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Fig. 4. Plots of the contour Cin the w-plane and of its mapping C’ on the a-
plane.

where N is the number of zeros of the denominator in the
interior of C.'* The integral will be evaluated in the a-
plane. Through (32) and (Cl) a,(») and a;(w) are known
everywhere on C. This makes the mapping of C simple. The
image C' is shown in Fig. 4. The mapping is conformal
except at the points w = 0, + 4, and . The integral {C2)
transforms to

da
ca—a
in the a-plane. Now, if a lies in the interior of C’, N equals

= 27N

unity. On the other hand, if 4 is a point outside of C’', N
equals zero. So, in the upper o half-plane the function a(w)
has one and only one a-point if C’ encircles the point a and
nowhere takes the value of any a outside of C’. As
(— 20+ 1)'*= Fi20 F1)'"% alw) in (32) is an even
function. Consequently C is the boundary of the total do-
main of values of @ over the whole w-plane.
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By use of elementary quantum-mechanical arguments we demonstrate how an observer with
uniform acceleration a perceives himself as immersed in a heat bath of temperature kT = a#i/2mc.

There has been much interest of late in the subject of
black holes and the existence of an intrinsic thermodynam-
ic temperature.' This phenomenon can also be demonstrat-
ed more simply in the case of a uniformly accelerating ob-
server, who in his rest frame sees himself as being immersed
in a heat bath of temperature®

kT = ati/2me, (1)

where a is the proper acceleration. Although this result is
generally derived and discussed in the context of quantum
field theory,® we show in this note that this temperature
dependence may also bé demonstrated via simple quan-

tum-mechanical arguments which are accessible to ad-
vanced undergraduates—or at least to any student who has
had exposure to the quantized radiation field.

We consider first the electromagnetic decay of a one
electron atomic state |4 ) at zero temperature. We write the
Hamiltonian as

H=H,+V,, 2)
where
2
Ho= - L epin ()
2m



is the free Hamiltonian for the atomic system and*

A(x,? )-A(x,t) 4)

. 2
v, = A1)V + 2 -
mc 2mc

represents the interaction between the atom and the pho-
ton field. Here

A=) )3/2,/ Z( &llA Je™* " Vays

+€(k’/l)e—ikx+xwtt (5)
is the radiation field operator in the usual Coulomb gauge
V-A=0 (6)

and a, ;, aj, are the usual annihilation, creation opera-
tors for photons—if |n, ; ) is a state with n photons in the
mode k, A then’

(2 Ink’,/.’) =Vka 5,1/1'63(]‘ —K)|(n — 1)1 ),
a;rul |”k./1> =Nya + lj(n + l)k,,l)'

For simplicity suppose that our atomic system has only
two levels—an excited state |4 ) and a ground state |B )—
and we require that at ¢ = O the system is in the state

|¥ (¢ = 0)) = |4 )|vac), (8)

(7)

where |vac) represents the state with no photons present.
The state | ¥ (t = 0)) is, of course, an eigenstate of H:

Ho|¥(t=0) =EQ|¥(t=0)), )

where E Q' is the energy of state 4 in the absence of any
radiation field coupling
#
(~EZ +ep)a) =EQI4). (10

We now calculate the amplitude that the system remains
in the excited state |4 )}|vac) at later time ¢. Using time-
dependent perturbation theory this is

F,(t)= (vac|{4|U(t)]|4 )|vac), (11)

where’®

U(I) =e~ (i/RHyt J dt 1, — (i/B)Hyt — ¢t )V (t )e—(z/ﬁ)Hot

+(_L') fdtnf dt' e~ V/AHN—t7)
fi o o

X V(¢ ")e =~ OMH" — 01 (¢ 7)o — WRHS" 4 . (12)

is the usual time evolution operator. Neglecting the higher-
order term ¢*/2mA ? in the interaction’ we have

(vac|{4 |V,(t')|4 )|vac) =0 (13)
and so must go to second order in the interaction.
(vac|{4 |V;(t")e = /H\" =11y (2")|4 Y|vac). (14)

We find then, in the electric dipole approximation—
k-x
e =1—

. o 2 ot ¢~
FA(t)=e““/ﬁ'E(‘"[1+(_ei) fdt”f dr’
mc (4] 0

Xe(r/ﬁ)Eﬁ”(z" — ”(A |VA IB )e—(i/mE‘,‘,?'(z" —t)
]

X (B |V;|4)Gy(t",¢"0,0) + ] (15)

where
Gij(tz’tl»xbxl) = (v'aclA-(tz,xz)Aj(tl,xl)|vac)

(‘;’)‘(2‘0 )t

Xe—xa)(lz—t,)+ik-(x2—x,'. (16)

The time integration is most easily accomplished via a
change of variables

t t” t/2 S t 2t — 28
J-dt”f dt'=J- dSJ.ds+f dSJ ds, (17)
o (1} 0 0 t/2 0

where S=(t” +¢)/2,s=1" —t'. Then

(0] 0

_ ifi ‘4 — ifi 2
EY-E9—#w \EY—E9—fw
X( i/ﬁ(E',?’—E‘f;”-—ﬁw)t/Z_i_l i/ﬁ(E‘,:”—E‘,‘,"—»ﬁwit_%) (18)

The term involving the exponentials is rapidly osc1llat1ng
and can be neglected for reasonable values of ¢. Fmally
then the integration over k may be performed usmg the
usual convergence factor o— + i€ and the identity®

1 =P( L )~i77'6(a) — o). (19)
® — oo+ i€ W — Wy
We have then
. 0] ; ﬁr
F.lt ___e—lx/ﬁiE‘Ah[l_L( ; A)t+m]
) P 5
:e(i/ﬁ)(Eﬁ" +AE ), - rAr/z’ (20)
where
2 (4) on2
(E( ) _ K¢ )) J~
AE, = P
4 # (277')32a)2
LB (et el )P a)
E(Oi Elo) fiw

is the usual energy shift predicted via second-order, time-

independent perturbation theory and

CE—EYP [_d%
# 27204

X (B |ékA }r|A)[? {22)

is the width of the excited state |4 ) as given by Fermi’s
golden rule. Here we have used the identity

_Fy (23)
m

I, = S 278(EQ — E — fiw)

[Ho,r] =

Note also that if we apply similar techniques to the ground
state | B )|vac)we find

Fy(t) = {vac|(B|U(t)|B)|vac)

Ne—i(l/ﬁi(E 4 AEB)t (24)
2(E|0j E(Oi)Z
AE; =
B # J. (2#)320) 2P
o L44 (kA )r|B ) ?
E“” EY —tiw (25)

is the energy shift of state B given by its interaction with the



radiation field and there is no decay width I' since
ED _EY — fiw <0. (26)

Therefore then we have merely derived familiar results
by a somewhat cumbersome procedure. However, this
method may easily now be generalized to the situation that
the atom is immersed in a heat bath at temperature 7'and to
the case of finite acceleration. In the former case it is well
known that the “vacuum” state |vac) ;- is no longer a state

Gg(tz»t1’x29x )= T<vac'A'(x2’t2)Aj(x1!tl)|vac>T

with no photons present but rather is a state having'®
nlw) = 1/[exp{hw/kT) — 1] 27)

photons in each mode k, 1. We can now repeat the previous
analysis, defining

Fi(t)= r{vacl{(S|U(t)|S )|vac) S=AB. (23

The derivation goes through as before, but now with

= [ i Salloh oAl [nfo) 4 T]e et =10+ wi]

d k 1 — — ik{x x 1 it —t el — x
- J(Zﬂ)32m i’ ;e (led )& koA )[ Fol KT _ Emm b 4 (WT—_—I + l)e its — 1) + de(x, 1)],
(29)

where we have used Eq. (7). The terms in this expression are easy to interpret—the piece involving simply e ~**4’ is the
spontaneous emission considered previously, the term involving n(w)e ~ “* represents stimulated emission while n(w)e + 4*
accounts for absorption. Substitution into Eq. (15) then gives

F;‘(t)=e-—(i/ﬁ)(E§))+AEs)te—I‘st/2 S=AB (30)
with
ezE(O)_E(mz 4%k
ap, =B p [ S (B el brid)
1 EY—EY) 1 )
X + , 31
(E(O)_E(O)_ﬁw (E‘O)—E(g))z— Hw? ™/ T _ | (31)
EEQ—EQY 1 EO _EO© 1
4B, = — £t " f ; 2l<B|e(k,Mr|A>|2( e+ ) =5 T )
#i (272w EQY—EY + fw (EQ —EQY — #w® ¢ —1
RO £ 2E(0|_E(0))2 d3k
I —e (EQ E’)/kTr =e( 4 B B2k \rld )2
) 1= SR [ S ki)

X278(E'Q — EQ — fiw)(e™/T — 1)~

We see then that there exist temperature dependent components to the radiation field energy shifts which change £, and
E, by identical amounts but in opposite directions. Also, we note that state B has now picked up a nonzero decay width '
corresponding to absorption. Of course, if the system is in thermal equilibrium, then transitions from A to B must proceed at
the same rate as those from B to A, so the populations of these two states must be related by

nyy =ngly,

(32)

ny =£ - e—lEﬁ”—Eg”)/kT, (32)
ng I,
as expected.

Finally, consider now that the atom is traveling through Minkowski space at fixed acceleration a. We may then represent
its motion as'!

t =< sinh%Z, x=yp=0, (33)
a c
in terms of the proper time 7 measured by an observer traveling with the atom. As seen by this observer riding with the atom,

the amplitude to remain in the same state 4 or B after time 7 is
$(7) = o (vac|(S |U(7)|S ) |vac),

2
z=Hcosh® — 1),
a c

o) 2 a . © Oy
= oy (LY [T [ g S S 19 5757191506 51r",700) + (34)
mc 0 0

where |vac), is the Minkowski vacuum as perceived by the accelerated observer and
G?j(TZ’Tl’xDxl) =4 <Vac|Ai(x2’7-2)Aj(xl’Tl)|vac>a' (35)
Now, however, we cannot expand as in Eq. (16) since at constant acceleration we no longer have simple plane waves as



solutions of the Maxwell equations. In principle one could solve the Maxwell equations for constant acceleration and write

G ¢ as a sum over such solutions.
I-Iowever, it is simpler to perform a coordinate transformation. We note that, temporarily forgetting about the polariza-
tion terms, the k integration in Eq. (16) can be performed'?

3 2
6iiG,~,-(tz, t, Xy, X)) = 2f (d ’)‘3 fic ) — ilt, — 1) + fe(x, — x,)

=——1;2-J dke—ikc(‘z*’x)Sink X2_xl| — _E 1 (36)
o

|x; — X, 21 St — 1) — (X, — X, .

Now considering the atom moving through Minkowski space at finite acceleration we have from Eq. (33)

ar ar c* ar ar \* c* . T, —T
Aty — 1)) — (%, — X, = —a—(smh cz — sinh—L cl) - (cosh -—;l — cosh Tl) == sinh? (a -#) (37)
This coordinate change yields the correlation function G in the moving system.
e #ia* Ty—T
G ;(75,71,0,0) = — = cschz(a 2 » ‘). (38)
It is convenient to rewrite this function as'
#ia? 2( T—ie) i 1 i [( . 21rC )2 -1 [( , 21r¢ )2]—1]
— ——csch?| a = + — f——n + H7r+F s (39
27°¢? 2c 2% \(r — i€ z a a )
so that
ﬁa2 2( T— 16) dsk (ﬁc2)[ — iwT - —iw|[T — i(2mc/a)n] io[r + i2mwe/a)n] ]
— csch?|a =2 —]le + (e=% +e )
27 2c (2mP\ 20 ,,Z 1
d3k (ﬁcz)( i 1 . )
= 2 — loT + (e T + eta)'r)). 40
(217-)3 20 e21r¢uc/a -1 ( )
Denoting then symbolically’*
Yeé (kA kA ):Z &ikA )&k A) (41)
A a®o 4
we have, in complete analogy to the derivation of Eq. (20),
a(r) = & irRED + AEs)re - rgr/z, 42)
where

SEY—EQF [_d%

AE = Ble (kA )r|d4)|?
y - e SIBIE (eA) )
E® _ EO
<P 1 1, E/-Ej)
EQ_EQ _#o & —1 (EV—-EQP? — #w?
ED—EQY [ d%
AEG = — B|ée*(kA)r|4)|?
) T I kA )]
E© _ g
X P ! sl ., Ei-Ey) (43)
EQ _EQ+#0 é&™"—1 (E9Q—EQ? — fin?
re =e—2nc(£9’—59’)/aﬁ a _ e(EQ —EQ) d3k z
® 4 # 2m 20 4
X278(E'D — EQ — #i00)| (B |&° (kA )- r]A ) (Twl—l)
I
These terms then have the same form as their finite tem- It is well known that in the state we have called |vac)—i.e.,
perature counterparts—Eq. (31)—but with the state at temperature zero with no photons present—
_ there exists an energy i#iw per mode which is associated
kT = ati/2me, 44 With the so-called zero-point motion of a quantum field. '
which is the correspondence we were attempting todemon- ~ That is, we have for each mode
strate. (vac[3[E*(k,A) + B?(kA)]|vac) = Miw. (45)

Although mathematically we have shown then this cor- . L.
respondence between temperature and acceleration, it is Since |E | = |B | for the radiation field we have

also possible to understand physically what is taking place. (vac|E*(kA )|vac) = Jfiw, (46)



so that there exists an average strength of the electric field
strength even in the vacuum state. This field strength may
be considered to be the reason for spontaneous emission.
This can be demonstrated by using Fermi’s golden rule and
the relation'®

E= -4 47)

at
between the electric field and the vector potential (at 7 = 0)

A—f K 2uSES — EQ — fw)e®
2r7%
XS (A |7, |BY(B |1, )

X (vac|E;(k,A )E; (kA )|vac)

d /(321T E&O)—-EQ)—h&))ez@
(2m) #

XY (B [ékA)r|4 ) (48)
A

in agreement with Eq. (22). Thus it is the interaction of the
electron with these virtual photons associated with the
zero-point motion which is responsible for spontaneous
emission. When the electron is accelerated it still sees this
ensemble of virtual photons, of course, but now because of
the particular form of its motion—Eq. (33)}—we see by
comparison of Eq. (43) with Eq. (31) that some of these
virtual states appear as if they were rea/ photon states with
a thermal distribution.

n(w) = 1/(e™* — 1) (49)
associated with the temperature kT = afi/2wc.
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