Skip to main content
Article
Singular Perturbation Theory for DC-DC Converters and Application to PFC Converters
Proceedings of the 38th IEEE Annual Power Electronics Specialists Conference (2007, Orlando, FL)
  • Jonathan W. Kimball, Missouri University of Science and Technology
  • Philip T. Krein
Abstract

Many control schemes for dc-dc converters begin with the assertion that inductor currents are "fast" states and capacitor voltages are "slow" states. This assertion must be true for power factor correction (PFC) converters to allow independent control of current and voltage. In the present work, singular perturbation theory is applied to boost converters to provide rigorous justification of the time scale separation. Krylov-Bogoliubov-Mitropolsky (KBM) averaging is used to include switching ripple effects. A relationship between inductance, capacitance, load resistance, and loss resistances derives from an analysis of an approximate model. Similar results hold for buck and buck-boost converters. An experimental boost converter and a simulated PFC boost support the derived requirement.

Meeting Name
38th IEEE Annual Power Electronics Specialists Conference (2007: Jun. 17-21, Orlando, FL)
Department(s)
Electrical and Computer Engineering
Sponsor(s)
National Science Foundation (U.S.)
Comments
This work was supported in part by the National Science Foundation under NSF Award ECS 06-21643.
Keywords and Phrases
  • Averaging,
  • Integral Manifold,
  • Power Factor Correction,
  • Singular Perturbation,
  • AC Generator Motors,
  • Capacitance,
  • Control System Stability,
  • DC-DC Converters,
  • Electric Currents,
  • Electric Power Factor,
  • Power Converters,
  • Power Electronics,
  • Separation,
  • Switching Networks,
  • Approximate Models,
  • Bogliubov,
  • BOOST Converters,
  • Buck-Boost Converters,
  • Capacitor Voltages,
  • Control Schemes,
  • Independent Control,
  • Inductor Currents,
  • Load Resistances,
  • PFC Converters,
  • Power Factor Correction Converters,
  • Ripple Effects,
  • Singular Perturbation Theory,
  • Time-Scale Separation,
  • Perturbation Techniques
International Standard Book Number (ISBN)
978-1424406548
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2007 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
6-1-2007
Publication Date
01 Jun 2007
Citation Information
Jonathan W. Kimball and Philip T. Krein. "Singular Perturbation Theory for DC-DC Converters and Application to PFC Converters" Proceedings of the 38th IEEE Annual Power Electronics Specialists Conference (2007, Orlando, FL) (2007) p. 882 - 887 ISSN: 0275-9306; 2377-6617
Available at: http://works.bepress.com/jonathan-kimball/9/