 

on a logistic regression model, age and class2 are not significant contributors to an 

understanding of survival. It appears that female 1st class passengers had a significantly greater 

survival odds than did other passenger. Age was not a determinant.  
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BETA BINOMIAL 
 

We use the betabin command from Hardin and Hilbe (2013).  The command is a two parameter 

model with the scale parameter, sigma, serving as dispersion parameter, adjusting the model for 

any extra-binomial correlation. The origin of the model was outlined earlier in this section.  
 

R  Beta binomial 
==================================================== 
summary(mybb <- gamlss(cbind(survive,died) ~ age + sex + class03,  

            data=titanic, family=BB)) 

exp(coef(mybb)) 

====================================== 

 

. betabin survive age sex class2 class1, n(cases) nolog eform 

 

Beta-binomial regression                          Number of obs   =         12 

Link           = logit                            LR chi2(4)      =      14.46 

Dispersion     = beta-binomial                    Prob > chi2     =     0.0129 

Log likelihood = -36.901181                       Pseudo R2       =     0.1639 

------------------------------------------------------------------------------ 

     survive |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   .1093592   .0862822    -2.81   0.005     .0232957    .5133763 

         sex |   .1123649    .085515    -2.87   0.004     .0252829    .4993845 

      class2 |   7.608313   5.994373     2.58   0.010     1.624243    35.63903 

      class1 |   15.94947   13.97772     3.16   0.002     2.862691    88.86238 

       _cons |   4.504546   3.740425     1.81   0.070     .8847928    22.93298 

-------------+---------------------------------------------------------------- 

    /lnsigma |  -1.791043   .6072598                      -2.98125   -.6008352 

-------------+---------------------------------------------------------------- 

       sigma |   .1667862   .1012825                      .0507294    .5483534 

------------------------------------------------------------------------------ 

Likelihood-ratio test of sigma=0:  chibar2(01) =   73.96 Prob>=chibar2 = 0.000 

 

. abic 

AIC Statistic   =   7.150197           AIC*n      = 85.802361 

BIC Statistic   =   7.941956           BIC(Stata) = 88.7118 

 

R output using gamlss is given as displayed below. Note again that there is a slight difference in 

estimates. Note that the estimate for sigma is statistically the same as what is displayed in the 

Stata output for the log of sigma, /lnsigma. Sigma is the dispersion parameter, and can itself be 

parameterized, having predictors like the mean or location parameter, mu. The dispersion 

estimates inform the analyst which predictors significantly influence the extra correlation in the 

data, therefore influencing the value of sigma. In this form below it is only the intercept of sigma 

that is displayed. In this respect, the beta binomial is analagous to the heterogeneous negative 

binomial count model (Hilbe, 2011, 2014), and the binomial logistic regression function is a 

analagous to Poisson model.  

 
> summary(mybb) 

                  Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)          1.498      0.6814    2.199  0.063855 

ageadults           -2.202      0.8205   -2.684  0.031375 

sexman              -2.177      0.6137   -3.547  0.009377 

class032nd class     2.018      0.8222    2.455  0.043800 

class031st class     2.760      0.8558    3.225  0.014547 
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------------------------------------------------------------------- 

Sigma link function:  log 

Sigma Coefficients: 

             Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)    -1.801      0.7508   -2.399   0.03528 

 

------------------------------------------------------------------- 

 

> exp(coef(mybb)) 

     (Intercept)        ageadults           sexman class032nd class  

       4.4738797        0.1105858        0.1133972        7.5253615  

class031st class  

      15.8044343 

 

The dispersion parameter is significant in that its confidence interval does not include one (1).. 

Moreover, the AIC and BIC statistics are substantially lower than the binomial logistic model,. 

85.8 and 88.7 respectively to the logistic model values of 157.7 and 160.2.  The Beta binomial 

model is preferred to the single parameter logistic model. However, extra correlation still needs 

to be checked and adjusted. A robust or sandwich variance adjustment is applied to the model.  
 

. betabin survive age sex class2 class1, n(cases) nolog eform vce(robust) 

 

Beta-binomial regression                          Number of obs   =         12 

Link           = logit 

Dispersion     = beta-binomial                    Wald chi2(4)    =      17.01 

Log likelihood = -36.901181                       Prob > chi2     =     0.0019 

------------------------------------------------------------------------------ 

             |               Robust 

     survive |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   .1093592   .1220964    -1.98   0.047     .0122607    .9754317 

         sex |   .1123649   .1235181    -1.99   0.047     .0130299    .9689943 

      class2 |   7.608313   6.195038     2.49   0.013     1.542414    37.52976 

      class1 |   15.94947   12.42715     3.55   0.000     3.463588    73.44568 

       _cons |   4.504546   6.227455     1.09   0.276     .2998333    67.67405 

-------------+---------------------------------------------------------------- 

    /lnsigma |  -1.791043   .6542925                     -3.073432   -.5086528 

-------------+---------------------------------------------------------------- 

       sigma |   .1667862    .109127                      .0462621    .6013051 

------------------------------------------------------------------------------ 

Likelihood-ratio test of sigma=0:  chibar2(01) =   73.96 Prob>=chibar2 = 0.000 

 

Note that even after applying a robust variance adjustment, all of the main effect predictors are 

significant. In addition, the likelihood ratio test of the value of sigma shows us that the beta 

binomial model is preferred to the logistic model. We should check for an interactive effect 

between age and sex, and between both age and sex and class1. I shall leave that as an exercise 

for the reader. It appears, though, from looking at the main effects, only that 1st class female 

children stood the best chance of survival on the Titanic,  
 

Zero-Inflated binomial  
 

At times, even grouped data consists of more observations having a no successes for given 

covariates than acceptable based on model assumptions. Data having excessive zero values for 

the response are commonly referred to as zero-inflated models. Most zero-inflated models are 

count models, but grouped binomial models are also subject to having excess zeros. For a 
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complete analysis of zero-inflation for count models, see Hilbe, (2011) or Hilbe (2014). For a 

discussion of beta binomial  

 

                                              

                                                                                                                                     

           
                 

        
                   

                                                                                                                                              (18) 

where 0<μ<1  and 0<σ<1.  The mean and variance or Y are given as: 

 

                                                                           
                                                                                                                                               (19) 

  I use the titanicgrp0 data set, which is nearly the same as titanicgrp, except that four of the 

observations have zero successes rather than what they had in titanicgrp..  
 

R Zero inflated Binomial 
========================================================== 
library(Hmisc); library(foreign) 

titanic0 <- read.dta("c://ado/titanicgrp0.dta") 

attach(titanic0); head(titanic0) 

class03 <- factor(titanic0$class,  

     levels=c("3rd class", "2nd class", "1st class")) # change reference 

summary(mylogit <- glm(cbind(survive,died) ~ age + sex + class03,  

            data=titanic0, family=binomial)) 

summary(mybb <- gamlss(cbind(survive,died) ~ age + sex + class03,  

            data=titanic0, family=BB)) 

summary(binBI0 <- gamlss(cbind(survive,died) ~ age + sex + class03,  

                       nu.fo =~ age + sex,  

                       data=titanic0, family=ZIBI)) 

exp(coef(binBI0)) 

summary(binBB0 <- gamlss(cbind(survive,died) ~ age + sex + class03,  

                       nu.fo =~ age + sex,  

                       data=titanic0, family=ZIBI)) 

exp(coef(binBB0)) 

# EXTRA: zero-inflated beta 

y <- survive/cases            # create y as the proportion 

cbind(y,survive,cases)        # list of y an binomial variables 

y[y==0] <- .0001              # replace .0001 for 0's in y    

summary(beta0 <- gamlss(y ~ age + sex + class03, data=titanic0,  

          sigma.fo=~1, family=BEOI, method=RS())) 

========================================================== 
 

. titanicgrp0 

 

. l survive-class, nolab 

 

     +-------------------------------------+ 

     | survive   cases   age   sex   class | 

     |-------------------------------------| 

  1. |       0       1     0     0       1 | 

  2. |       0      13     0     0       2 | 

  3. |      14      31     0     0       3 | 

  4. |       0       5     0     1       1 | 

  5. |       0      11     0     1       2 | 
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     |-------------------------------------| 

  6. |       0      48     0     1       3 | 

  7. |     140     144     1     0       1 | 

  8. |      80      93     1     0       2 | 

  9. |      76     165     1     0       3 | 

 10. |      57     175     1     1       1 | 

     |-------------------------------------| 

 11. |      14     168     1     1       2 | 

 12. |      75     462     1     1       3 | 

     +-------------------------------------+ 

 

Model the data as a standard logistic regression, without concern for the excess zero response 

values.  The model standard errors have been adjusted by robust variance estimates. Recall that 

the model without zero responses was highly overdispersed; we therefore employ robust variance 

adjustment.  
 

. glm survive age sex class2 class1, fam(bin cases) eform nolog vce(robust) 

 

Generalized linear models                          No. of obs      =        12 

Optimization     : ML                              Residual df     =         7 

                                                   Scale parameter =         1 

Deviance         =  86.69204634                    (1/df) Deviance =  12.38458 

Pearson          =  77.51997519                    (1/df) Pearson  =  11.07428 <= 

 

Variance function: V(u) = u*(1-u/cases)            [Binomial] 

Link function    : g(u) = ln(u/(cases-u))          [Logit] 

 

                                                   AIC             =  10.79288 

Log pseudolikelihood = -59.75725742                BIC             =   69.2977 

------------------------------------------------------------------------------ 

             |               Robust 

     survive | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   5.379405   4.653434     1.95   0.052      .987201    29.31318 

         sex |   .0741401   .0409807    -4.71   0.000     .0250931    .2190545 

      class2 |   1.355005   .8377221     0.49   0.623     .4033586    4.551873 

      class1 |   4.897728   2.556782     3.04   0.002     1.760509    13.62546 

       _cons |   .3189983   .2577471    -1.41   0.157     .0654677    1.554354 

------------------------------------------------------------------------------ 

 

. abic 

AIC Statistic   =   10.79288           AIC*n      = 129.51451 

BIC Statistic   =   11.30074           BIC(Stata) = 131.93904 

 

The zero-inflated binomial model has exponentiated coefficients that are close to the logistic 

model, except for age, which is not significant.  
 

. zib survive age sex class2 class1, n(cases) eform nolog vce(robust) inflate(age sex 

class2 class1) 

 

Zero-inflated binomial regression                 Number of obs   =         12 

Regression link: logit                            Nonzero obs     =          7 

Inflation link : logit                            Zero obs        =          5 

                                                  LR chi2(4)      =     456.01 

Log pseudolikelihood =  -48.4482                  Prob > chi2     =     0.0000 

------------------------------------------------------------------------------ 

             |               Robust 

     survive |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

survive      | 

         age |   1.910453   1.032149     1.20   0.231     .6626171    5.508204 
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         sex |   .0773431   .0427009    -4.64   0.000     .0262105    .2282275 

      class2 |   1.602383    1.03357     0.73   0.465     .4526093     5.67295 

      class1 |   5.281635   2.930272     3.00   0.003     1.780403    15.66817 

       _cons |   .8235294   6.93e-11 -2.3e+09   0.000     .8235294    .8235294 

-------------+---------------------------------------------------------------- 

inflate      | 

         age |  -74.92587   1.798567   -41.66   0.000      -78.451   -71.40074 

         sex |   36.61934   1.479621    24.75   0.000     33.71933    39.51934 

      class2 |   37.67849   1.380459    27.29   0.000     34.97284    40.38414 

      class1 |   37.85468   1.404743    26.95   0.000     35.10144    40.60793 

       _cons |  -18.51198   1.044466   -17.72   0.000     -20.5591   -16.46487 

------------------------------------------------------------------------------ 

 

. abic 

AIC Statistic   =   9.741367           AIC*n      = 116.89641 

BIC Statistic   =   11.91234           BIC(Stata) = 121.74547 

 

The AIC value drops from 129.5 to 116.9, a substantial reduction. The BIC drop a little over 10 

points, which is also considered to be substantial. Inflated values inform us that all of the 

predictors significantly influence zero survival values. The zero-inflated binomial model appears 

to fit the data better than standard grouped logistic regression.  

   In order to display a Vuong test in Stata, standard errors cannot be adjusted. We drop the 

vce(robust) option and rerun the model. Model standard errors are displayed, as is the Vuong test 

results. For space purposes only the Vuong test results are shown.  
 

. zib survive age sex class2 class1, n(cases) eform nolog inflate(age sex class2 

class1) vuong 

 

Vuong test of zib vs. standard binomial:          z =     1.85   Pr>z = 0.0322 

 

The zero-inflated binomial fits the data better than does the logistic model, which we had earlier 

concluded. The Vuong test reconfirms our finding.   
 

 

Zero-Inflated beta binomial  
 

The zero-inflated beta binomial PDF can be expressed as,  
 

                                        
 

                                                  
                                                                                  (20)                                                                   

where 0<μ<1, 0< <1,ν and σ>0 
 

The mean and variance can be defined as: 
 

                                            
 

   
                  

                                                                                 (21)                    

We shall compare results of the beta binomial and zero-inflated beta binomial models using the  

titanicgrp0 data,  
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. betabin survive age sex class2 class1, n(cases) eform nolog vce(robust) 

 

Beta-binomial regression                          Number of obs   =         12 

Link           = logit 

Dispersion     = beta-binomial                    Wald chi2(4)    =      51.53 

Log likelihood = -32.111548                       Prob > chi2     =     0.0000 

------------------------------------------------------------------------------ 

             |               Robust 

     survive |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   17.05713   23.53551     2.06   0.040     1.141338    254.9164 

         sex |   .0647876   .0453762    -3.91   0.000     .0164181    .2556582 

      class2 |    .856555   1.212357    -0.11   0.913     .0534535     13.7257 

      class1 |   2.932857   3.637627     0.87   0.386     .2579554     33.3455 

       _cons |   .1678694   .3710879    -0.81   0.420     .0022046    12.78251 

-------------+---------------------------------------------------------------- 

    /lnsigma |  -1.980238   .5428028                     -3.044112   -.9163638 

-------------+---------------------------------------------------------------- 

       sigma |   .1380364   .0749266                      .0476386    .3999708 

------------------------------------------------------------------------------ 

Likelihood-ratio test of sigma=0:  chibar2(01) =   55.29 Prob>=chibar2 = 0.000 

 

. abic 

AIC Statistic   =   6.351924           AIC*n      = 76.223099 

BIC Statistic   =   7.143684           BIC(Stata) = 79.132538 

 

The AIC and BIC statistics have substantially dropped. For the AIC statistic, the logistic model 

has an AIC of approximately 130, for the zero-inflated binomial (ZIB) it reduced to 117, and 

now for the beta binomial it is 76.22.  Next we model the zero-inflated beta binomial. 
 

 

. zibbin survive age sex class2 class1, n(cases) eform nolog vce(robust) inflate(age 

sex class2 class1) 

 

Zero-inflated beta-binomial regression            Number of obs   =         12 

Regression link: logit                            Nonzero obs     =          7 

Inflation link : logit                            Zero obs        =          5 

                                                  Wald chi2(4)    =      43.66 

Log pseudolikelihood =  -26.1544                  Prob > chi2     =     0.0000 

------------------------------------------------------------------------------ 

             |               Robust 

     survive |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

survive      | 

         age |   1.471143   .8602602     0.66   0.509     .4676376    4.628075 

         sex |   .0410867   .0348104    -3.77   0.000     .0078078    .2162096 

      class2 |   3.222762   3.011053     1.25   0.210     .5163495    20.11467 

      class1 |   11.52215   13.05589     2.16   0.031     1.250335    106.1795 

       _cons |   .8293798   .0037798   -41.05   0.000     .8220046    .8368212 

-------------+---------------------------------------------------------------- 

inflate      | 

         age |  -67.61926   1.806085   -37.44   0.000    -71.15913    -64.0794 

         sex |   32.54278   1.527725    21.30   0.000     29.54849    35.53706 

      class2 |   33.30773   1.392911    23.91   0.000     30.57767    36.03778 

      class1 |   33.15821   1.401135    23.67   0.000     30.41204    35.90439 

       _cons |  -16.08771   1.044466   -15.40   0.000    -18.13483   -14.04059 

-------------+---------------------------------------------------------------- 

    /lnsigma |  -3.300706   .6550799                     -4.584639   -2.016773 

-------------+---------------------------------------------------------------- 

       sigma |   .0368572   .0241444                      .0102074    .1330843 

------------------------------------------------------------------------------ 
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. abic 

AIC Statistic   =     6.1924           AIC*n      = 74.308807 

BIC Statistic   =   8.755208           BIC(Stata) = 79.642776 

 

The AIC drops from 76.2 to 74.3, and the BIC drops from 79.1 to 79.6. age and class2 are still 

the only non-significant predictors. The change in information statistics is not great, and 

indicates that the use of a zero-inflated beta binomial model may not be warranted. We drop the 

adjustment to the standard errors and remodel the data, calling for a Vuong test.  
 

. zibbin survive age sex class2 class1, n(cases) eform nolog inflate(age sex class2 

class1) vuong zib 

 

Vuong test of zibb vs. standard beta binomial:    z =     1.49   Pr>z = 0.0684 

 

Our suspicions appear to be correct. the Vuong test informs us that the standard beta binomial 

model is preferred for this data.  

  The beta binomial is an important model, and should be considered for all overdispersed 

logistic models. In addition, for binomial models with probit and complementary loglog links, 

the betabin and zibbin commands also have options for these models. We may therefore test to 

determine if the data is better modeled as a beta binomial with a complementary loglog link. 

Information criterion tests can be used to determine fit, as well as a goodness-of-link test.  

 

REFERENCES 

 

Hardin, J.W and J.W Hilbe (2012), Generalized Linear Model and Extensions, 3rd edition, Stata 

Press/Chapman & Hall/CRC 

 

Hardin, J.W .and J.M.Hilbe (2013), Estimation and Testing of Binomial and Beta Binomial 

Regression Models with and without Zero Inflation Stata Journal Vol- ,--<forthcoming> 

 

Hilbe, J.M (2011), Negative Binomial Regression, 2nd edition, Cambridge: Cambridge 

University Press 

 

Hilbe, J.M. (2014), Modeling Count Data, Cambridge:Cambridge University Press 

 

Hilbe, J.M and A.P Robinson (2012). COUNT package, CRAN 

 

Hilbe, JM and A.P Robinson (2013) msme package, CRAN,  

 

Rigby, B and M Stasinopoulos (2012), Gamlss package, 2nd edition, CRAN,  

 

Zuur, A.F, J.M Hilbe, and E.N Zuur (2013), A Beginner's Guide to GLM and GLMM with R: A 

frequentist and Bayesian perspective for ecologists. Highland  

http://www.highstat.com/BGGLM.htm 


	Arizona State University
	From the SelectedWorks of Joseph M Hilbe
	October 15, 2013

	Beta Binomial Regression
	tmpdHE00y.pdf

