
Arizona State University

From the SelectedWorks of Joseph M Hilbe

1993

Log-Negative Binomial Regression as a
Generalized Linear Model
Joseph Hilbe, Arizona State University

Available at: https://works.bepress.com/joseph_hilbe/11/

https://works.bepress.com/joseph_hilbe/
https://works.bepress.com/joseph_hilbe/11/


.' '.'-: -:'
. ~-,'.,

~ r, '. ' -..... ~\:
s:

.' .~ '.' .

, .. : . ,". . ..
.' '- .. ,

:'. " .. '.
.' ... .: ;

.....
- .' . .

'LOG NEGATIVE BINOMIAL REGRESSION' ..'

ASA
I .

GENERALIZED LINEAR MODEL ... ."... '

. '. .
" '

, "
': .

. '. : .:': .:
; ''. I~ •

'.-' '
...

." J

Joseph M . Hilbe .
Arizona State University

. '.
..'

. ::,
'.': '

Department of Sociology
and

Graduate College Committee on Statistics.
. -. ;,,'

. J.,.

," ' .

. ,-

, Technical Report cas 93/94:-5-26
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Joseph M. Hilbe

(c) 1994 Joseph Hilbe
Contact: atjmh@asuvm.inre.asu.edu

The negative binornlal (NB) is a member of the exponential farnlly of discrete
probability distributions. The nature of the distribution is itself well
understood, but its contribution to regression modeling, in particular as a
generalized linear model (GLM), has not been appreciated. The mathematical
properties of the negative binomial are derived and GLM algorithms are developed
for both the canonical and log form. Geometric regression is seen as an instance
of the NB. The log forms of both may be effectively used to model types of
Poisson-overdispersed count data. A GLM-type algorithm is created for a general
log negative binomial regression (LNB) which iteratively estimates a
heterogeniety factor in addition to parameters and standard errors. Applications
in terms of data generated from a NB random number generator are presented and
modeled using a LNB SAS macro and a like program written in Stata.

1. Introduction

KEY WORDS: Generalized linear model, Count data, Poisson, Overdispersion,
Negative binomial, Log negative binomial, Geometric, Random number generator.

Poisson regression, a member of the class of models known as generalized
linear models (GLM) , is the standard method used to analyze count data.
However, many real data situations violate the assumptions upon which the
Poisson model is based. For instance, the Poisson model assumes that the
mean and variance of the response are identical. This means that events
occur within a period of observation at a constant rate; an event is
equally likely at any point within the period. When there is
heterogeneity in the data, it is likely that the Poisson model is
overdispersed. Such overdispersion is indicated if the variance of the
response is greater than its mean. We may also check for model
overdispersion by submitting the data to a Poisson model and observing
the Chi2-based or Deviance-based dispersion statistic. The model is
Poisson-overdispersed if the dispersion value is greater than unity.
Several software programs provide such information to the user.
Log negative binomial regression can rather effectively be used to model
count data in which the response variance is greater than that of the
mean. I shall first describe the mathematical properties of the standard
negative bi omial. = section 3 I shall develop regression algorithms for
both the ca 0 Lca , a d og- inked form including an algorithm to estimate
a hereroge ie y =ac r ~ addition to parameters and standard errors.
Section 4 ciea s wi applications of the algorithms to appropriate
synthetic data. ?r o=s of indicated mathematical transformations are
listed in Appendix A; a log negative binomial SAS macro, constructed in
the manner described in this paper, is provided in Appendix B.
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Differentiating again, that is, finding the second moment of b (a),
defines the variance V.

V=b"(a) r (l-p)/p2 (2 )

To cast this specification of the variance function in terms of p:

v
(3 )

The linear predictor, X'P, ~, or a, can be translated in terms of p and
r as:

p = r/ (e-6-1), or
r/ (e-'1-1) (5)

a In(p/(p+r)), or
+Ln ( (u+r ) /p) (4 )

The canonical inverse link function, which determines the value of p in
terms of a or ~, takes the form of:

Reparameterizing r so that it is directionally proportional to p2 in the
second term of the variance function, we define k = l/r. Parameterized
in terms of k, results of the above appear as:

a or ~ -In(r/p+1) -In(1/kp+1) or -In(l+l/kp)
b(a) -rln(p) -In(p)/k or -In (1/ (pk+1))
u r(l-p)/p (l-p)/kp or l/k (e-6-1)

l/k (e-'1-1)
V r (l-p)/p2 p + p2/r p + kp2

The negative binomial pdf, parameterized in terms of p and k, can be
formulated as:

f(y; j.L, k) i
r(y+1/k) (kj.L)Y

r(y+1)r(l/k) (l+kj.L)y+l/k

In exponential form the above appears as:

f (y;u,k) i = exp{ yln (1/ (l+l/kp)) - l/k In (l+kp) + ... } (6)
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Note that the results displayed in the summary table above can be easily
reproduced using the reparameterized exponential form of the pdf.
The log-likelihood function can be derived from the pdf as:

11(p;y,k)i = yln(kp)-(y+1/k)ln(1+kp)+lnr(y+1/k)-lnr(y+1)-lnr(1/k)

where lnr is the log-gamma function. For estimation purposes we use the
G1M approach of employing the deviance function as the basis of
convergence. The deviance is defined as:

D/2 (y;p,k)i = 1 (y;y) - 1 (p;y)
The first term of the function represents the maximal fit. It is easily
determined by substituting the value of y for each u in the log-
likelihood function. Hence,

D/2 (y; u , k) i yln(y/p) - (1+ky)/k In((1+ky)/(1+kp)) (7 )

Notice that the log-gamma functions as well as the first term k cancel,
thus simplifying the algorithm.
The quasi-likelihood approach-of Wedderburn (1974) can also be used to
calculate the deviance. Since the negative binomial is a member of the
exponential family of distributions, the derived quasi-Ioglikelihood is
identical to the loglikelihood. Using the McCullagh & NeIder (1989)
specification:

and substituting the NB variance, p+kp2, for V(p),

Integration on p yields

The deviance calculates to the same value as above.

4
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3. The GLM negative binomial and geometric algorithms
The methodology of generalized linear models (GLMs) requires that
estimation be in terms of p; i.e. in the case of the negative binomial
k is placed into the variance and deviance function as a known constant
as p varies. A method to circumvent problems related to the value of k
will be examined later in this section.
GLMs share a common estimation scheme. Although the algorithm may be
formatted in various ways, the canonical negative binomial GLM paradigm
can be structured as follows:

p = (y+mean(y))/2
~ = -In(1/kp+1)
i = 1
WHILE (abs(ddev»tolerance)

w u+ku?
z ~ + (y-p)/w - offset
P = (X'WX)-lX'WZ
~ = X'P + offset
u = 1/ k (e -6 -1 )
oldDev = dev
dev = 2 ~ {yln(y/p) - (l+ky)/k In((l+ky)/(l+kp))}
ddev = dev - oldDev
i = i + 1

/* Nelder initialization */
/* link (k parameterization) */

/* variance function
/* derivative
/* regression
/* linear predictor
/* inverse link

*/
*/
*/
*/
*/

It should be noted that for a value of k=l, the negative binomial model
becomes a geometric regression with the following properties:

Link In(p/(l+p) Inverse Link: l/(e~-l)
Variance: p(l+p)
LL (p;y) i

D/2(y;P)i
yln(p) - (l+y)ln(l+p)

yln(y/p) - (l+y)ln((l+y)/(l+p))

In this respect a comparison can be made between the relationship of the
exponential to the gamma and the geometric to the negative binomial
distributions.
To construct a log-linked negative binomial or geometric model one
substitutes the log and inverse log links, which are the same as the
canonical Poisson form, and adjusts the weighting. The initial ~ link
then takes the form of

~ = log(p)
the inverse link becomes

p = exp(~)

5
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the initial weight is the Poisson variance
w p

and a weight adjustment made just prior to the regression is

The above algorithm may be adjusted so that the actual or observed
information matrix (1M) is used rather than the expected at each
iteration. For data sets consisting of larger than 50 observations, the
difference in standard errors between the two models are negligible. The
algorithms using the expected 1M, called Fisher's scoring, entail fewer
calculations and are hence faster, but at the expense of accuracy when
dealing with very small data situations. The expected 1M slightly
underestimates standard errors; greater underestimation occurring with
increasingly smaller numbers of responses. This occurs only with non-
canonical links, the log negative binomial being no exception. The
algebra for canonical links result in the adj ustments made for the
observed-based algorithm reducing to the expected (Aitkin et al. 1989).
On the other hand, observed-based 1M have difficulty passing the first
iteration when there are very large numbers of cases. Perhaps the optimal
solution is to start the algorithm with a single iteration based on the
expected 1M, then change to the observed-based 1M. This results in a very
slight loss of calculational speed, but is more robust than the straight-
forward approach. It is the approach I have employed in the LNB programs
used later in this monograph.
The observed 1M adj ustment as applied to the LNB algorithm may be
constructed as follows (individual subscripts are assumed):

Common to both constructions:

" = g(p) log(p); hence g' (p) = lip and g" (p)
V(p) = p + kp2; hence V' (p) = 1 + 2kp

V{g' (u)}"
(y-p)/p

(p + kp") Ip2 (l+kp) Ip
u = (y-p)g' (u )

w pi (l+kp)

The observed 1M adjusts the weights w such that
wo = w + (y-p) {V(p)g" (u) + V' (p)g' (u)} I (V2g'(u)")

pi (l+kp) + (y-p) {[- (u+ku") Ip2] + [(1+2kp) Ip]}1 [(p+kp2)2/p3]

p/(l+kp) + (y-p) {kp/(1+2kp+k2p2)}
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and a revised working variate Zo is defined as

wi th Wand Wo representing diagonal weight matrices. Substituting Wo and
Zo into the LNB algorithm provides the proper adjustment.

The goal of the GLM-type LNB algorithm is to adjust the value of k so
that the chi2-based or deviance based dispersion approximates 1, which
is the optimal value for a Poisson model. k represents the amount of
positive heterogeneity in the otherwise Poisson count data. Simulation
studies have given support to the notion that the optimal LNB model
results when k is adj usted in such a manner that the Chi2-based
dispersion, defined as {~(y_p)2/V(p) }/(df), approximates 1.0. An example
will be shown in the next section.
A LNB algorithm, which I have written in SAS and in Stata and which is
to be part of the XploRe statistical package, iteratively converges to
a dispersion value of 1.0. The value of k need not be known prior to
modeling, but is re-estimated with each iteration. The initial value of
k is taken as the inverse of the Poisson dispersion2.

Poisson y <predictors>
chi2 = ~(y_p)2/p
disp = chi2/df
«=l/disp
j=l
while (abs(adisp»tolerance)

oldisp = disp
LNB y <predictors>, k=«
chi2 = ~ (y-p)2/(u+ku")
disp = chi2/df
« = disp*«
adisp = disp - oldisp
j = j+1

4. Application of the log negative binomial
Log negative binomial (LNB) regression is most effectively used to model
count data that violates the Poisson assumption of the equality of mean
and variance. In effect, the LNB model is based upon the premise that
events enter a period of observation with a gamma distribution. Noting
that the Poisson and gamma variances are p and p2/r respectively, the
negative binomial is considered as a Poisson-gamma mixture distribution
with a variance of p+p2/r. I have previously reparameterized this as u+ku"
to allow a linear relationship in the second term. The parameter k can
be regarded as a heterogeneity factor and is entered into the function
as a known constant. In fact, the standard negative binomial formulation
requires that k be fixed and independent of p. If it is parameterized in
any other manner, then the distribution is not a member of a GLM type
exponential family (Nelder 1993) . As a constant, k quantifies the overall
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amount of Poisson-overdispersion in the data.
I shall first provide a small sample NB constant-only model consisting
of 20 observations. The mean and standard deviation of the array is:

Variable lObs Mean Std. Dev. Min Max---------+-----------------------------------------------------
xnb I 20 10.4 6.26099 1 24

Solving the NB variance function for k, we have k = (V-p)/pA2 or
k = (SDA2-mean)/meanA2

(6.26099A2-10.4)/10.4A2 = .26627215

K has a value of 0.26627215. Using a LNB program I wrote in Stata, we can
estimate the coefficient as well as alpha (k). Given this data, we should
find that k approximates .26627 and that the exponentiated value of the
coefficient approximates 10.4.

. g1mlnb xnb
1: Deviance:
2: Deviance:
3: Deviance:
4: Deviance:
5: Deviance:

23.57674 Alpha (k):
23.53502 Alpha (k):
23.52394 Alpha (k):
23.5210 Alpha (k):

23.52021 Alpha (k):

.2653062

.2660151
.266204

.2662541

.2662674

Disp:
Disp:
Disp:
Disp:
Disp:

1.002672
1.00071

1.000188
1.00005

1.000013

Poisson Dp =
Alpha (k)

3.76923
.2662709

No obs.
Poisson Dev =
Neg Bin Dev =
Prob > Chi2

20
77.13131
23.52021
2.44e-13

Chi2
Prob>chi2
Dispersion =

19.00024
.4568205
1.000013

Deviance
Prob>chi2
Dispersion

23.52021
.2152044
1.237906

GLM: Log negative binomial regression (integrated 1M)
xnb I Coef. Std. Err. t P>ltl [95% Conf. Interval]---------+--------------------------------------------------------------------

cons I 2.341806 .1346145 17.396 0.000 2.072032 2.611579
Loglikelihood = -63.928711
exp(2.341806)= 10.400002

The modeling appears remarkedly accurate.
As a more extensive constant-only model, I shall create a 10000
observation array that is distributed as standard negative binomial. The
mean is set as 10 and k as 0.1. The random number generators (RNG) as
well as the LNB and GLM Stata programs are available from the author .

. rndnbl 10000 10 .1
Variable lObs Mean Std. Dev. Min Max---------+-----------------------------------------------------

xnb I 10000 10.0029 4.485678 0 37

Calculation of the appropriate value of k:
(4.485678A2-10.0029)/10.0029A2 = .10112541

8



Submitted to the above described LNB program we find:

. glmlnb xnb
1: Deviance: 3660.276 Alpha (k): .4971298 Disp:
2: Deviance: 7853.827 Alpha (k): .1674273 Disp:

.336788

.752048

12:
13:

Deviance: 10276.85 Alpha (k): .1011623 Disp:
Deviance: 10277.75 Alpha (k): .1011437 Disp:

.9998164

.9999087

Poisson Dp =
Alpha (k)

Chi2
Prob>chi2
Dispersion =

2.011547
.1011245

9998.087
.5006952
.9999087

No obs.
Poisson Dev =
Neg Bin Dev =
Prob > Chi2

Deviance
Prob>chi2
Dispersion

10000
20125.70
10277.75

0.0000

10277.75
.0251263
1.027877

GLM: Log negative binomial regression (integrated 1M)

xnb I Coef. Std. Err. t P>ltl [95% Conf. Interval]---------+--------------------------------------------------------------------
cons I 2.302875 .0044846 513.509 0.000 2.294085 2.311665

Loglikelihood = -28785.963

. di exp(2.302875)
10.002899

Note that the resultant value of alpha (k) is nearly identical to the
value of k we calculated based on the summary information concerning the
array. Exponentiating the estimated constant gives a value equal to that
of the summary mean. Performing the same procedure on random variates
created with various values of k produce similar results.

A more complex example can be created involving a 10000 observation log
negative binomial data set using a random number generator which allows
for input of a mean variable, defined as the inverse of the link
function, and a value for k equal to 0.1. The model has two positive-
valued random normal predictors together with coefficients set as bO=2,
bl=.5, and b2=3.

set obs 10000

gen x1=abs(invnorm(uniform()))

gen x1=abs(invnorm(uniform()))

gen byte bO=2

gen b1=.5

gen byte b2=3

gen Ip = bO + b1*x1 + b2*x2

gen mu = exp (lp)

rndnblx mu, k(.l)

/* inverse log link */

/* Neg. Binomial random number generator, k=.l */

S mitting the data to the above described program results in the
fol owing:

9
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. glmlnb xnb xl x2
1: Deviance: 71004.16
2: Deviance: 18688.18

Poisson Dp =
Alpha (k)
Chi2
Prob>chi2
Dispersion

151.1929
.1001414

Alpha (k): .0066141 Disp: 7.103975
Alpha (k): .0469862 Disp: 1.843185
Alpha (k): .1001323 Disp: 1.000078
Alpha (k): .1001401 Disp: 1.000012

No obs. 10000
Poisson Dev = 1470443
Neg Bin Dev = 10213.64
Prob > Chi2 0.0000
Deviance 10213.64
Prob>chi2 .063523
Dispersion 1.02167

7: Deviance: 10214.30
8: Deviance: 10213.64

9997.123
.4977728
1.000012

GLM: Log negative binomial regression (integrated 1M)
xnb I Coef. Std. Err. t P>ltl [95% Conf. Interval]---------+--------------------------------------------------------------------xl I .4992926 .0056736 88.003 0.000 .4881724 .5104128
x2 I 2.991436 .0056733 527.279 0.000 2.980316 3.002556

_cons I 2.008955 .0077412 259.515 0.000 1.993782 2.024127
Loglikelihood = -51184.148

The estimates are nearly the same as those used to create the data set.
Iteration on a deviance-based dispersion rather than the Chi2-based
dispersion yields nearly identical coefficients and standard errors.
However, the values for alpha (k) and 11 change to 0.1027483 and -51185.2
respectively. Both of these values are somewhat worse than those produced
using Chi2 as the bases of convergence. This fact, together with similar
comparisons on other data sets , gives plausible reason to use Chi2 rather
than deviance-based convergence.
Running the same model using Poisson regression results in estimates
which are fairly close to those produced by the above 1NB model.
However, as expected, the standard errors are much too narrow. This
provides evidence that the predictor significance values may be overly
optimistic when modeling overdispersed data with Poisson regression; i.e.
values may indicate that predictors significantly contribute to the model
when in fact they do not. Moreover, model GOF statistics based on Chi2
and Deviance values prove satisfactory for the 1NB but are clearly poor
for the Poisson .

. glm xnb xl x2, f(poi)
Iter 1 Dev = 9572079.0000
Iter 2 Dev = 2459654.2500
Iter 3 Dev = 1496865.0000

Iter 7 Dev = 1470443.1250
Chi2
Prob>chi2 =
Dispersion =

1511475
o

151.1929

No obs.
Deviance
Prob>chi2
Dispersion

10000
1470443

o
147.0884

Poisson distribution
Canonical link

xnb I Coef. Std. Err. t P>ltl [95% Conf. Interval]---------+--------------------------------------------------------------------xl I .4375138 .0003826 1143.478 0.000 .4367639 .4382637
x2 I 2.96794 .0003005 9877.023 0.000 2.967351 2.968529

_cons I 2.118263 .0009559 2215.872 0.000 2.116389 2.120136
Log-likelihood: -768064.9375

10



I shall next provide an example using a SAS log negative binomial macro
on a random data set consisting of 200 observations with covariates and
constant set at the same values as before. Data is stored in a file named
"lnbxmp". The macro call is:

%hilbenb(dsin=lnbxmp, yvar=xnb, xvars=xl x2);
Partial SAS output consists of the following:

Log Negative Binomial Regression

The GENMOD Procedure

Analysis Of Parameter Estimates

Number of iterations:
Alpha:
Deviance:
Pearson Chi2:
LogLikelihood:

6
0.1114

197.9161
197.0015

-1324.6208

Deviance/DF:
Pearson Chi2/DF:

1.0047
1.0000

Parameter Estimate Std Err ChiSquare Pr>Chi

INTERCEPT
Xl
X2
SCALE
NOTE: The

DF

1
1
1
o

scale

2.0394
0.5041
2.9717
1.0000

parameter was

0.0804
0.0392
0.0530
0.0000

held fixed.

643.3546
164.9752

3140.3094

0.0000
0.0000
0.0000

Log Negative Binomial Regression

. glmlnb xnb xl x2
1: Deviance: 2654.544
2: Deviance: 272.3188

Stata program output on the same data results in:

Chi2
Prob>chi2
Dispersion

197
.4865995

1

Alpha (k) : .0058463 Disp: 13.67701
Alpha (k) : .0799599 Disp: 1.378137

Alpha (k): .1113618 Disp: 1.000008
Alpha (k): .1113626 Disp: 1.0000

No obs. 200
Poisson Dev 33058.57
Neg Bin Dev 197.9147
Prob > Chi2 0.0000

Deviance 197.9147
Prob>chi2 .4682813
Dispersion 1.004643

5: Deviance: 197.9161
6: Deviance: 197.9147

Poisson Dp =
Alpha (k)

171. 0485
.1113627

GLM: Log negative binomial regression (integrated 1M)

xnb I Coef. Std. Err. t Po l t ] [95% Canf. Interval)---------+--------------------------------------------------------------------
xl I .5040734 .0392447 12.844 0.000 .427102 .5810449
x2 I 2.971669 .053029 56.039 0.000 2.867662 3.075676

_cons I 2.039392 .0804031 25.365 0.000 1.881695 2.197088

Log1ikelihood = -1324.6208

As can be observed, the output is nearly identical.
The algorithms appear consistent and appropriate to the modeling of log
negative binomial data. Moreover, it is clear that a foremost feature of
LNB regression is that standard errors for otherwise overdispersed
Poisson count data are properly adjusted.
Subsequent residual analysis must be performed prior to casting final
judgments about a model. Standard negative binomial residuals can be
defined as

11



Pearson

Standardized Pearson:
(y-p)/sqrt((p+kp2)*(1-h))

Deviance:
sgn(y-p)*sqrt{2*(yln(y/p)-(1+kp)ln((1+ky)/(1+kp))}

Standardized deviance:
sgn(y-p)*sqrt{2*(yln(y/p)-(1+kp)ln((1+ky)/(1+kp))/(1-h)}

Summary:
The negative binomial model fits squarely within the GLM-type exponential
family of distributions. The log-linked form of the distribution allows
useful modeling of many types of overdispersed count data. However, if
overdispersion results from autocorrelation, the event counts are not
independent and hence the likelihood function is not equal to the product
of the individual probability functions. Obviously the standard GLM-type
model should not be used in these situations. But where there is
independence and heterogeneity is not the result of longitudinal effects,
the negative binomial may prove to be a powerful addition to an analysts
statistical toolbox.

I should like to thank Walter Linde-Zwirble of Health Outcomes
Technologies in Pennsylvania for his assistance in the development of the
related RNGs, and John Nelder, Imperial College, London, for his helpful
suggestions. Gordon Johnston, SAS Institute, assisted in the development
of the SAS macro.
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Notes:
1. Lawless (1987) discusssed the log-link specification of the negative
binomial within the context of overdispersed Poisson data. However, it
appears that relatively little attention has been given to his arguments.
The negative binomial has heretoforward been largely ignored in
commercial software packages having GLM capabilities.
2. Breslow (1984), following William's (1982) method for accommodating
extra-binomial variation, devised an algorithm that is somewhat similar
to the one here proposed for estimating k, the heterogeniety or "index"
factor. However, the initialization is different and the algorithm is
based solely on Poisson errors. Modeling takes a quasi-likelihood
approach. Lawless details the maximum likelihood technique of handling
negative binomial regression, but appears to use Breslow's Poisson method
to estimate LNB models. This paper takes a quite different tactic in that
it starts from the probability distribution, derives moments etc.,
develops the appropriate GLM algorithms, and subsequently finds the LNB
appropriate to model certain types of overdispersed count data. Moreover,
the use of the observed information matrix is emphasized.

12



APPENDIX A: Proofs
Proof of (1): Determining the value of the mean, ~

~ = b' (8) = dp/d(8) * d(b)/p using the chain rule

Given 8 as equal to In(l-p)
and b(8) equal to -rln(p)

Hence b' (8)

d(8)/dp
dp/d(8)
d(-rln(p))/dp

(l-p)/-l * -rip
r(l-p)/p

-1/ (l-p)
(l-p)/-l
-rip

Proof of (2): Determining the value of the variance, V
V = b" (8) = dp/d(8) * d(b')/p using the chain rule

With dp/d(8) equal to (l-p)/-l it remains to calculate d(b')/p

d(r(l-p)/p)/dp (-r/p)- r(l-p)/p'
-rip'

(l-p)/-l * -rip'
r (l-p)/p'

Hence b" (8)

Proof of (3): Determining V in terms of ~

V r(l-p)/p'
r(l-p)/p * l/p
r(l-p)/p * {pip + (l-p)/p)
r(l-p)/p * {1+ (l-p)/p)
r(l-p)/p * {1+ r(l-p)/rp}
r(l-p)/p * {1+ (r(l-p)/p)/r)

u r(l-p)/p

V u (1 + u/ r)
u + ~'/r

Proof of (4): determining the link function in terms of ~

Having

then

since r(l-p)/p
r«l-p)/p),

~/r (l-p)/p
l/p u/ r + 1
P r/ (u+r )
1-p ~/(~+r)

Recalling that 8
then 8

In(l-p),
In(~/(~+r)) or -In((~+r)/~)

Proof of (5): Determining the inverse link function

Given 8 +Ln «~+r) /~)
-In (r/~+ 1)
r/~ + 1
e-8 -1

r/ (e-8-1) or r/ (e-~-l)

Proof of (6): Transforming to exponential family form

f(y;~,k)i = exp{ y t Ln r ku) - Ln f l+kuj ) - l/k Ln t l+ku) + ... }
= exp{ yln(k~/(l+k~) - l/k In(l+k~) + }
= exp{ yln(l/ (1+1/k~)) - l/k Ln t l+ku) + }

Proof of (7): Determining the Deviance from the LL function

D/2 (y;~,k)i = yln(ky)-(y+l/k)ln(l+ky) - yln(k~)+(y+l/k)ln(l+k~)
yln t yz u) - (y+1/k) In«1+ky)/(1+k~))

or yln(y/~) - (l+ky)/k In«l+ky)/(l+k~))

13
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APPENDIX B: SAS log negative binomial macro

/************************************************************************/
/* SAS SAMPLE LIBRARY */
/* */
/*' */
/* NAME GLM - LOG NEGATIVE BINOMIAL REGRESSION, Version 1.0 */
/* TITLE NEGATIVE BINOMIAL, LOG LINK WITH */
/* HETEROGENEITY PARAMETER ESTIMATION */
/* PRODUCT: SAS */
/* SYSTEM ALL, VERSIONS 6.08 AND ABOVE */
/* KEYS */
/* PROCS SAS/STAT GENMOD */
/* SUPPORT: SASGJJ */
/* AUTHOR: Joseph Hilbe, Arizona State University, Tempe, AZ */
/* Internet: atjmh@asuvm.inre.asu.edu */
/* */
/* REF Hi1be, Joseph (1994), Log Negative Binomial Regression */
/* Using the GENMOD Procedure SAS/STAT Software, */
/* Proceedings of SUGI 19, SAS Institute. */
/* Hilbe, Joseph (1994), Log Negative Binomial Regression as */
/* a Generalized Linear Model, Technical Report 26, */
/* Graduate College Committee on Statistics, Arizona */
/* State University, Tempe, AZ 85287. */
/* MISC: */
/* */
/************************************************************************/

/************************************************************************
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I %hilbenb(dsin=lnbex, yvar=xnb, xvars=x1 x2 f1, clsvars=f1,
I offvar=ofl);
I I
************************************************************************/

USAGE:
1. Load
2. Load
3. Call

data to be modeled into memory
this macro into memory: hilbenb.sas
macro with desired options

%hilbenb(dsin=<data name>, yvar=<response>, xvars=<predictors>,
clsvars=<factors>, offvar=<offset>, ithist=<default=O, set 1 to
show iteration history>, expected=<default=O, use of observed
information matrix; 1 = expected Fisher information matrix.

EXAMPLE:
Data set named Inbex with response xnb, two predictors xl and x2,
a factor f1, and offset of 1.

%macro hilbenb(dsin=, yvar=, xvars=, clsvars=, offvar=, ithist = 0, expected 0);
* (c) 1994 Joseph Hilbe
* Uncomment the following for 'a debug trace;
* options mprint;
title Log Negative Binomial Regression;

* Turn off printing;
%global print;
%let prInt -OFF;
%let maxiter = 50;
%let iter 1;
%let cony = 0;

%if %upcase(&offvar) ne %then %let offstmt = OFFSET=&offvar;
%else %let offstmt= ;
%if %upcase(&clsvars) ne %then %let clsstmt = %str(CLASS &clsvars;);
%else %let clsstmt= ;
%if(&expected=l) %then %let expstmt = EXPECTED;
%else %let expstmt= ;

* Data is first modeled using Poisson regression;
proc genmod data=&dsin;

&clsstmt
make 'modfit' out=A;
model &yvar = &xvars / dist poisson

&offstmt;
run;
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data NULL;
%if( &ithist = 1 ) %then %str(file print;);
set A;
if N = 3 then

do;
call symput( 'disp', putt valuedf, best10.6 ) );
%if( &ithist = 1 ) %then

%do;
temp2 = l/valuedf;
put 'Iteration number:
put 'Pearson Chi2/DF:
put 'Alpha:

%end;

, "&iter";
, valuedf;
, temp2;

end;
run;

%let alpha = 1 / &disp;

* Iterate on NB model;
* Iterate until dispersion stops changing;
%do %while( &conv = 0 ) ;
* Data is now modeled using a log-linked negative binomial;
proc genmod data=&dsin;

&clsstmt
make 'modfit' out = A;
K &alpha;

-A MEAN;
Y -RESP-;

variance VAR _A+_K*_A*_A;
if ( Y>O)-thenD = 2 * ( Y*log( Y/ A)-

- -(1+ K* Y)/ K * log«l+ K* Y)/(l+ K* A)));
else if ( Y=O) then D = 2 * log(l+_K*_A)/_K;
deviance DEV D;
model &yvar = &xvars / &offstmt link = log itprint;
run;

%let iter = %eval( &iter + 1 );

data NULL;
%if( &ithist = 1 ) %then %str(file print;);
set A;
if N = 1 then

do;
call symput( 'deviance', putt value, 10.4 ) );
call symput( 'devdf', putt valuedf, 10.4 ) );

end;

if N 3 then
do;

call symput( 'PX2', putt value, 10.4) );
call symput ( 'PX2df', put ( valuedf, 10.4 ) );

temp3 = &alpha;
if ( ABS( valuedf - &disp ) <= 1.e-3 OR &iter > &maxiter )

then call symput( 'cony', '1' )
else

do;
temp3 = valuedf * temp3;
call symput( 'disp', putt valuedf, best10.6
call symput( 'alpha', putt temp3, best20.10

end;
%if( &ithist = 1 ) %then

%do;
put
put
put

%end;

) ;
) ;

'Iteration number:
'Pearson Chi2/DF:
'Alpha:

, "s Lt er "r
, valuedf;
, temp3;

end;
run;

* Print final model;
%if ( &conv = 1) %then

%do;
proc genmod data=&dsin;

&clsstmt
make 'modfit' out = A;
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make 'parmest'
K &alpha;

-A = MEAN;
Y = -RESP-;

variance VM

out B;

D = -2 * ( Y*log{ K* A)-{ Y+l/ K)*log{l+ K* A)+
- Igamma{_Y+l/_K)-lgamma{ Y+l)-lgamma{l/_K));
deviance DEV D;
model &yvar = &xvars / &offstmt &expstmt link = log
run;

data NULL;
file prInt;
set A;
if N = 5 then do;

IterlO = &iter;
alphalO = &alpha;
put 'Number of iterations:
put 'Alpha:
put 'Deviance:

'Deviance/DF:
put 'Pearson Chi2:

'Pearson Chi2/DF:
put 'LogLikelihood:
end;

run;
%end;

* End DO loop;
%end;
proc print data = B;

runi
%let print = ON;
title; -
options nomprint;
%mend hilbenb;

'iter10 10.0;
, alpha10 10.4;
, "&deviance
, "s devdf "r
, "&PX2
, "&PX2df";
, value 10.4;
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2. Mathematical properties of the negative binomial
The negative binomial is a member of the exponential family of discrete
distributions. In this respect, the negative binomial is closely related
to the Bernoulli, binomial, Poisson, hypergeometric, and geometric
distributions. The first three have enjoyed substantial use as
distributions underlying logistic and Poisson regression - the most
noteworthy of the GLM family. The negative binomial distribution is
itself well understood, but its contribution to regression modeling has
not been app.rec.iat.ed ;" This is unfortunate since its proper use can
significantly enhance our perception of certain types of count data
situations.
The negative binomial probability distribution can be thought of as the
probability that there will be y failures before the rth success in a
series of Bernoulli trials. Taken in this manner, the negative binomial
pdf appears as

In the complete exponential family canonical form (McCullagh & NeIder,
1989)

exp{((y6-b(6))/a.(q») + c(y,q»}

the above appears as:

Hence, 6eO
p
b (6)

In(l-p)
1-p
1-ee
-rln(p)

-rln (l-ee)

a.(q»,the scale parameter, is taken as 1, and c(y,q» is the normalization
factor.
The expected mean, p, is determined by differentiating b(6) with respect
to the canonical parameter.

u b' (6) r(l-p)/p (1)
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