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We use chiral symmetry to calculate the very long distance contributions to the K L - K S mass difference. We determine 
that the dominant effect arises from the two-pion dispersive contribution, which by itself produces a large result comparable 
to or greater than the experimental mass difference (with the correct sign). Some contributions from intermediate distance 
are also estimated and could be significant. These conclusions reinforce the need, first pointed out by Wolfenstein, to in- 
clude an additive parameter to account for the long distance contributions in phenomenological studies of the K L - K S 
mass difference. This parameter may be determined from the data if the B-meson lifetime is as large as recent experiments 
indicate. 

The K L - K s mass difference (Am - m L - ms)  is 
one of the most sensitive measures of AS = 2 weak in- 
teraction processes. It has been frequently been used 

as an important constraint on the underlying parame- 
ter space of electroweak gauge theories * 1 

In attempting to gain a theoretical understanding of 
Am, it is useful to characterize its contributing ampli- 
tudes as either short-distance (r ~ m c l ) ,  long-distance 

(say r >  me1 where e is the I = J  = 0 7nr enhancement), 
or of intermediate range ( m c l  ~< r ~ me1).  The short- 
distance contribution, calculated from the box dia- 
grams of fig. 1, is quite often the only one employed 
in phenomenological applications [2]. However as em- 

phasized by Wolfenstein [3] and by Hill [4] there may 

also be significant effects arising from long-range ("dis- 
persive") contributions associated with low-lying inter- 
mediate states. Such long-distance contributions can 
modify in an important way the results of analyses 
which omit them. Indeed Wolfenstein has advocated 
that an additive constant be included in calculations 
involving Am in order to at least represent the possi- 
bility of dispersive components. 

It is our purpose in this paper to calculate the long- 
est distance contributions using the techniques of clair- 

,1 References to phenomenological uses of the KLK S mass 
difference may be found in ref. [ 1 ]. 
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al and SU(3) symmetries. These contributions (which 
turn out to be large) are not optional; they must be ac- 

counted for. We will at the end of the paper also com- 
ment on how such dispersive contributions modify at- 
tempts to constrain the t-quark mass. 

Let us first point out that recent measurements of 
the B-meson lifetime, if correct, allow one to extract 
the size of the dispersive contribution from Am. Fol- 

lowing refs. [3,4], we introduce a quantity D to pa- 
rameterize non-box amplitudes, 

Am = Ambo x + D A m ,  (1) 

G,E,T 
a 

U,c,t 

B 

U,C,t U, c,t 

Fig. 1. Short distance contribution to KL-K S mixing. Solid 
(wavy) lines depict the propagation of quark (W-boson) de- 
grees of freedom. 
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with 

Ambox = ½(GFMw fK mK/rr)2 B 

× v sv;dVjsV* Aij, (2) 
i,] = u, c, t 

where Vii are the KM matrix elements, Aii are known 
functions of  quark masses [1],  and [with I '~ = 7u(1 
+ 75)] ,  and 

3 - 2  - 0  B = ~(mKfK) (K d~FLudlK0).  (3) 

The parameter B has recently been extracted from AI  
= 3/2 Krm data by using PCAC and SU(3) symmetry 
(i.e., the same assumptions employed in this paper) 
with the result [5] IBI = 0.33. There may be some un- 
certainty in this value (perhaps 50%) due to possible 
errors induced by the use of  PCAC and SU(3), but this 
is a small effect compared to the uncertainties con- 
tained in the dispersive contribution. Now if recent 
measurements of  the B meson lifetime ,2 are correct 
we can use eqs. ( 1 ) - ( 2 ) t o  constrain the parameter D. 
This occurs because the B lifetime is evidently so large 
that it requires the KM angles 02, 3 to be very small. 
For example, in the limit 02 ~-- 03 "~ 0 (and with m c 
= 1.5 GeV), the charm-quark intermediate state domi- 
nates the box diagram and we find 

1 = A m b o x / A m  + D 

= 0.51 m2B + D 

= +0.33 (-+50%) + D ,  (4) 

where the sign ambiguity is associated with the quanti- 
ty  B. Eq. (4) translates into 

D =  +0.67 (-+0.17), if B > 0 ,  

= + 1 . 3 3 ( + 0 . 1 7 ) ,  if B < 0 .  (5) 

There is some theoretical evidence that the B > 0 case 
is to be preferred [5]. However, we include the possi- 
bility of  having the opposite sign for completeness. 
The inclusion of  a t-quark can affect these numbers 
somewhat, but as long as 02, 03 < 0.1 the value o l D  
is not changed by more than 20% [7]. 

Now that we have seen existing data to be consis- 
tent with a nonzero (and even large!)value for the 

,2 As cited by Reay in ref. [6]. 

"non-box" component,  we turn to ttie problem of esti- 
mating the magnitude of  the longest-range contribu- 
tions to Am. Clearly, at short distances the appropri- 
ate degrees of  freedom are quarks and gauge bosons; 
these are used in the evaluation of  the box diagrams. 
At the longest distances (low energies) however, the 
theory is best described in terms of  the near Goldstone 
bosons of  chiral symmetry, viz., the pions [and if one 
uses SU(3), K and rl]. At intermediate scales phenom- 
enological quark models are useful. Since we wish to 
study the contributions to Am which come from very 
low energy physics, we shall concentrate on the con- 
straints of  chiral symmetry. Of course, in the study of  
Am, intermediate scales must also be included. Our 
reason for singling out the low energy contribution is 
that it can unambiguously signal the importance of  
long distance effects, since these are relatively model 
independent. At this point we wish to acknowledge 
previous studies [8] which even go back to pre-gauge- 
theory days. Our analysis updates such works and by 
including the constraint of  chiral symmetry, reinforces 
the belief that dispersive effects are inescapably re- 
quired. Unfortunately the overall value of  D does not 
yet appear to be reliably calculable and presumably 
must at present be left as a free parameter in phenom- 
enological studies. 

The K L - K S mass difference is experimentally 

(m E - ms ) /F  S = A m / F  S = 0.48 + 0 .02 .  (6) 

The sign of  the various long distance contributions can 
easily be understood. Theoretically they are described 
by 

I ~I(KLIHwlI)I2 I(KslHwlI)I2~ 

- I 

If one neglects CP-violation, the CP quantum numbers 
o f  the intermediate states dictate the sign of  their con- 
tribution. (We remind the reader that K S has CP = +1 
and K L has CP = - 1  .) For example the vacuum inter- 
mediate state will increase the K S mass, but not KL, 
making a negative contribution to Am. The one pion 
state on the other hand, makes a positive contribution 
by raising the K L mass. Other single particle interme- 
diate states, more massive than the kaon, produce zSm 
< 0 if they have CP = - 1  and favor Am > 0 if they 
have CP = +1. The two-pion contribution can have ei- 
ther sign, with a negative contribution when mTr~r 
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< m K and positive when m~rTr > m K. However in such 
circumstances the dispersive part above the pole is al- 
most always stronger, as found below, leading to an 
overall positive 7r~r contribution to Am. 

The weak amplitudes which we need involve Ver- 
tices where a kaon couples to two, one, and zero 
pseudoscalars. These are all related to each other 
through the use of  the soft meson theorems and PCAC. 
For pseudoscalars other than the pions one also needs 
to use SU(3). The momentum dependence of  the ver- 
tices may be calculated [9] by requiring consistency 
of all the soft meson limits and imposing a well-known 
constraint [10] on the vanishing of  the matrix ele- 
ment in the SU(3) limit. These observations are neatly 
summarized in the effective lagrangian which emerges 
[1 1] from chiral SU(3) 

Lin t = g tr( auM+ ~UM~6) , (8) 

where g is a constant and 

M = exp( iCA'Xa /x /~fn ) ,  (9) 

with cA being the octet of  pseudoscalar mesons and 
fTr is the pion decay constant (f~r ~ 94 MeV). This pro- 
vides a simple, unified description of  the K ~ 31r, K 
--> 27r, K ~ 7r, K -+ vacuum amplitudes, and others re- 
lated to these by SU(3). The full description of  kaon 
amplitudes could also involve effective lagrangians 
with more derivatives, corresponding to higher-order 
momentum dependence in the weak matrix elements. 
By dimensional considerations, these will be propor- 
tional to inverse powers of  the mass scale of  chiral sym- 
metry breaking. At energies well below this scale, eq. 
(8) therefore gives the dominant contribution, and we 
are justified in taking it as the full effective lagrangian. 
However, at higher energies, this description will fail, 
and one either needs to include the higher derivative 
lagrangian, or modify the description in some other 
way. We will employ eq. (8) up to a scale A, where 
these corrections are expected to become important, 
in order to estimate the effect of  dispersive contribu- 
tions below this energy. 

The chiral lagrangian contains derivative coupling, 
corresponding to momentum dependent vertices. In 
treating this perturbatively the presence of  derivative 
coupling implies modifications of  the usual Feynman 
rules, as pointed out by Gerstein et al. [12] ,3 .  If one 

#3 We thank H. Georgi [13] for reminding us of these impor- 
tant facts. 

divides an arbitrary lagrangian into a free and interac- 
tion part, with Lin t being of  order g in some coupling 
constant, the interaction picture hamiltonian can be 
found by canonical quantization. The canonical mo- 
mentum for field ¢i is 

Hi = ~i + ~Lin t /~ i  (10) 

and the hamiltonian is formed as usual 

H = ~. [I]~)]-(L O+Lint) .  (11) 
1 

However ¢] and L must be both expressed in terms of  
Ill. Expanding the interaction terms 

Lint(q ~, ¢) = Lint(l] , ¢) 

+ ~ . ( ¢ ]  - [ l / ) ( O L i n t / a ¢ ] ) ( l I ,  ¢ )  + ... (12) 
/ 

one finds, after some algebra, a simple result at O(g2), 

Hin t = -Lint ( l ] ,  q~) + ~.~laLint/8()][ 2 + O(g3).  (13) 
] 

Simultaneously, propagators involving derivative inter- 
actions are modified [11],  i.e. 

A(k) = f d 4x e ikx {01T(c~(x) ¢(0))[0 ) 

= i/(k 2 + ie),  (14a) 

A (k) = f d4x eikx(0} T(~u¢(x)¢(0))[0> 

= kul(k2"" + ie) ,  

but 

Au,,(k) = f d4x eikx(0[ T(Su¢(x ) 0v¢(0))[0 ) 

(14b) 

= i [kukv/(k2 + ie) - guogvo] • (14c) 

Both Hin t and the propagator are not covariant. How- 
ever the noncovariance will cancel, yielding a covariant 
physical answer. 

The lowest energy intermediate state is the vacuum. 
However the K ~ vacuum amplitude vanishes in chiral 
SU(3), as can be seen from the effective lagrangian eq. 
(8). (The same result is obtained trivially in the valence 
quark model.) The next lowest energy contribution 
comes from 7r 0, r78 poles (fig. 2a). In the case of  single 
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o 

K L . . . . .  K L 

(o) 

7F 

7F 

(b) 

Fig. 2. Long distance contribution to KL, K S self-energies. 
The shaded circles represent the action of the weak hamilton- 
ian. 

meson poles, the noncovariant terms cancel exactly, 
with the result being the same as naive perturbation 
theory. Let us look at the 7r 0 pole to see this. We have 

Lin t = g 'auK  L Ourt 0 , (15) 

Hin t = -g '~uKL0Ulr0 + ½g'2(lI(Ll2 + [~r012). (16) 

To order g '2 the mass shift is then (k~ is the momen- 
tum of the KL) 

2 m K  A m  = g ' g [ k 4 / ( k 2  - m 2) - k 2] + g '2k2  

= g'2 k 4 / ( k  2 _ m 2 ) .  (17) 

In the above, the first terms, in brackets, are the modi- 
fied propagator while the last piece is the "contact"  

term in Hin t . 
For the present, we employ 778, the 8th member of  

the octet, rather than the physical r/(549) which con- 
tains a component  of  the SU(3) singlet and as such lies 
partially outside of  our framework. The contribution 
of  the single meson poles is 

2 m K Am = [(K L IH w l lr0)l 2/(m2 K - m 2) 

+ [(K L I n  w 1778) 12/(m2 - m 2 ) .  (18) 

Use of SU(3) implies 

(K t I n  w lit o) = ~ (K t Inw I r/8), (19) 

so that 

2 m K A m = [ ( 4 m 2 - - 3 m 2 - m 2 ) / 3 ( m 2 - m 2 ) ( m 2 - - m 2 ) ]  

X I(KLIHwI~r0)I 2 .  (20) 
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However the numerator vanishes by the Gell-Mann- 
Okubo formula for the mass of  the octet isosinglet r/8. 
Thus we find no overall contribution from the single 

octet particle states. It is this form which was given 
by Itzykson et al. in 1967, who obtained a nonvanish- 
ing value by using the physical r/mass in place of  m 8. 
This is not justified i feq.  (11) is also used, as r/-r/ '  
mixing, which shifts the mass of  7/8, can also modify 
the weak amplitude. We return to this point when we 
discuss intermediate range contributions such as the 
T/' .  

The above analysis points to the dominant low en- 
ergy contribution being the 21r continuum. The 37r ef- 
fects are weaker, yielding a mass shift proportional to 
I" L. The chiral lagrangian for the K S -~ 2~r 0 amplitude 
is 

L i n t  = g27r(Ks 3u 7rOUTr - ~r~uK S ~ulr), (21) 

which yields an interaction hamiltonian 

1 2 (2Ks~r i~Ir)2 (22) Hint = - L i n t  + ~g27r - ' 

The coupling constant g2~r is related to the total Ksmr 
decay rate by 

r S = (3 /8 , tmK)g27r(m2 -- m2)2(1 a ,~2 /~  2"0/2 
- -  _ , , ~ r r l , , ~ K . ,  

(23) 

We calculate the mass shift by studying the K S self en- 
ergy Z(s) employing two different methods, (i) use of  
a Feynman diagram, and (ii) use of  a dispersion rela- 
tion. In both we neglect terms of O ( m 2 / m  2 )  in order 
to simplify the resulting algebra. 

In the Feynman diagram approach the process in 
fig. 2b is easily computed,  

_ g 2 f  d41 {(2l 2 _ k  2 _ 2 k . l ) 2  
Z(s) - - ~  j (2r04 

X ( / 2 _  m 2 ) - I  [ ( k - / ) 2  _ m 2 ] - 1  _ 4} ,  (24) 

where s = k 2. The first term above is the result of  
naive perturbation theory, and the last (i.e. - 4 )  is the 
summation of the propagator modification and the 
contact piece in Hin t . The loop integral is divergent, 
reflecting the fact that the chiral form of  the vertex 
is valid only at very low energies, and fails above the 
scale of  chiral symmetry breaking ,4 .  We proceed by 
cutting off  the loop integral at a maximum value l 2 
= A 2. If this is done, the form of  the self energy is 
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(adding in also the n+Tr - contr ibut ion)  

Y.(s) = - (3  g2s2 /8rt2)[ ~ A Z /s + ln(A2/s) 

+ 12_.A_1 _ 9 3  s /A 2 + in] (25) 120 280 

We note that the effect of  the modifications due to 
derivative couplings is to cancel what would have been 
a quartic divergence in Y.(s) and reduce the answer to 
a quadratic divergence. This enforces the requirement,  
demanded by chiral symmetry , a ,  that  Z(s = 0) = 0. 
Tile above calculation leads to a mass shift 

A m / P  S = (1/270[ a~ (A/mK)2 + ln(A/mK)2 

+ i'2"0121 -- i'4"093 (InK/A)2] ~ 0 . 7 2  , (26) 

where we have used a rather conservative value of  A 
= 700 MeV (as would be expected if form factor ef- 

fects damp the loop integral). If we had used A = 1 
GeV, the result would have been A m / F  s .~ 1.4. 

Our second approach involves the use of  the disper- 

sion intergral for the self energy 

Y4:s)=l'~2'~m d , '  )m Y(s') 
s - s - i e  

However chiral symmetry  requires that Z(0) = 0, 
which implies that we must make one subtraction to 
satisfy this constraint 

Y.(s) = 1  f ds '  lm E ( s ' ) [ ( s ' - s - i e )  -1  - s ' - 1 ]  . 
It 

4m~ (27)  

In this case we insert a cutoff  in the center of  mass in- 
tegration variable s' at s '  = A 2. Again dropping terms 

2 2 Ot.rnrr/mK), we find 

Y.(s) = - (g2s2/8r t2)[A2/s  + ln (a2 / s  - 1) + in] (28) 

and 

zXm/P s = (1/2 , r ){(A/mK) 2 + ln[ (A/mK)2 -- 1] } .  
(29) 

The fact that the two expressions for Am do not agree 

,4 The quadratic divergence is due to the momentum depen- 
dence of the chiral coupling. However sizable results are 
obtained even with a coupling constant independent of 
momentum. In this case we would obtain instead of eq. 
(16) a m / r  = (1/2rr)[ln a2/m 2 + 1 - m 2 / 3 A  2 ] = 0.24, for 
A = 700 MeV. 

in form is to be expected,  as the meaning of  the cut- 
offs is different in the two cases. In the latter approach 
the choice of  A is perhaps somewhat clearer. It indi- 
cates a CM scale at which corrections to our chiral sym- 
metry representation begin to become significant. It 
cannot be chosen too low, as the strength of  the ver- 

, 2 tex at s = m K is determined by  the experimental  de- 
cay rate. We feel that it is conservative to choose the 
cutoff  not too far above mK, say at the mass of the 1 
= J = 0 7rTr enhancement,  A ~- m e ~ 0.7 GeV, for 
which we find Am~I" s ~ 0.32. For A = 1 GeV, A m / F  s 
= 0.71. The cutoff  at which Am = 0 is so low (A 
0.56 GeV) that  any reasonable choice of A does not 
affect our qualitative conclusion, viz., the long-range 

dispersive effect is both large and of  the correct sign. 
Incidentally, use of  the full pseudoscalar octet 

would require the inclusion of  rr0rT, K+K - and KOR. 0 

intermediate states in addition. However in the disper- 
sive analysis, with our rather low value of  the cutoff, 
these contributions would all be absent as their thresh- 
old is at or above the cutoff. In the Feynman diagram 
approach this would increase A m / F  S somewhat. The 
results are more complex and we do not feel the need 
to quote them. 

It would not be surprising that intermediate-range 
contributions are also important .  We wish to provide 
one estimate of such effects by refining the estimate 
of  the ~r0-r?8 contributions to  include the r/. The 
SU(3) octet 778 and singlet r? 0 mix to produce the 
physical r7 and 7/' states. We can model  this by consid- 
ering the mass matrix 

m 2 = (  m2 m28)  

\ m28 m 2 , '  

with m 2 = ~m 2 - ~m 2, and m 2 is the (unknown) bare 

mass of  the SU(3) singlet and m28 is a mixing parame- 
ter. Fitt ing the physical r /and r/emasses we find m 2 
= 0.903 GeV 2. Im0281= 0.106 GeV 2. This mixing also 
modifies the 78 contribution to 2xm. Generalizing the 
mixing with the K L one has 

m 2 = m 2 m28 , (30) 

2 
~b* m2 8 m 0 

485 



Volume 135B, number 5,6 PHYSICS LETTERS 16 February 1984 

where 

a = (KL IHwlr?8) = (1/X/~)(KLIHw I~r0) , 

b - < K t l n w l % >  - - ( 2  X/fp/VS)<KLIHwI~0>.  (31) 

The parameter b (or p)  is unfortunately not fixed by  
any symmetry argument. However penguin dominance 
o f H  w plus the quark model  suggests p = 1 which is 
why we have normalized b as above. In any case, diago- 
nalizing the mass matr ix and adding the n 0 term one 
finds 

2mKA m = {(m2K _ m2)-1,. _[~(m01 2 _ m2K ) 

8 2  2 2 
+SP (m8--mK)]  

2 2 2 2 4 - 1 )  X [(m8-mK)(mo-mK)--m08 ] I(Ke IHwlrr°)] 2. 
(32) 

Using the fit values o f m  2 and m28 and the weak K 
-~ rr matr ix element 

I(KL i//wlTrO)l 2 = .~ rr F2mK F S ,  (33) 

one obtains 

Am/p s = --(0.20 + 0.78 p2) 

= --0.98 (p2 = 1) .  (34) 

We have been expanding Y.(s) in a loop expansion, 
including up to one loop order. The constraint Y.(0) 
= 0 is maintained at each order. Our result unfortunate- 
ly depends strongly on the parameter  A which repre- 
sents the scale where higher order corrections to the 
low energy effective lagrangian become important .  If 
properly included these corrections would lead to a fi- 
nite total  answer. Our calculation does provide an indi- 
cation of  the overall size of  long distance effects. We 
have found large dispersive contributions of  both  signs, 
individual terms ranging from D = - 2  to D = 2.8. It is 

certainly unrealistic to expect that these contributions 
would exactly cancel and there are clearly other inter- 
mediate range effects which we have not considered. 
However, our results do support a large value for the 
dispersive contribution,  as also seems to be indicated 
by  the data. The inclusion of  these low-energy effects 

modifies many phenomenological analyses. The addi- 
tive constant D cannot be simply modeled by an effec- 
tive B parameter,  because the B parameter multiplies 
all contributions, including that of  the top quark, 
while D is independent of heavy quark parameters.The 
presence o l D  implies that most of  the uses of  Am in at. 
tempting to bound the top quark mass are invalid. We 
shall report elsewhere on the ways that dispersive con- 
tr ibutions modify  the analysis of  CP violation. 

This work was supported by  the National Science 
Foundat ion.  J.F.D. wishes to thank the theory group 
at Brookhaven National Laboratory for their hospital- 
i ty  during the course of  this work, and Ling Lie Chau 

for stimulating conversations. We are endebted to 
H. Georgi for valuable communications.  
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