
Arizona State University

From the SelectedWorks of Joseph M Hilbe

August 6, 2011

Basic R Matrix Operations
Joseph Hilbe, Arizona State University

Available at: https://works.bepress.com/joseph_hilbe/4/

https://works.bepress.com/joseph_hilbe/
https://works.bepress.com/joseph_hilbe/4/

1

Basic R Matrix Operations

 Joseph M. Hilbe
 Jet Propulsion Laboratory & Arizona State University

 Hilbe@asu.edu : 12 Feb, 2011 (revised 6Aug,2011)

1 : Creation of a matrix

2 : Subsets of matrices

3 : Appending rows and concatenation of columns

4 : Matrix addition

5 : Matrix subtraction

6 : Matrix transposition

7 : Diagonal, identity, and symmetrical matrices

8 : Matrix determinant

9 : Matrix multiplication

10: Matrix inversion

11: Linear regression

A matrix is a rectangular array of items, formatted in terms of rows (i) and columns (j). A matrix

is defined by the values of i and j, which are called the dimensions of the matrix. Therefore, a

matrix with 3 rows and 4 columns is a (3,4), or 3x4, dimension matrix. When the dimensions of a

matrix are identical, for example 2x2 , it is known as a square matrix.

 R treats matrices in a rather unique manner. An R matrix is a long vector of items wrapped

into columns and rows, in that order. Because a matrix is stored as a single vector, its values

must be stored in the same mode. For example, the values must all be numeric, all character, or

all logical. For statistical purposes, matrices are thought of as numeric. Henceforth we only

address numeric matrices and vectors in this monograph.

1: CREATION OF A MATRIX

One may create a matrix from existing rows or columns. Typically they are made by combining

columns. For example, let us define 4 vectors of five numbers with the following values:

> c1 <- c(3,4,6,8,5)

> c2 <- c(4,8,4,7,1)

> c3 <- c(2,2,5,4,6)

> c4 <- c(4,7,5,2,5)

We may combine the four columns into a matrix using the code,

> matrix1 <- cbind(c1, c2, c3, c4)

which is now a matrix. We show this using the class() function.

> class(matrix1)

[1] "matrix"

© Joseph M. Hilbe, 2011

Do not duplicate or disseminate without prior written approval of author

mailto:Hilbe@asu.edu

2

Typing matrix1 displays the various elements in matrix format. Note that the columns are labeled

using the names of the objects that were used for cbind(). The rows have no names.

> matrix1

 c1 c2 c3 c4

[1,] 3 4 2 4

[2,] 4 8 2 7

[3,] 6 4 5 5

[4,] 8 7 4 2

[5,] 5 1 6 5

> colnames(matrix1)

[1] "c1" "c2" "c3" "c4"

> rownames(matrix1)

NULL

The rows can be named, eg. A, B, and so forth, by using the rownames() function. Column

names can be renamed to other labels using the colnames() function.

> rownames(matrix1) <- c("A", "B", "C", "D", "E")

> matrix1

 c1 c2 c3 c4

A 3 4 2 4

B 4 8 2 7

C 6 4 5 5

D 8 7 4 2

E 5 1 6 5

A seeming matrix can be tested to determine if it is a true matrix by using the function

is.matrix(). Applied on matrix1, we have

> is.matrix(matrix1)

[1] TRUE

We know that c1, c2, c3, and c4 are all vectors, which can be tested as

> is.vector(c1)

[1] TRUE

and are not matrices:

> is.matrix(c1)

[1] FALSE

It is also the case that matrix1 is not a vector

> is.vector(matrix1)

[1] FALSE

matrix1 may be converted into an R matrix that shows rows as [#,] and columns as [,#]

> matrix2 <-matrix(matrix1, ncol=4)

> matrix2

3

 [,1] [,2] [,3] [,4]

[1,] 3 4 2 4

[2,] 4 8 2 7

[3,] 6 4 5 5

[4,] 8 7 4 2

[5,] 5 1 6 5

Matrix operations of addition, subtraction, multiplication, inversion, etc, may now be done using

matrix2.

 One may also create the same matrix as matrix2 by constructing a long array of numbers,

partitioning it into four equal columns, using the code:

> matrix3 <- matrix(c(3,4,6,8,5,4,8,4,7,1,2,2,5,4,6,4,7,5,2,5), ncol=4)

> matrix3

 [,1] [,2] [,3] [,4]

[1,] 3 4 2 4

[2,] 4 8 2 7

[3,] 6 4 5 5

[4,] 8 7 4 2

[5,] 5 1 6 5

Or you can partition the data into 5 equal rows, as:

> matrix4 <- matrix(c(3,4,6,8,5,4,8,4,7,1,2,2,5,4,6,4,7,5,2,5), nrow=5)

> matrix4

 [,1] [,2] [,3] [,4]

[1,] 3 4 2 4

[2,] 4 8 2 7

[3,] 6 4 5 5

[4,] 8 7 4 2

[5,] 5 1 6 5

If we had not partitioned the elements into columns or rows, a single array of numbers running

down each column, across columns, would be displayed

> matrixx <- matrix(c(3,4,6,8,5,4,8,4,7,1,2,2,5,4,6,4,7,5,2,5))

> matrixx
 [,1]

 [1,] 3

 [2,] 4

 [3,] 6

 [4,] 8

 [5,] 5

 [6,] 4

 [7,] 8

 [8,] 4

 [9,] 7

[10,] 1

[11,] 2

[12,] 2

[13,] 5

[14,] 4

[15,] 6

[16,] 4

[17,] 7

[18,] 5

4

[19,] 2

[20,] 5

matrixx is nevertheless a true matrix, evidenced by

> is.matrix(matrixx)

[1] TRUE

A small matrix can be defined by combining a vector of numbers and partitioning them by row

and column numbers within the same function. For example, matrixA is a 2x3 matrix. If we had

specified matrix(c(..), 3,2) instead, a 3x2 matrix would have been created.

> matrixA <- matrix(c (3 ,4 ,2 ,4 ,8 ,2) ,2 ,3)

> matrixA

 [,1] [,2] [,3]

[1,] 3 2 8

[2,] 4 4 2

DIMENSIONS

The dimensions of a matrix may be determined by using the dim function. Therefore,

> dim(matrix4)

[1] 5 4

> dim(matrixx)

[1] 20 1

which tells us that matrix4 is a 5x4 matrix and matrixx is a 20x1 dimension matrix.

 It is interesting to note that a simple numeric vector such as c1 has no dimension in R.

However, as we shall later observe, operations on such a vector can result in a matrix.

> dim(c1)

NULL

FREQUENCY TABLE

We may determine the count of elements in a matrix using the table function. For instance, if we

wish to know how many times the value of 1 appears in the matrix, how many 2’s, and so forth,

we can:

> table(matrix4)

matrix4

1 2 3 4 5 6 7 8

1 3 1 5 4 2 2 2

There are 5 4’s, which is the mode of the elements.

5

SUM, MEAN AND MEDIAN

If we wish to know the sum, mean, and median of all the elements of the matrix, we can

> sum(matrix4)

[1] 92

> mean(matrix4)

[1] 4.6

> median(matrix4)

[1] 4.5

However, if there are missing values in the matrix, we need to provide the function with the

option: na.rm=TRUE.

ROW AND COLUMN SUMS AND MEANS

> matrix4

 [,1] [,2] [,3] [,4]

[1,] 3 4 2 4

[2,] 4 8 2 7

[3,] 6 4 5 5

[4,] 8 7 4 2

[5,] 5 1 6 5

The rowSums() and rowMeans() functions are used to obtain the sum and mean of the values for

each row in a matrix,

> rowSums(matrix4)

[1] 13 21 20 21 17

> rowMeans(matrix4)

[1] 3.25 5.25 5.00 5.25 4.25

Checking the sum of each row in matrix4 by sight, it is clear that the vector of sum values are

correct. Recall that each vector can be named, for example,

> rsum <- rowSums(matrix4)

> rsum

[1] 13 21 20 21 17

> is.vector(rsum)

[1] TRUE

It is also simple to verify that the row means are calculated correctly. Using the second row we

have

> (4 + 8 + 2 + 7)/4

[1] 5.25

6

Which is identical to the second element in the vector of row means above.

 Column sums and means have the same logic as for rows. Using the colSums() and colMeans()

functions we have,

> colSums(matrix4)

[1] 26 24 19 23

> colMeans(matrix4)

[1] 5.2 4.8 3.8 4.6

2: SUBSETS OF MATRICES

We may select a particular element from matrix4, defined by its row and column, using the code:

matrix4[row, column]

For instance, if we want to display the element (4,2) we could:

> matrix4[4,2]

[1] 7

Referring to the matrix output for matrix4 we find that the (4,2) element is indeed 7.

 We may also select a block subset of elements from matrix4. For instance, suppose that we

wish to create a new matrix, matrix5, that consists or the first two columns of matrix4. We select

rows 1 through 5 and columns 1 through 2, shown as:

> matrix5 <- matrix4[1:5,1:2]

> matrix5

 [,1] [,2]

[1,] 3 4

[2,] 4 8

[3,] 6 4

[4,] 8 7

[5,] 5 1

> dim(matrix5)

[1] 5 2

I provided a test by issuing the dim() function for matrix5, demonstrating the it is in fact a 5x2

matrix.

 A shortcut can be given when selecting an entire row of column. For matrix5 we selected all

of the rows for two columns. We therefore do not have to specifically show the row numbers.

For example, we could have created matrix5 using the code:

> matrix5 <- matrix4[,1:2]

> matrix5

 [,1] [,2]

[1,] 3 4

[2,] 4 8

[3,] 6 4

[4,] 8 7

[5,] 5 1

7

Let us create matrix6 as the two rightmost columns, 3 and 4.

> matrix6 <- matrix4[1:5,3:4]

> matrix6

 [,1] [,2]

[1,] 2 4

[2,] 2 7

[3,] 5 5

[4,] 4 2

[5,] 6 5

or,

> matrix6 <- matrix4[,3:4]

> matrix6

 [,1] [,2]

[1,] 2 4

[2,] 2 7

[3,] 5 5

[4,] 4 2

[5,] 6 5

Finally, we can abstract any block from a matrix using the correct numeric designations. For

example, suppose that we want to display the inner elements of matrix4. Viewing matrix4 again,

> matrix4

 [,1] [,2] [,3] [,4]

[1,] 3 4 2 4

[2,] 4 8 2 7

[3,] 6 4 5 5

[4,] 8 7 4 2

[5,] 5 1 6 5

We want to show the block that consists of the bold-italic numbers in the middle of matrix4

above. We select rows 2 through 4 and columns 2 and 3. A new matrix can be created with 3x2

dimensions.

> matrix4a <- matrix4[2:4, 2:3]

> matrix4a

 [,1] [,2]

[1,] 8 2

[2,] 4 5

[3,] 7 4

3: APPENDING ROWS AND CONCATENATION OF COLUMNS

Appending rows of two or more different but structurally similar matrices together, and

concatenating columns of two of more different, but structurally similar matrices together is a

common matrix operation.

 To show how to append rows of two matrices, we use matrixA which we constructed earlier,

and will create another matrix, called matrixB, which shall be appended to matrixA.

8

> matrixA

 [,1] [,2] [,3]

[1,] 3 2 8

[2,] 4 4 2

> matrixB <- matrix(c (6 ,4 ,5 ,8 ,7 ,4) ,2 ,3)

> matrixB

 [,1] [,2] [,3]

[1,] 6 5 7

[2,] 4 8 4

> matrixC <- rbind(matrixA, matrixB)

> matrixC

 [,1] [,2] [,3]

[1,] 3 2 8

[2,] 4 4 2

[3,] 6 5 7

[4,] 4 8 4

We may invert the order so that the elements of matrixB are above those of matrixA.

> matrixCi <- rbind(matrixB, matrixA)

> matrixCi

 [,1] [,2] [,3]

[1,] 6 5 7

[2,] 4 8 4

[3,] 3 2 8

[4,] 4 4 2

We only needed to reverse the order in which matrices declared. If there are a number of

matrices which we intend to append, their order corresponds to the order in which they are

declared in the rbind() function.

 The two matrices may also be concatenated, that is, their columns may be joined, creating a

new matrix.

> matrixD <- cbind(matrixA, matrixB)

> matrixD

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 3 2 8 6 5 7

[2,] 4 4 2 4 8 4

In a similar manner to appending rows, concatenation is done by the order in which columns are

given to the cbind() function.

> matrixDi <- cbind(matrixB, matrixA)

> matrixDi

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 6 5 7 3 2 8

[2,] 4 8 4 4 4 2

It should be apparent from what we have said that rows and columns may be duplicated using the

rbind() and cbind() functions. To duplicate the rows of matrixA we simply specify matrixA

twice. Any number of duplications can be made.

9

> rbind(matrixA, matrixA)

 [,1] [,2] [,3]

[1,] 3 2 8

[2,] 4 4 2

[3,] 3 2 8

[4,] 4 4 2

The cbind() function can also be used to insert a column between others of the same length. First

we create a matrix called matrixE, with all 1’s in the first column and the numbers 1 through 7 in

the second.

> matrixE <- cbind(1, 1:7)

> matrixE

 [,1] [,2]

[1,] 1 1

[2,] 1 2

[3,] 1 3

[4,] 1 4

[5,] 1 5

[6,] 1 6

[7,] 1 7

Next we create a vector of even numbers from 2 through 14, calling it new. We now insert new

into the matrix, first as the third column, and then rearranging it to be placed in the middle

between the previous two columns.

> new <- c(2,4,6,8,10,12,14)

> matrixF <- cbind(matrixE, new)[, c(1, 3, 2)]

> matrixF

 new

[1,] 1 2 1

[2,] 1 4 2

[3,] 1 6 3

[4,] 1 8 4

[5,] 1 10 5

[6,] 1 12 6

[7,] 1 14 7

4: MATRIX ADDITION

Matrix addition is straight forward, adding element by element from two similar matrices; ie

from matrices with identical dimensions.

 Suppose matrix5 and matrix6, which were created as subsets of matrix4.

> matrix5

 [,1] [,2]

[1,] 3 4

[2,] 4 8

[3,] 6 4

[4,] 8 7

[5,] 5 1

10

> matrix6

 [,1] [,2]

[1,] 2 4

[2,] 2 7

[3,] 5 5

[4,] 4 2

[5,] 6 5

Since the above matrices are true matrices, we simply add the elements of each matrix as:

> matrix5 + matrix6

 [,1] [,2]

[1,] 5 8

[2,] 6 15

[3,] 11 9

[4,] 12 9

[5,] 11 6

To check, we may add elements (1,1) from each matrix

> matrix5[1,1] + matrix6[1,1]

[1] 5

and elements (2,2), which are [8,7],

> matrix5[2,2] + matrix6[2,2]

[1] 15

It can be observed that we may add elements – any elements – between two or more matrices, if

done individually, and we can add whole matrices elementwise in a straightforward manner.

5: MATRIX SUBTRACTION
We may subtract matrices in exactly the same manner as we added them. Therefore,

> matrix5 - matrix6

 [,1] [,2]

[1,] 1 0

[2,] 2 1

[3,] 1 -1

[4,] 4 5

[5,] -1 -4

Again, subtracting the (1,1) elements of matrix6 from matrix5, we have

> matrix5[1,1] - matrix6[1,1]

[1] 1

and subtracting elements (4,2), which is 7-2 = 5.

> matrix5[4,2] - matrix6[4,2]

[1] 5

5 in indeed the resultant value of the (4,2) element subtraction.

11

6: MATRIX TRANSPOSITION

Transposition is an important matrix operation. Essentially, we transpose a matrix if we switch

rows and columns. For example, I show both matrix5 and its transpose.

> matrix5

 [,1] [,2]

[1,] 3 4

[2,] 4 8

[3,] 6 4

[4,] 8 7

[5,] 5 1

> t(matrix5)

 [,1] [,2] [,3] [,4] [,5]

[1,] 3 4 6 8 5

[2,] 4 8 4 7 1

The value 5 in matrix5 is element (5,1). Its transposed position is (1,5).

 What happens if we transpose both matrix5 and matrix6 and add them?

> t(matrix5) + t(matrix6)

 [,1] [,2] [,3] [,4] [,5]

[1,] 5 6 11 12 11

[2,] 8 15 9 9 6

It is indeed the transpose of matrix5 + matrix6. Likewise, the subtraction of the transpose of

matrix6 from the transpose of matrix5 is the same as the transpose of matrix5 – matrix6.

> t(matrix5) - t(matrix6)

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 2 1 4 -1

[2,] 0 1 -1 5 -4

The transpose of a matrix, e.g., X, is traditionally symbolized as X’, or X-prime. We shall

discuss transposed matrices later in section 10.

7: DIAGONAL, IDENTITY, AND SYMMETRICAL MATRICES

DIAGONAL MATRIX

First, we shall construct two matrices taken from matrix4, matrix7 consists of the upper-left 2x2

block, and matrix8 is the upper-left 3x3 block. Each is a square matrix.

> matrix7 <- matrix4[1:2,1:2]

> matrix7

 [,1] [,2]

[1,] 3 4

[2,] 4 8

>

> matrix8 <- matrix4[1:3,1:3]

> matrix8

12

 [,1] [,2] [,3]

[1,] 3 4 2

[2,] 4 8 2

[3,] 6 4 5

The diagonal of matrix8 consists of the vector of values running from the upper-left to lower-

right; i.e., 3, 8, 5

> diag3 <- diag(matrix8)

> diag3

[1] 3 8 5

It is clear that the diagonal of matrix7 is the vector 3, 8, and 5.

TRACE

The sum of the diagonal elements of a square matrix is called the trace. The trace of matrix8 is

3+8+5 = 16. In R the trace can be calculated using the code,

> sum(diag(matrix8))

[1] 16

IDENTITY

An identity matrix is a matrix with 1’s on the diagonal and 0 otherwise. It is commonly used in

statistical operations. A matrix multiplied by an identity matrix remains unchanged.

> I <- diag(c(1,1,1))

> I

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

SYMMETRY

The transpose of a symmetric matrix is the same as the non-transposed matrix. Symmetric

matrices are square. We first create a 3x3 square matrix called Sy.

> Sy <- matrix(c(2,1,3,1,2,1,3,1,0),3,3)

> Sy

 [,1] [,2] [,3]

[1,] 2 1 3

[2,] 1 2 1

[3,] 3 1 0

We transpose Sy, and find that the elements are identical in the two matrices. The matrix Sy is

therefore symmetric.

> t(Sy)

 [,1] [,2] [,3]

[1,] 2 1 3

[2,] 1 2 1

[3,] 3 1 0

13

8: MATRIX DETERMINANT

Determinants require square matrices. Let us create a simple 2x2 matrix appearing as 1, 0, 1, 1.

> matrix9 <- matrix(c(0,1,1,1), nrow=2)

> matrix9

 [,1] [,2]

[1,] 0 1

[2,] 1 1

For such a matrix, we multiply the (1,1) and (2,2) elements and subtract the product of (2,1) and

(1,2). This gives us 0 – 1 = -1.

> det(matrix9)

[1] -1

The determinant of matrix7, shown below, is calculated as:

> matrix7

 [,1] [,2]

[1,] 3 4

[2,] 4 8

> det(matrix7)

[1] 8

> (3*8) - (4*4)

[1] 8

3x3 matrices are more difficult to solve. For example, we shall work with matrix8.

 [,1] [,2] [,3]

[1,] 3 4 2

[2,] 4 8 2

[3,] 6 4 5

There are a number of methods by which third-order determinants may be solved. The order is

based on the number of rows or columns in the matrix.

 One method is based on the following schemata of the matrix

 [,1] ,2] [,3]

[1,] a11 a12 a13

[2,] a21 a22 a23

[3,] a31 a32 a33

The determinant of matrix7, symbolized as | matrix7 |, is given from the following:

 |D| = a11(+1)

 + a12 (-1)

 + a13(+1)

 = a11*a22*a33 – a11*a23*a32 – a12*a21*a33 + a12*a23*a31 + a13*a21*a32

– a13*a22*a31

14

> 3*8*5 - 3*2*4 - 4*4*5 + 4*2*6 + 2*4*4 - 2*8*6

[1] 0

> det(matrix8)

[1] 5.921479e-15

Note the rounding error in the calculated value. For most all purposes this value is considered to

be equal to 0.

 We may also calculate the determinant as

> 3*(40-8) - 4*(20-12) + 2*(16-48)

[1] 0

In any case, it is clear that the determinant is 0. Using the same method it is simple to calculate

the third order determinant of matrix10.

> matrix10 <- matrix(c(1,1,0,1,0,1,0,1,1), nrow=3)

> matrix10

 [,1] [,2] [,3]

[1,] 1 1 0

[2,] 1 0 1

[3,] 0 1 1

> det(matrix10)

[1] -2

Determinants have some interesting properties. Another way to designate a determinant is

det(A) where A is a square matrix. If A and B are square matrices, and their product is C = AB,

then det(C) = det(AB) , as well as det(A)det(B). There are other properties which we mention

later in this monograph.

9: MATRIX MULTIPLICATION

Except for multiplication of the elements of a matrix by a scalar, matrix multiplication is more

difficult than the previous operations. The logic is not difficult. It is just that care must be taken

when dealing with the various columns of data.

MULTIPLICATION BY A SCALAR

Suppose that we wish to multiply matrix7 by 4. We do this by multiplying each element of the

matrix by 4. The same holds for any matrix when multiplied by a scalar.

> matrix7

 [,1] [,2]

[1,] 3 4

[2,] 4 8

> 4*matrix7

 [,1] [,2]

[1,] 12 16

[2,] 16 32

15

or,

> Sc <- 4

> Sc*matrix7

 [,1] [,2]

[1,] 12 16

[2,] 16 32

TWO MATRICES

Matrices must be conformable in order to be multiplied. The number of columns in the first

matrix must equal the number of rows of the second, e.g. (1x4) X (4x2). The inner terms of the

two matrices must be equal. The dimensions of the product equals the outer terms of the two

matrices, e.g. (1x4) X (4x2) = (1x2).

 To give a simple example, we multiply a row matrix by a column matrix. Suppose we have a

1x4 row matrix defined as

> matM <- matrix(c(3,4,6,8), nrow=1)

> matM

 [,1] [,2] [,3] [,4]

[1,] 3 4 6 8

and a 4x1 column matrix defined as

> matN <- matrix(c(2,1,4,2), ncol=1)

> matN

 [,1]

[1,] 2

[2,] 1

[3,] 4

[4,] 2

Since the number of columns of matM equals the number of rows in matN, we may multiply the

matrices using the %*% operator as:

> matO <- matM %*% matN

> matO

 [,1]

[1,] 50

The product is a single value. That is, 1x4 X 4x1 results in a 1x1 matrix.

 The product is determined by summing the products of the corresponding elements in each

matrix. We only need perform this operation once when multiplying a row matrix by a column

matrix. Here we have (3x2)+(4x1)+6x4)+(8x2) = 50.

 Suppose that we wish to multiply matN by matP, which we define as:

> matP

 [,1] [,2] [,3] [,4]

[1,] 3 4 2 4

[2,] 4 8 2 7

[3,] 6 4 5 5

[4,] 8 7 4 2

16

The matrices are conformable. The product is the result of multiplying matM by each column of

matP. Since we are multiplying a 1x4 matrix with a 4x4, we expect to have a 1x4 matrix as the

product.

> matQ <- matM %*% matP

> matQ

 [,1] [,2] [,3] [,4]

[1,] 125 124 76 86

The matrix multiplication of two 2x2 matrices is based on the same logic as described above.

However, each row of the first matrix is multiplied by each column of the second, resulting in a

2x2 product. We shall demonstrate by taking two 2x2 matrices from matrix4. matrix7 has

previously been constructed from matrix4 as:

> matrix7

 [,1] [,2]

[1,] 3 4

[2,] 4 8

We now create matrix11, which is the upper-right 2x2 block in matrix4.

> matrix11 <- matrix4[1:2,3:4]

> matrix11

 [,1] [,2]

[1,] 2 4

[2,] 2 7

Multiplication of matrix7 and matrix11 appears as,

> matrix7 %*% matrix11

 [,1] [,2]

[1,] 14 40

[2,] 24 72

with (3x2)+(4x2) = 14 as the upper-left element of the product, (3x4)+(4x7) = 40 as the upper-

right element, (4x2)+(8x2) = 24 as the lower-left element, and (4x4)+(8x7)=72 as the lower-right

element.

 The crossprod() can also be used to multiply matrices. Many statisticians prefer the

crossprod() function to the %*% operator in that there are built-in efficiencies to the function.

> crossprod(matrix7, matrix11)

 [,1] [,2]

[1,] 14 40

[2,] 24 72

Next, consider multiplying matrixA by matrixB. Both are 2x3 matrices. We may multiply them if

we transpose matrixB to become a 3x2 matrix, which we shall call matrixF.

> matrixA

 [,1] [,2] [,3]

[1,] 3 2 8

[2,] 4 4 2

17

> matrixB

 [,1] [,2] [,3]

[1,] 6 5 7

[2,] 4 8 4

> matrixF <- t(matrixB)

> matrixF

 [,1] [,2]

[1,] 6 4

[2,] 5 8

[3,] 7 4

> matrixA %*% matrixF

 [,1] [,2]

[1,] 84 60

[2,] 58 56

or

> matrixA %*% t(matrixB)

 [,1] [,2]

[1,] 84 60

[2,] 58 56

We may also use R’s tcrossprod(), which internally transposes the matrix.

> tcrossprod(matrixA, matrixB)

 [,1] [,2]

[1,] 84 60

[2,] 58 56

Finally, consider the 2x5 matR, defined as

> matR <- t(matrix5)

> matR

 [,1] [,2] [,3] [,4] [,5]

[1,] 3 4 6 8 5

[2,] 4 8 4 7 1

We may multiply it with a 5xq matrix, where q represents any value. Suppose the 5x4 matrix4.

> matrix4

 [,1] [,2] [,3] [,4]

[1,] 3 4 2 4

[2,] 4 8 2 7

[3,] 6 4 5 5

[4,] 8 7 4 2

[5,] 5 1 6 5

Here we have a relationship of (2x5) X (5x4), and should expect a 2x4 product. Indeed, we get

> matR %*% matrix4

 [,1] [,2] [,3] [,4]

[1,] 150 129 106 111

[2,] 129 146 78 111

18

DIRECT PRODUCT

 It should be mentioned that at times it is important to multiply the elements of two similar

matrices, e.g. matrixA and matrixB. Both are 2x3 matrices. This type of result is called a direct

product, and is accomplished by using the standard `*’ operator. Each of the similar elements of

the two matrices is multiplied with one another. For example, directly multiplying matrixA and

matrixB, element 1,1 of the two matrices, 3,6, produces 18. Multiplying elements 1,2, with

values of 2,5 results in 10, and so forth.

> matrixA * matrixB

 [,1] [,2] [,3]

[1,] 18 10 56

[2,] 16 32 8

KRONECKER PRODUCT

The Kronecker product of two matrices is a bit more complicated, with each element of the first

matrix being scalar multiplied with the whole of the second matrix, arrayed as the same structure

as the first.

 Suppose we wish to find the Kronecker product of matrix7 and matrix11.

 > matrix7
 [,1] [,2]

[1,] 3 4

[2,] 4 8

> matrix11

 [,1] [,2]

[1,] 2 4

[2,] 2 7

Element 1,1 of matrix7 is multiplied as a scalar with matrix11, producing a 2x2 matrix

> 3*matrix11

 [,1] [,2]

[1,] 6 12

[2,] 6 21

Or

> matrix7[1,1]*matrix11

 [,1] [,2]

[1,] 6 12

[2,] 6 21

This 2x2 matrix is element 1,1 of the resultant Kronecker product. To obtain element 2,1 of the

Kronecker product we multiply element 2,1 of matrix7 (4) with matrix11, producing,

> matrix7[2,1]*matrix11

 [,1] [,2]

[1,] 8 16

[2,] 8 28

19

The other two elements of the Kronecker product of matrix7 and matrix11 are found in the same

manner. The Kronecker product can be found directly in R by,

> kronecker(matrix7, matrix11)

 [,1] [,2] [,3] [,4]

[1,] 6 12 8 16

[2,] 6 21 8 28

[3,] 8 16 16 32

[4,] 8 28 16 56

Note that the upper left 2x2 block and lower left 2x2 block of the above result is the same as the

two scalar products we calculated above. The product each of the 4 elements of matrix7 by

matrix11 results in the combined 4-block matrix calculated above.

 [,1] [,2] [,3] [,4]

[1,] 6 12 | 8 16

[2,] 6 21 | 8 28

[3,] 8 16 | 16 32

[4,] 8 28 | 16 56

The matrix terms used to calculate a Kronecker product do not have to be similar since the

resultant product takes the format of the first matrix.

VECTOR MULTIPLICATION: SQUARING

In R, vectors are technically dimensionless; they have only length. Recalling the vector, c1, that

we created in Section 1

> c1

[1] 3 4 6 8 5

It’s dimension can be checked by the dim() function

> dim(c1)

NULL

However, we can use the function as.matrix() to format c1 as a matrix – a column matrix.

> dim(as.matrix(c1))

[1] 5 1

Interestingly, in R the transpose of a vector does have dimension – it is 2-dimensional,

> dim(t(c1))

[1] 1 5

which indicates that the transpose of a numeric non-dimensional vector is a 2-dimensional

matrix. Of course, this is how R handles it – it is not a feature of matrices themselves.

 We observe this relationship using the class() function.

> class(c1)

“numeric”

20

> class(t(c1))

“matrix”

A vector of squares is produced if the same vector is directly multiplied by itself. For example,

> d1 <- c1 * t(c1)

> d1

 [,1] [,2] [,3] [,4] [,5]

[1,] 9 16 36 64 25

> dim(d1)

[1] 1 5

> d2 <- c1 * c1

> d2

[1] 9 16 36 64 25

> dim(d2)

NULL

> class(d2)

[1] "matrix"

If we matrix multiply c1 by the transpose of c1, we are multiplying a 5x1 by a 1x5 matrix, which

results in a 5x5 matrix.

> d3 <- c1 %*% t(c1)

> d3

 [,1] [,2] [,3] [,4] [,5]

[1,] 9 12 18 24 15

[2,] 12 16 24 32 20

[3,] 18 24 36 48 30

[4,] 24 32 48 64 40

[5,] 15 20 30 40 25

> dim(d3)

[1] 5 5

We can obtain a vector of squares using matrix multiplication by using the diagonal, diag(),

function

diag(c1 %*% t(c1))

[1] 9 16 36 64 25

The sum of squares can be obtained by reversing the order of matrices so that we are multiplying

a 1x5 by a 5x1 matrix. The sum of squares, 9+16+36+64+25 = 150.

> t(c1) %*% c1

 [,1]

[1,] 150

A vector of the products of corresponding terms in two different vectors can be obtained as,

21

> c1*c2

[1] 12 32 24 56 5

or

> c1*t(c2)

 [,1] [,2] [,3] [,4] [,5]

[1,] 12 32 24 56 5

10: MATRIX INVERSION

The solve() function is used to invert a square matrix. Inversion is in a sense the same as matrix

division; there is no other type of matrix division. The traditional manner of indicating the

inverse of a square matrix A is A
-1

. Multiplying A and A
-1

, i.e., AA
-1

, results in an identity

matrix, I. It should again be noted that elements of the inverted matrix are many times displayed

in scientific notation due to rounding error in the calculations. Use of the zapsmall() function

sometimes helps produce more readable values.

 Recall that [X’X]
-1

 is central to the estimation of least squares regression parameters, with X

symbolizing the matrix of model data. If there is to be an intercept in the regression, the first

column of X consists of all 1’s. X’ is the transpose of X.

 Consider matrix7. We invert it, then multiply it by A, which produces an identity matrix. .

> matrix7

 [,1] [,2]

[1,] 3 4

[2,] 4 8

We may easily invert this 2x2 matrix by hand by multiplying each element of the matrix by the

inverse of the determinant. If we symbolize matrix7 as A, we may invert it by:

Employing the solve() function on matrix7 we have,

> solve(matrix7)

 [,1] [,2]

[1,] 1.0 -0.500

[2,] -0.5 0.375

Checking to determine if we calculated correctly, multiplying matrix7 by its inverse should result

in an identity matrix.

22

> matrix7 %*% solve(matrix7)

 [,1] [,2]

[1,] 1 0

[2,] 0 1

We observe that an identity matrix results.

 Inverting 3x3 matrices is more difficult; inverting higher dimension matrices is substantially

more tedious. It is best to let the computer handle such inversion tasks. Keep in mind though to

assure that the elements of the matrix to be inverted are stored as doubles so that rounding error

is minimized.

 It should also be noted that the following relationships exist with respect to inversion.

 A =

 =

The inverse of a symmetric matrix is also symmetric.

ORTHOGONAL MATRICES

 Orthogonal matrices are unique types of square matrices, where its transpose is also its

inverse. If O is an orthogonal matrix, O’O = I = OO’. Statisticians determine if a square matrix

is orthogonal by checking if O’O = OO’ = I. Orthogonal matrices are important when calculating

eigenvalues and eigenvectors, which we do not discuss in this monograph.

USING THE INVERSE OF MATRICES FOR SOLUTION OF EQUATIONS

 Matrix inversion is an essential operation in regression analysis, and is the method used by

many mathematicians to solve systems of equations. For example, consider the following system

of two equations having two unknowns.

 x + 3y = 18

 2x + 3y = 24

Algebraically we would multiply each side of the first equation by 2, obtaining

 2x + 6y = 36

Then subtract the second equation, resulting in

 3y = 12

 y = 4

Then substitute y=4 into either equation and solve for x. Thus

 x + (3)(4) = 18

 x = 6

An easier method is to use matrices.

23

Multiply each side by the inverse of the square matrix,

> matrixG <- matrix(c(1,2,3,3), ncol=2)

> matrixG

 [,1] [,2]

[1,] 1 3

[2,] 2 3

> matrixI <- solve(matrixG)

> matrixI

 [,1] [,2]

[1,] -1.0000000 1.0000000

[2,] 0.6666667 -0.3333333

Solving matrix [x,y] by multiplying the inverse the square matrix of coefficients by the right

hand side column matrix, we have

> matrixF <- matrix(c(18,24), ncol=1)

> matrixF

 [,1]

[1,] 18

[2,] 24

> matrixI %*% matrixH

 [,1]

[1,] 6

[2,] 4

which is

The above matrix solution can be streamlined to reduce the steps, but more importantly the same

format maintains for higher systems of equations. Whereas it would take quite a while to solve a

5-equation system, solving the matrix formulation is as easy as the 2x2 solution.

 For example, consider the 5 unknown system of equations:

 a + 2b – 1.5c + 1.25d – . 5e = 2

-.25a + 1.2b + .6c – .33d + .75e = 1.4

 .4a + .7b + 3c + d – 2e = 3

 a – 1.25b + 3c + 1.2d – 1.5e = 1.75

 2a + 3b – c + 2d – 1.5e = 1.5

24

After setting up the matrix of X and y values, with y being the response or dependent variable, we

may solve for the 5 parameters, a, b, c, d and e by solve(X) %*% y.

> X <- matrix(c(1, 2, -1.5, 1.25, -.5, -.25, 1.2, .6, -.33, .75, .4, .7, 3,

1, -2, 1,-1.25, 3, 1.2, -1.5, 2, 3, -1, 2, -1.5), ncol=5)

> y <- matrix(c(2, 1.4, 3, 1.75, 1.5), ncol=1)

> solve(X) %*% y

 [,1]

[1,] 1.7746925

[2,] 3.2314060

[3,] -1.6239844

[4,] 2.6961499

[5,] -0.5066986

11: LINEAR REGRESSION

 Recall that we earlier mentioned that [X’X]
-1

 is central to regression. In fact, linear regression

models are solved by matrices as:

 β = [X’X]
-1

 X’y

where X is the matrix of data values in the model, y is the response or dependent variable, and β

is the vector of model coefficients, or parameters, to be estimated. This is based on the well

known relationship

 ŷ = β0 + β0X1 + . . . + βnXn

The product of X and its transpose is a square matrix, which inverted and multiplied by the

product of X and the dependent variable, y, produces the parameter estimates, β.

 I show how this logic can be implemented in R to solve for linear regression coefficients, which

are given as beta. First we must create some data. Suppose we create a 14 row, 2 column matrix

as

> X <- matrix(c(1,4,6,0,5,4,1,4,7,1,2,2,1,4,6,0,7,5,1,5,1,1,2,5,0,3,4,4),
 ncol=2)

If the regression is to have an intercept, we need to place a column of 1‘s as the first column,

making a 14x3 matrix. We can so this in several ways. First, we can use the matrix function we

employed earlier in this monograph,

> int <- matrix(rep(1,14), ncol=1)

However, it is better to employ a more generic value than 14 – a function that picks up the

number of rows in the data. The dim() does this. But to use it, we must use the repetition, or

rep(), function. I call the vector of 14 1’s int, and bind it to the columns of X as the first column.

We then have an enhanced 14.x 3 data matrix, X.

> int <- rep(1,dim(X)[1])

> X <- cbind(int, X)

Next create a column matrix consisting of the values of the response or dependent variable, y.

25

> y <- matrix(c(10,9,7,4,8,12,11,7,3,5,3,12,9,10), ncol=1)

Finally, we construct the various terms appropriate for a linear regression, X’X, XX
-1

, and X’y.

> XX <- t(X) %*% X

> XX1 <- solve(XX)

> Xy <- t(X) %*% y

A vector or parameter estimates can be obtained as [X’X]
-1

 X’y. Note that I defined XX1 as the

inverse of X’X.

> beta <- XX1 %*% Xy

> beta

 [,1]

int 7.7903040

 -0.1430014

 0.1577683

Combining the above commands and functions and running from the R script editor, we have

> X <- matrix(c(1,4,6,0,5,4,1,4,7,1,2,2,1,4,6,0,7,5,1,5,1,1,2,5,0,3,4,4),

+ ncol=2)

> int <- rep(1,dim(X)[1])

> X <- cbind(int, X)

> y <- matrix(c(10,9,7,4,8,12,11,7,3,5,3,12,9,10), ncol=1)

> XX <- t(X) %*% X

> XX1 <- solve(XX)

> Xy <- t(X) %*% y

> beta <- XX1 %*% Xy

> beta

 [,1]

int 7.7903040

 -0.1430014

 0.1577683

The final terms of the above algorithm can be combined so that beta (β) is solved by one line of

code. I have formatted the output to 4 places. The entire code group is then,

> X <- matrix(c(1,4,6,0,5,4,1,4,7,1,2,2,1,4,6,0,7,5,1,5,1,1,2,5,0,3,4,4),

 ncol=2)

> int <- rep(1,dim(X)[1])

> X <- cbind(int, X)

> y <- matrix(c(10,9,7,4,8,12,11,7,3,5,3,12,9,10), ncol=1)

> beta <- solve(t(X) %*% X) %*% (t(X) %*% y)

> round(beta, 4)

 [,1]

int 7.7903

 -0.1430

 0.1578

with the intercept value of 7.79, and the coefficients for the two columns as -0.143 and 0.158

respectively. We can use the lm() function in R to solve a linear regression. But first X must be

partitioned into two separate variables, x1 and x2.

26

> x1 <- X[,2] # create x1 as the second column of X

> x2 <- X[,3] # create x2 as the third column of X

> lm(y ~ x1+x2) # linear regression

Call:

lm(formula = y ~ x1 + x2)

Coefficients:

(Intercept) x1 x2

 7.7903 -0.1430 0.1578

In this monograph we have covered most of the matrix operations related to basic statistical

analysis using R. There are many more complex matrix operations, to be sure. The operations

described here, however, should serve as a solid foundation upon which other more complicated

matrix functions and operations can be handled.

	Arizona State University
	From the SelectedWorks of Joseph M Hilbe
	August 6, 2011

	Basic R Matrix Operations
	tmpUgtdrC.pdf

