Arizona State University

From the SelectedWorks of Joseph M Hilbe

October 15, 2013

Beta Binomial Regression

Joseph M Hilbe, Arizona State University

Beta Binomial Regression

Joseph M. Hilbe
(c) 2013, Joseph M Hilbe: hilbe@asu.edu

Modeling overdispersed binomial data can be developed by assuming that the binomial mean parameter is itself beta distributed. That is, we provide a prior beta distribution to μ, the logistic model probability of success (1). The beta distribution, unlike the binomial, is a doubly bounded two parameter distribution. This second parameter is employed in the model to adjust for any extra-binomial correlation found in the data. The two-parameter model, which is based on a mixture of beta and binomial distributions, is known as beta-binomial regression.

The binomial distribution below is expressed in terms of parameter μ. This is standard when the binomial distribution is being modeled as a generalized linear model (GLM), otherwise the parameter is typically symbolized as π. Since I will use the glm functions in Stata and R when modeling the binomial component of the beta binomial, we shall employ μ in place of π.

BINOMIAL PDF

$$
\begin{equation*}
f(y ; \mu, n)=\binom{n}{y} \mu^{y}(1-\mu)^{n-y} \tag{1}
\end{equation*}
$$

The $\binom{n}{y}$ choose function is the binomial coefficient, which is the normalization term of the binomial probability distribution function (PDF). It guarantees that the function sums to 1.0. This form of the function may also be expressed in terms of factorials,

$$
\begin{equation*}
\binom{n}{y}=\frac{n!}{y!(n-y)!} \tag{2}
\end{equation*}
$$

which is easily recognized from basic algebra as a combination. Both terms can be interpreted as describing the number of ways that y successes can be distributed among n trials, or observations. Note though that the mean parameter, μ, is not a term in the coefficient,
Factorials may also be calculated in terms of factorial or gamma functions. In Stata the appropriate functions to use for calculating factorials are the log-factorial and log-gamma functions. For example, factorial 5 is 120 ; ie $1 * 2 * 3 * 4 * 5$. We must exponentiate the natural \log in both cases to obtain a factorial. In the case of the gamma function, 1 must be added to the number being factorialized. For example:

```
. di exp(lnfactorial(5))
120
. di exp(lngamma(5+1))
120
```

Using the Greek symbol Γ for a gamma function, $\Gamma()$, the binomial normalization term from (2) above may be expressed as:

$$
\frac{\Gamma(n+1)}{\Gamma(y+1) \Gamma(n-y+1)}
$$

The log-likelihood function for the binomial model can then be expressed as:

$$
\begin{equation*}
f(\mu ; y, n)=\ln \Gamma(n+1)-\ln \Gamma(y+1)-\ln \Gamma(n-y+1)+y \ln (\mu)+(\mathrm{n}-\mathrm{y}) \ln (1-\mu) \tag{4}
\end{equation*}
$$

The beta distribution is used as the basis of modeling proportional data. That is, beta data is constrained between 0 and 1 - and can be thought of in this context as the proportion obtained by dividing the binomial numerator by the denominator. The Beta PDF is given below in terms of two shape parameters, a and b, although there are a number of different parameterizations.

BETA PDF

$$
\begin{equation*}
f(y ; a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} y^{a-1}(1-y)^{b-1} \tag{5}
\end{equation*}
$$

where a is the number of successes and b the number of failures. The initial term in the function is the normalization constant, comprised of gamma functions.

The above function can also be parameterized in terms of μ. Since we plan on having the binomial parameter, μ, itself distributed as beta, we can parameterize the beta PDF as

$$
\begin{equation*}
f(\mu)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1} \tag{6}
\end{equation*}
$$

Notice that the kernal of the beta distribution is similar to that of the binomial kernal.

$$
\begin{equation*}
\mu^{y}(1-\mu)^{n-y} \sim \mu^{a-1}(1-\mu)^{b-1} \tag{7}
\end{equation*}
$$

Even the coefficients of the beta and binomial are similar in structure. In probability theory such a relationship is termed conjugate. The beta distribution is conjugate to the binomial. This is a very useful property when mixing distributions, since it generally allows for easier estimation. Conjugacy plays a particularly important role in Bayesian modeling where a prior conjugate (beta) distribution of a model coefficient, which is considered to be a random variable, is mixed with the (binomial) likelihood to form a (beta-binomial) posterior distribution.

The mean and variance of the beta PDF may be given as:

$$
\begin{equation*}
E(y)=\frac{a}{a+b}=\mu \quad V(y)=\frac{a b}{(a+b)^{2}(a+b+1)} \tag{8,9}
\end{equation*}
$$

As mentioned before, the beta binomial distribution is a mixture of the binomial and beta distributions. The binomial parameter, μ, is distributed as beta, which adjusts for extra-binomial correlation in the data. Such overdispersion can be due to clustering effects; ie. that various sets of observations in the data are more similar to one another than than they are to other sets in the data, or to the data as whole. Overdispersion may also be due to proneness in the data, excessive zero counts in the binomial numerator, needed additional predictors, or a number of other reasons. In any case, the mixture can be obtained by multiplying the two distributions.

$$
f(y ; \mu, a, b)=f(y ; \mu, n) f(y ; \mu, a, b)
$$

The result is the beta-binomial probability function.

BETA BINOMIAL

$$
\begin{equation*}
f(y ; \mu, a, b)=\frac{\Gamma(a+b) \Gamma(n+1)}{\Gamma(a) \Gamma(b) \Gamma(y+1) \Gamma(n-y+1)} \pi^{y-a-1}(1-\mu)^{n-y+b-1} \tag{11}
\end{equation*}
$$

The kernel of the distribution may also be expressed in terms of gamma functions, but this is not useful when developing a statistical model. I provide it here since it is many times found in beta binomial literature, particularly in Bayesian statistics.

$$
\begin{equation*}
f(y ; \pi, a, b)=\frac{\Gamma(a+b) \Gamma(n+1)}{\Gamma(a) \Gamma(b) \Gamma(y+1) \Gamma(n-y+1)} \frac{\Gamma(a+y) \Gamma(n+y-b)}{\Gamma(n+a+b)} \tag{12}
\end{equation*}
$$

The beta binomial mean and variance are

$$
\begin{equation*}
E(Y)=\frac{n a}{a+b} \quad V(Y)=\frac{n a b(a+b+n)}{(a+b)^{2}(a+b+1)} \tag{13.14}
\end{equation*}
$$

An alternative parameterization may be given in terms of μ and σ, with $\mu=a /(a+b)$.

$$
\begin{equation*}
f(y ; \mu, \sigma)=\frac{\Gamma(n+1)}{\Gamma(y+1) \Gamma(n-y+1)} \frac{\Gamma\left(\frac{1}{\sigma}\right) \Gamma\left(y+\frac{\mu}{\sigma}\right) \Gamma\left(n-y+\frac{1-\mu}{\sigma}\right)}{\Gamma\left(n+\frac{1}{\sigma}\right) \Gamma\left(\frac{\mu}{\sigma}\right) \Gamma\left(\frac{1-\mu}{\sigma}\right)} \tag{15}
\end{equation*}
$$

wiih $y=0,1,2, \ldots n$, and $0<\mu<1$, and $\sigma>0$.
Under this parameterization, the mean and variance of the beta binomial are:

$$
\begin{equation*}
E(Y)=n \mu \quad V(Y)=n \mu(1-\mu)\left[1+\frac{\sigma}{1+\sigma}(n-1)\right] \tag{16,17}
\end{equation*}
$$

This is the parameterization that is used in the Stata betabin command (Hardin \& Hilbe, 2013) and in R's gamlss function (Rigby \& Stasinopoulos, 2005)

EXAMPLES

To begin we shall use a beta model to estimate the parameters of proportional data. The beta model is appropriate when the variable to be modeled has values between 0 and 1 , representing the proportion of successes for a specific covariate pattern or counts per time period or area.

We shall use the grouped Titanic disaster data for an example of a beta regression. However, we must divide the number of passengers who survived the wreck by the number of passengers having the same pattern of covariates. For the data below, there was only one passenger who was a first class female child - and she survived. 14 passengers survived of the 31 female children 3rd class passengers. The data is stored in the titanixgrp file

R: Modeling beta regression

```
library(Hmisc); library(foreign)
titanic <- read.dta("c://ado/titanicgrp.dta")
titanic ; attach(titanic) ; table(class)
y <- survive/cases # create y as the proportion
cbind(y,survive,cases) # list of y an binomial variables
y[y==1] <- .9999 # replace . }9999\mathrm{ for 1's in y
class03 <- factor(titanic$class,
    levels=c("3rd class", "2nd class", "1st class")) # change reference
library(betareg) # use of betareg model
summary(mymod <- betareg(y ~ age + sex + class03, data=titanic))
library(gamlss) # use of gamlss model
summary(mybeta <- gamlss(y ~ age + sex + class03, data=titanic,
sigma.fo=~1, family=BEOI, method=RS()))
```

. use titanicgrp,clear . 1					
	\| survive	cases	age	sex	class \|
1.	\| 1	1	child	women	1st class \|
2.	13	13	child	women	2nd class \|
3.	14	31	child	women	3rd class
	I	5	child	man	1st class \|
5.	11	11	child	man	2nd class \|
6.	13	48	child	man	3 rd class
	140	144	adults	women	1st class \|
	80	93	adults	women	2nd class \|
	176	165	adults	women	3rd class \|
10.	157	175	adults	man	1st class \|
11.	14	168	adults	man	2nd class
12.	175	462	adults	man	3rd class \|

Using Stata we observe the data without labels,

```
. list, nolab
\begin{tabular}{|c|c|c|c|c|c|}
\hline & | survive & cases & age & sex & class | \\
\hline 1. & | 1 & 1 & 0 & 0 & 1 \\
\hline 2. & 113 & 13 & 0 & 0 & 2 | \\
\hline 3. & | 14 & 31 & 0 & 0 & 3 । \\
\hline 4. & 15 & 5 & 0 & 1 & 1 | \\
\hline 5. & | 11 & 11 & 0 & 1 & 2 । \\
\hline 6. & | 13 & 48 & 0 & 1 & 3 । \\
\hline 7. & | 140 & 144 & 1 & 0 & 1 | \\
\hline 8. & 180 & 93 & 1 & 0 & 2 \\
\hline & 176 & 165 & 1 & 0 & 3 \\
\hline 10. & 157 & 175 & 1 & 1 & 1 | \\
\hline 11. & | 14 & 168 & 1 & 1 & 2 । \\
\hline 12. & 175 & 462 & 1 & 1 & 3 । \\
\hline
\end{tabular}
```

Since I would like to have third class passengers as the reference level for the categorical variable, class, we factor or level it to create separate dummy or indicator variables, each of which is formatted as 0,1 .

```
. tab class, gen(class)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
passenger \\
class:1-3
\end{tabular} & Freq. & Percent & Cum. \\
\hline 1st class & 4 & 33.33 & 33.33 \\
\hline 2nd class & 4 & 33.33 & 66.67 \\
\hline 3rd class & 4 & 33.33 & 100.00 \\
\hline Total & 12 & 100.00 & \\
\hline
\end{tabular}
```

Now we can divide survive (the passengers who survived) by the number of observations sharing the identical covariate pattern (cases). Each observation in the Titanic data is a distinct covariate pattern. The result of the division, y, is a proportion - a division of the binomial numerator by its denominator.

```
. gen y=survive/cases
. list survive cases y
\begin{tabular}{|c|c|c|c|}
\hline & | survive & cases & y l \\
\hline 1. & | 1 & 1 & 1 \\
\hline 2. & 13 & 13 & 1 \\
\hline 3. & 14 & 31 & . 4516129 \\
\hline 4. & 5 & 5 & 1 \\
\hline 5. & 11 & 11 & 1 \\
\hline 6. & 13 & 48 & . 2708333 \\
\hline 7. & 140 & 144 & . 9722222 \\
\hline 8. & 80 & 93 & . 8602151 \\
\hline 9. & 76 & 165 & . 4606061 \\
\hline 10. & 57 & 175 & . 3257143 \\
\hline 11. & 14 & 168 & . 0833333 \\
\hline & 75 & 462 & . 1623377 \\
\hline
\end{tabular}
```

We spot a problem. It could have been identified when comparing survive and cases, but there are $4 y$'s with a value of 1 . The beta distribution requires that all response values are between 0 and 1 . The solution is to recode these values as 0.999 . Then we can model the data. The Stata betafit command was created by Maartin Buis (Univ of Tuebingen), Nicholas Cox (Durham Univ) and Stephen Jenkins (London School of Economics and Political Science), and is provided on the book's web site.

```
. replace y=.9999 if }\textrm{y}==
. betafit y, mu(age sex class2 class1) nolog
ML fit of beta (mu, phi)
Log likelihood = 25.126578
```

Number of obs	$=$	12
Wald chi2 (4)	$=$	13.34
Prob > chi2	$=$	0.0097

y	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
age	-2.287329	. 7299636	-3.13	0.002	-3.718032	-. 8566269
sex	-1.203256	. 6961577	-1.73	0.084	-2.5677	. 1611883
class2	2.204885	. 8739525	2.52	0.012	. 4919693	3.9178
class1	2.662907	. 943594	2.82	0.005	. 8134968	4.512317
cons	1.094288	. 8183261	1.34	0.181	-. 5096019	2.698178
/ln_phi	1.108147	. 4674121	2.37	0.018	. 1920359	2.024258
phi	3.028741	1.41567			1.211714	7.57049

The R output using the betareg function provides the same result as Stata.

```
> mymod <- betareg(y ~ age + sex + class03, data=titanic)
> summary(mymod)
Coefficients (mean model with logit link):
                Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.0943 0.6576 1.664 0.096122 .
ageadults -2.2873 0.6503 -3.517 0.000436 ***
sexman -1.2032 0.5997 -2.006 0.044813 *
class032nd class 2.2049 0.7711 2.859 0.004246 **
class031st class 2.6629 0.7921 3.362 0.000774 ***
Phi coefficients (precision model with identity link):
    Estimate Std. Error z value Pr(>|z|)
(phi) 3.029 1.318 2.299 0.0215 *
Type of estimator: ML (maximum likelihood)
Log-likelihood: 25.13 on 6 Df
Pseudo R-squared: 0.7598
```

Using the gamlss package (Rigby and Stasinopoulos, 2005) we can duplicate the results of Stata and betareg, acknowledging that rounding errors give us slightly different - but statistically identical-output.

```
> summary(mybeta)
***************************************************************************
Family: c("BEOI", "One Inflated Beta")
Call: gamlss(formula = y ~ age + sex + class03, sigma.formula = ~1,
    family = BEOI, data = titanic, method = RS())
Fitting method: RS()
Mu link function: logit
Mu Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & t value & Pr \((>|t|)\) \\
(Intercept) & 1.090 & 0.8178 & 1.332 & 0.24023 \\
ageadults & -2.275 & 0.7296 & -3.118 & 0.02631 \\
sexman & -1.190 & 0.6960 & -1.709 & 0.14808 \\
class032nd class & 2.194 & 0.8731 & 2.513 & 0.05366 \\
class031st class & 2.647 & 0.9426 & 2.808 & 0.03762
\end{tabular}
```

```
Sigma link function: log
Sigma Coefficients:
Estimate Std. Error \(\quad\) value \(\operatorname{Pr}(>|t|)\)
\(1.10111 \quad 0.46787 \quad 2.35347 \quad 0.06528\)
```

```
Nu link function: logit
Nu Coefficients:
    Estimate Std. Error t value Pr(>|t|)
-1.843e+01 2.899e+03 -6.359e-03 9.952e-01
```

No. of observations in the fit: 12
Degrees of Freedom for the fit: 7
Residual Deg. of Freedom: 5
at cycle: 8
Global Deviance: $\quad-50.25368$
AIC: $\quad-36.25368$
SBC: -32.85933

Note that the gamlss dispersion parameter value of 1.10111 is statistically the same as betareg and betafit output. The estimate is given in log form. Exponentiating 1.10111 produces a value of 3.01

The greater the value of the proportion the more likely a passenger is a female child, and the more likely they are of a superior passenger class. This information is not particularly helpful for understanding criteria of survival in this case, although there are data situations for which beta model make good sense. If we only have proportional data the beta model may be the only regression model we can use.

Prior to concluding our look at beta models, we should determine the extent of extra correlation in the data by employing a robust or sandwich variances adjustment, which results in the output below. Note that the adjustment does little to the values of the standard errors. The p values (Wald statistics) are therefore nearly the same.

```
. betafit y, mu(age sex class2 class1) nolog vce(robust)
```

Y	Coef.	Robust Std. Err.	z	P> \mid z \|	[95\% Conf. Interval]	
age	-2.287329	. 6682538	-3.42	0.001	-3.597083	-. 9775758
sex	-1.203256	. 6802613	-1.77	0.077	-2.536543	. 1300319
class2	2.204885	. 9155048	2.41	0.016	. 4105283	3.999241
class1	2.662907	. 9157482	2.91	0.004	. 8680736	4.45774
cons	1.094288	. 9632493	1.14	0.256	-. 793646	2.982222
/ln_phi	1.108147	. 2682577	4.13	0.000	. 5823714	1.633922
phi	3.028741	. 812483			1.790279	5.123933

Robust variance and scaling do not work well with betareg and gamlss. Since beta regression is itself not our foremost concern in this monograph, I'll pass on additional discussion.

Before considering the use of a beta binomial model on grouped binomial data it is necessary to determine if the binomial data is overdispersed. In particular, we shall model the Titanic data using a grouped logistic model to determine if the data is overdispersed. If it is, we cannot in general trust the coefficients or standard errors of the resulting model. Other links can be used, and we can adjust the standard errors to account for the excess variability. We'll look at these alternatives first.

We model the data using a grouped logistic model. The glm command provides accurate estimates. R's $g l m$ function is also the function of choice for grouped logistic models. The eform option provides odds ratios to be displayed, and nolog depresses a print out of the iteration log that is by default displayed when a model is estimated.

R Logistic regression models

```
died <- cases - survive
summary(jhlogit <- glm(cbind(survive,died) ~ age + sex + class03,
    data=titanic, family=binomial))
exp(coef(jhlogit)) # Odds ratios
library(COUNT)
modelfit(jhlogit) # same as Stata abic command
summary(sclogit <- glm(cbind(survive,died) ~ age + sex + class03,
    data=titanic, family=quasibinomial)) # scaled SEs
OR <- exp(coef(sclogit)); OR
library(sandwich)
rse <- sqrt(diag(vcovHC(jhlogit, type = "HCO"))) # robust SEs
ORrse <- OR*rse; ORrse # robust SE for odds ratios
```

. glm survive age sex class2 class1, fam(bin cases)eform nolog

The dispersion statistic has a value of 14.4, indicating extensive overdispersion. An equidispersed model -- one meeting the distributional assumptions of the model -- would have a dispersion statistic of approximately 1.0. The AIC statistic is 157.77 , which we can later compare with a model of the data using beta binomial regression.
Note that the p-values appear to indicate that all of the predictors are significant contributors to understanding the response; ie predictors for survival. As we have shown earlier though, we need to at first scale the standard errors by the dispersion to determine the extent of the extra-binomial correlation in the data. The R quasi-binomial family provides the same results. The nohead option suppresses a display of header statistics, which are identical to the statistics above.

```
. glm survive age sex class2 class1, fam(bin cases) nolog eform scale(x2) nohead
```

OIM						
age	. 3479809	. 3205576	-1.15	0.252	. 057205	2.116784
sex	. 0935308	. 0515744	-4.30	0.000	. 0317386	. 2756263
class2	2.129343	1.4167	1.14	0.256	. 5779923	7.844574
class1	5.84959	3.791078	2.73	0.006	1.642358	20.8345
_cons	3.652859	3.436953	1.38	0.169	. 5777532	23.09529

We find that age is no longer a significant predictor, nor is class2. this means that classl and class 2 are togther the reference level for classl. There is no statistical difference in 2nd and 3rd classs passengers with respect to survival. First class passengers, however, have nearly 6 times greater odds of survival than 3rd class passengers -- as well as 2nd and 3rd class passengers together. It appears from the output that first class females survived the Titanic accident significantly higher than other passengers. We know from independent sources that this is indeed what happened.
To confirm what we found using scaled standard errors, we'll employ a robust variance adjustment to the standard errors.

```
. glm survive age sex class2 class1, fam(bin cases) nolog eform vce(robust) nohead
```


The results are consistent with the "quasibinomial" or scaled model. We can be sure that based on a logistic regression model, age and class2 are not significant contributors to an understanding of survival. It appears that female 1st class passengers had a significantly greater survival odds than did other passenger. Age was not a determinant.

BETA BINOMIAL

We use the betabin command from Hardin and Hilbe (2013). The command is a two parameter model with the scale parameter, sigma, serving as dispersion parameter, adjusting the model for any extra-binomial correlation. The origin of the model was outlined earlier in this section.

R Beta binomial

```
summary(mybb <- gamlss(cbind(survive,died) ~ age + sex + class03,
    data=titanic, family=BB))
exp(coef(mybb))
=================
. betabin survive age sex class2 class1, n(cases) nolog eform
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Beta-binomial & gression & & & Num & of obs & & 12 \\
\hline Link & logit & & & LR & (4) & = & 14.46 \\
\hline Dispersion & beta-bin & & & Prob & chi2 & = & 0.0129 \\
\hline Log likelihood & -36.9011 & & & Pse & R2 & = & 0.1639 \\
\hline survive | & exp (b) & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & [95\% & & Interval] \\
\hline age & . 1093592 & . 0862822 & -2.81 & 0.005 & . 0232 & & . 5133763 \\
\hline sex & . 1123649 & . 085515 & -2.87 & 0.004 & . 0252 & & . 4993845 \\
\hline class2 | & 7.608313 & 5.994373 & 2.58 & 0.010 & 1.624 & & 35.63903 \\
\hline class1 | & 15.94947 & 13.97772 & 3.16 & 0.002 & 2.862 & & 88.86238 \\
\hline _cons | & 4.504546 & 3.740425 & 1.81 & 0.070 & . 8847 & & 22.93298 \\
\hline /lnsigma | & -1.791043 & . 6072598 & & & -2.98 & & -. 6008352 \\
\hline sigma & . 1667862 & . 1012825 & & & . 0507 & & . 5483534 \\
\hline
\end{tabular}
. abic
AIC Statistic = 7.150197 AIC*n = 85.802361
BIC Statistic = 7.941956 BIC(Stata) = 88.7118
```

R output using gamlss is given as displayed below. Note again that there is a slight difference in estimates. Note that the estimate for sigma is statistically the same as what is displayed in the Stata output for the log of sigma, /lnsigma. Sigma is the dispersion parameter, and can itself be parameterized, having predictors like the mean or location parameter, $m u$. The dispersion estimates inform the analyst which predictors significantly influence the extra correlation in the data, therefore influencing the value of sigma. In this form below it is only the intercept of sigma that is displayed. In this respect, the beta binomial is analagous to the heterogeneous negative binomial count model (Hilbe, 2011, 2014), and the binomial logistic regression function is a analagous to Poisson model.

> summary(mybb)				
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	1.498	0.6814	2.199	0.063855
ageadults	-2.202	0.8205	-2.684	0.031375
sexman	-2.177	0.6137	-3.547	0.009377
class032nd class	2.018	0.8222	2.455	0.043800
class031st class	2.760	0.8558	3.225	0.014547

```
Sigma link function: log
Sigma Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.801 0.7508 -2.399 0.03528
> exp(coef(mybb))
    (Intercept) ageadults rexman class032nd class
```

class031st class
15.8044343

The dispersion parameter is significant in that its confidence interval does not include one (1).. Moreover, the AIC and BIC statistics are substantially lower than the binomial logistic model,. 85.8 and 88.7 respectively to the logistic model values of 157.7 and 160.2. The Beta binomial model is preferred to the single parameter logistic model. However, extra correlation still needs to be checked and adjusted. A robust or sandwich variance adjustment is applied to the model.

Note that even after applying a robust variance adjustment, all of the main effect predictors are significant. In addition, the likelihood ratio test of the value of sigma shows us that the beta binomial model is preferred to the logistic model. We should check for an interactive effect between age and sex, and between both age and sex and classl. I shall leave that as an exercise for the reader. It appears, though, from looking at the main effects, only that 1st class female children stood the best chance of survival on the Titanic,

Zero-Inflated binomial

At times, even grouped data consists of more observations having a no successes for given covariates than acceptable based on model assumptions. Data having excessive zero values for the response are commonly referred to as zero-inflated models. Most zero-inflated models are count models, but grouped binomial models are also subject to having excess zeros. For a
complete analysis of zero-inflation for count models, see Hilbe, (2011) or Hilbe (2014). For a discussion of beta binomial

$$
\begin{array}{ll}
f(y ; n, \mu, \sigma)=\sigma+(1-\sigma)(1-\mu)^{n} & \text { if } y==0 \\
f(y ; n, \mu, \sigma)=\frac{(1-\sigma) n!\mu^{y}(1-\mu)^{n-y}}{y!(n-y)!} & \text { if } y>0 \tag{18}
\end{array}
$$

where $0<\mu<1$ and $0<\sigma<1$. The mean and variance or Y are given as:

$$
\begin{equation*}
E(Y)=(1-\sigma) n \mu \quad V(Y)=n \mu(1-\sigma)[1-\mu+n \mu \sigma] \tag{19}
\end{equation*}
$$

I use the titanicgrp0 data set, which is nearly the same as titanicgrp, except that four of the observations have zero successes rather than what they had in titanicgrp..

R Zero inflated Binomial

```
library(Hmisc); library(foreign)
titanic0 <- read.dta("c://ado/titanicgrp0.dta")
attach(titanic0); head(titanic0)
class03 <- factor(titanic0$class,
    levels=c("3rd class", "2nd class", "1st class")) # change reference
summary(mylogit <- glm(cbind(survive,died) ~ age + sex + class03,
            data=titanic0, family=binomial))
summary(mybb <- gamlss(cbind(survive,died) ~ age + sex + class03,
            data=titanic0, family=BB))
summary(binBIO <- gamlss(cbind(survive,died) ~ age + sex + class03,
                                    nu.fo =~ age + sex,
                                    data=titanic0, family=ZIBI))
exp(coef(binBI0))
summary(binBB0 <- gamlss(cbind(survive,died) ~ age + sex + class03,
    nu.fo =~ age + sex,
                        data=titanic0, family=ZIBI))
exp(coef(binBB0))
# EXTRA: zero-inflated beta
y <- survive/cases # create y as the proportion
cbind(y,survive,cases) # list of y an binomial variables
y[y==0] <- .0001 # replace.0001 for 0's in y
summary(beta0 <- gamlss(y ~ age + sex + class03, data=titanic0,
                sigma.fo=~1, family=BEOI, method=RS()))
```

. titanicgrp0
. 1 survive-class, nolab

6.	0	48	0	1	3
7.	140	144	1	0	1
8.	80	93	1	0	2
9.	76	165	1	0	3
10.	57	175	1	1	1
11.	14	168	1	1	2
12.	75	462	1	1	3

Model the data as a standard logistic regression, without concern for the excess zero response values. The model standard errors have been adjusted by robust variance estimates. Recall that the model without zero responses was highly overdispersed; we therefore employ robust variance adjustment.

The zero-inflated binomial model has exponentiated coefficients that are close to the logistic model, except for age, which is not significant.

```
. zib survive age sex class2 class1, n(cases) eform nolog vce(robust) inflate(age sex
class2 class1)
\begin{tabular}{lllr} 
Zero-inflated binomial regression & Number of obs & \(=\) & 12 \\
Regression link: logit & Nonzero obs & \(=\) & 7 \\
Inflation link : logit & Zero obs & \(=\) & 5 \\
& & LR chi2 (4) & \(=\) \\
Log pseudolikelihood \(=-48.4482\) & Prob \(>\) chi2 & \(=\) & 456.01 \\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline survive & \multicolumn{4}{|c|}{Robust} & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline survive & & & & & & \\
\hline age & 1.910453 & 1.032149 & 1.20 & 0.231 & . 6626171 & 5.508204 \\
\hline
\end{tabular}
```

sex	. 0773431	. 0427009	-4.64	0.000	. 0262105	2282275
class2	1.602383	1.03357	0.73	0.465	. 4526093	5.67295
class1	5.281635	2.930272	3.00	0.003	1.780403	15.66817
cons	. 8235294	$6.93 \mathrm{e}-11$	$-2.3 e+09$	0.000	. 8235294	. 8235294
inflate						
age	-74.92587	1.798567	-41.66	0.000	-78.451	-71.40074
sex	36.61934	1.479621	24.75	0.000	33.71933	39.51934
class2	37.67849	1.380459	27.29	0.000	34.97284	40.38414
class1	37.85468	1.404743	26.95	0.000	35.10144	40.60793
cons	-18.51198	1.044466	-17.72	0.000	-20.5591	-16.46487

. abic
AIC Statistic $=9.741367 \quad$ AIC ${ }^{*} \mathrm{n}=116.89641$
BIC Statistic $=11.91234 \quad$ BIC (Stata) $=121.74547$

The AIC value drops from 129.5 to 116.9 , a substantial reduction. The BIC drop a little over 10 points, which is also considered to be substantial. Inflated values inform us that all of the predictors significantly influence zero survival values. The zero-inflated binomial model appears to fit the data better than standard grouped logistic regression.

In order to display a Vuong test in Stata, standard errors cannot be adjusted. We drop the $v c e$ (robust) option and rerun the model. Model standard errors are displayed, as is the Vuong test results. For space purposes only the Vuong test results are shown.

```
. zib survive age sex class2 class1, n(cases) eform nolog inflate(age sex class2
class1) vuong
Vuong test of zib vs. standard binomial: }\quad\textrm{z}={1.85\quad\operatorname{Pr}>z=0.032
```

The zero-inflated binomial fits the data better than does the logistic model, which we had earlier concluded. The Vuong test reconfirms our finding.

Zero-Inflated beta binomial

The zero-inflated beta binomial PDF can be expressed as,

$$
\begin{array}{ll}
f(y ; n, \mu, \sigma, v)=v+(1-v) f(0 ; \mu, a, b) & \text { if } y==0 \\
f(y ; n, \mu, \sigma, v)=(1-v) f(y ; \mu, a, b) & \text { if } y>0 \tag{20}
\end{array}
$$

where $0<\mu<1,0 \ll 1, \nu$ and $\sigma>0$
The mean and variance can be defined as:

$$
\begin{equation*}
E(Y)=(1-v) n \mu \quad V(Y)=(1-v) n \mu(1-\mu)\left[1-\frac{\sigma}{1-\sigma}(n-1)\right]+v(1-v) n^{2} \mu^{2} \tag{21}
\end{equation*}
$$

We shall compare results of the beta binomial and zero-inflated beta binomial models using the titanicgrp0 data,

```
. betabin survive age sex class2 class1, n(cases) eform nolog vce(robust)
\begin{tabular}{llll} 
Beta-binomial regression & = logit & Number of obs & \(=\) \\
Link & & & 12 \\
Dispersion & \(=\) beta-binomial & Wald chi2 (4) & \(=\) \\
Log likelihood & \(=-32.111548\) & Prob > chi2 & \(=\) \\
\hline
\end{tabular}
```



```
. abic
AIC Statistic = 6.351924 =7.143684 NIC*n 
```

The AIC and BIC statistics have substantially dropped. For the AIC statistic, the logistic model has an AIC of approximately 130, for the zero-inflated binomial (ZIB) it reduced to 117, and now for the beta binomial it is 76.22 . Next we model the zero-inflated beta binomial.


```
. abic
AIC Statistic = 6.1924 AIC*n = 74.308807
BIC Statistic = 8.755208 BIC(Stata) = 79.642776
```

The AIC drops from 76.2 to 74.3 , and the BIC drops from 79.1 to 79.6 . age and class2 are still the only non-significant predictors. The change in information statistics is not great, and indicates that the use of a zero-inflated beta binomial model may not be warranted. We drop the adjustment to the standard errors and remodel the data, calling for a Vuong test.

```
. zibbin survive age sex class2 class1, n(cases) eform nolog inflate(age sex class2
class1) vuong zib
Vuong test of zibb vs. standard beta binomial: z = 1.49 Pr>z = 0.0684
```

Our suspicions appear to be correct. the Vuong test informs us that the standard beta binomial model is preferred for this data.
The beta binomial is an important model, and should be considered for all overdispersed logistic models. In addition, for binomial models with probit and complementary loglog links, the betabin and zibbin commands also have options for these models. We may therefore test to determine if the data is better modeled as a beta binomial with a complementary loglog link. Information criterion tests can be used to determine fit, as well as a goodness-of-link test.

REFERENCES

Hardin, J.W and J.W Hilbe (2012), Generalized Linear Model and Extensions, 3rd edition, Stata Press/Chapman \& Hall/CRC

Hardin, J.W .and J.M.Hilbe (2013), Estimation and Testing of Binomial and Beta Binomial Regression Models with and without Zero Inflation Stata Journal Vol- ,--<forthcoming>

Hilbe, J.M (2011), Negative Binomial Regression, 2nd edition, Cambridge: Cambridge University Press

Hilbe, J.M. (2014), Modeling Count Data, Cambridge:Cambridge University Press
Hilbe, J.M and A.P Robinson (2012). COUNT package, CRAN
Hilbe, JM and A.P Robinson (2013) msme package, CRAN,
Rigby, B and M Stasinopoulos (2012), Gamlss package, 2nd edition, CRAN,
Zuur, A.F, J.M Hilbe, and E.N Zuur (2013), A Beginner's Guide to GLM and GLMM with R: A frequentist and Bayesian perspective for ecologists. Highland http://www.highstat.com/BGGLM.htm

