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Direct quark-model calculation of weak nonleptonic matrix elements

John F. Donoghue and Barry R. Holstein
Department of Physics and Astronomy, Uniuersity ofMassachusetts, Amherst, Massachusetts OI003

(Received 25 July 1983)

It is shown how wave-packet techniques developed by Donoghue and Johnson may be utilized to
calculate parity-violating nonleptonic hyperon decay amplitudes directly —without the use of
current algebra and PCAC (partial conservation of axial-vector current}.

Remarkable progress has occurred during the past two
decades in our understanding of weak nonleptonic phe-
nomena. In the early 1960s it could reasonably be stated
that there existed virtually no contact between weak non-
leptonic phenomenology and the underlying theory which
attempted to explain it. By 1967 the situation had
changed dramatically and current algebra with PCAC
(partial conservation of axial-vector current) enabled (i) a
calculation of L—+3m in terms of experimental X~2m.
amplitudes and (ii) relations between various parity-
violating hyperon decay amplitudes. However, no abso-
lute theoretical predictions "alculations independent of
empirical weak-decay information —were possible. The
latter situation changed during the mid-1970s with the
availability of quark models, most noticeably the MIT bag
model. Baryon-to baryon and meson-to-meson matrix
elements of the weak Hamiltonian could then be calculat-
ed directly which, together with current algebra and
PCAC, enabled predictions to be made for experimental
amplitudes. "

We wish in this paper to demonstrate that the calcula-
tions of nonleptonic decay parameters can be carried out
entirely within the quark model, without the use of
current algebra and PCAC. Use of quark-model tech-
niques together with a few small assumptions enables a
direct theoretical calculation of

(B'~IH. IB) and (~~IH. IIt. )

amplitudes. The key to this work is the use of the wave-
packet method to describe bag-model states. This pro-
cedure allows the calculation of matrix elements with dif-
ferent numbers of particles in the initial and final states.

The original application was to (0
I A& I

m ), i.e., the cal-
culation of F„. Recently the technique has been applied
to the direct evaluation of g tvtt, g ~~, and g~~~ coupling,
constants, when supplemented with the use of the Bogo-
liubov transformation. These applications have been
reasonably successful, despite the approximation involved,
which suggests that similar ideas may be utilized in the
calculations of other processes, such as weak nonleptonic

I

matrix elements. Note that we do not mean to imply that
the use of PCAC is a problem to be avoided. Indeed
PCAC is on a inuch firmer theoretical footing than the
quark-model techniques which we employ in this paper.
However, it is satisfying to note that the matrix elements
may be understood entirely within a quark-model context.

As a test case consider the parity-violating (PV) baryon
decay

(B'trIH IB) .

One cannot hope to treat the parity-conserving (PC) ma-
trix element in this fashion, since the existence of baryon-
pole tertns implies the importance of long-distance contri-
butions which cannot be handled by this simple projection
technique. On the other hand, the Swift-Lee theorem
guarantees that such pole (long-distance) terms will not
play an important role in parity-violating decay.

To be definite, consider the transition A~X~. We
shall utilize the MIT bag model for our specific calcula-
tion, but many of our conclusions are independent of the
particular quark model employed. We begin with a bag-
model A state constructed from these quarks in their
lowest-energy (1S»2) levels

12

where b~, is a creation operator for a quark of flavor f,
color index i, and spin projection s along some axis of
quantization. Now operate on this state with the weak
Hamiltonian

H —grady„(1+y5)ttr„p„y" (I+ys4': .

Here each field operator g contains both a quark destruc-
tion operator I; and an antiquark creation operator d
Thus, when H~ operates upon the baryon

I
At) it must

produce either a 3q state (when both P, and g„annihilate
the initial u, s quarks) or a 4qq state (when either g, or P„
annihilates an initial quark). Noting that

(q'
I

Vo
I q) =uu'+Uv', (q'q

I
Vo

I
0) =(u'v+v'u)tr r, .

(q'
I
V

I
q) = (Uu'+uv—')tr Xr", (q'q

I
V

I
0) =i(uu'+uu')o i2uu'rcr r, —.

&q'
I
Ao

I q & ='("'" uu') tr'" &q'q
I
Ao

I
0& = —i(uu' —vu'),

(q'
I
A

I q) = (uu' uu')o 2vv'rc—r.r, (—q'q
I
A

I

—0) = —(uu'+u'u)r,

(3)
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when the quark and antiquark ground-state wave func-
tions are represented as

r

iu(r)Xq(r)=, q(r)=
U(r) o"r

iU(r)cT rX
u(r)X

we see that in the SU(3) limit we have

(qq IH~ Iqq) —f 1 r[u (r)+U (r)] (1)&1—«T. cT),

(qqq IH CIq) —0,
&qq I

H"
I qq & -0,

&qqq IH~ Iq) — i f—d r[u (r) —u (r)](1~1—o"o) .

e(S'
I H~

I
8)e ——0 .

%'e note then that the parity-conserving weak Hamil-
tonian H~ connects only to final 3q states while its
parity-violating counterpart H connects only to thepv

qqq+qq sector in accord with the Swift-Lee theorem.
That is (here

I )z refers to a bag state),

Also, it is apparent that matrix elements of

e&&' IH'
I
&&e and a&&'~

I
H'"1»e

are related by a calculable constant, as given by current
algebra and PCAC.

In order to determine the constant we employ the pro-
cedure of Donoghue and Johnson, which represents bag
states as superpositions of plane-wave eigenstates, with a
wave packet P(p) for mesons or X(p) for baryons:

I
m, x) = f P(p)e'~'"

I

m.(p)),
(7)

I
N, x &

= f P m„X(p)e'~ "
I
N(p) & .

JP

If we write the final
I
N~) state as a direct product of bag

wave functions

then the matrix element factorizes into spin-color and ra-
dial pieces

d kpIHP'IA-&, = f d' f "
2~k

dx f d'p', X*(p') '" "f X(p) ""(p(p') (k)IH'"IA(p))

i f d r[—u (r)+U (r)][u (r) —U (r)]M3,

ej e e e ~5 5 (0Id bd„b ~bgq'b q—(51' 5 c7~ cr ):b—~qd bob 0'b~sbej—«be, I
0)18~12~6

On the other hand we note

z(nt IH I
At)e ——f d x f P m~X (p)e '" " f m&X(p)e'" "(n(p') I'H IA(p))

r u r+U r M2,

where

e""e"e' ee~ (0I b' b b' (5PJ'5~ o».o ):bf bf—bs bg".b' bJ b
I 0) .Qlg l2 df «Aj ««lg ' cfP ««P ««g Rj ' ««s dl st

However, it is straightforward to show that

1
M3 ———~ M2

6

so we have

(l3)

a(p~ IH I
A)s —— f d'r[u (r) —u (r)]M,

6

= f f dp, (2~) $(k)X'(p k)X(p)(n(k)p(—p —k) IH ."IA(p))
2cok E(p) E'(p —k) (14)
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and

s&n ~H~ ~A&s ——f d r[u (r)+v (r}]Mz

d p= f mA, (2n. ) X'(p)X(p)&n(p) ~H
~
A(p)& .

E(p) E'(p)

Thus, if we are willing to neglect momentum dependence for &
m. (k)p(p')

~
H„~ A(p) & we find

f d r[u (r) —v (r)]
(k)p(p') ~H

~
A(p)&=

' . . . , s&n ~H
~
A&s

d r[u (r)+v (r)]

1

f (d k/2cok) f d p[m~m~/E(p)E'(p —k)](2m) P(k)X (p —k)X(p)

and

.&. ~H."~A&.=&n(»~H."~A(p}& f d'p "," (2~)'X (p)X(p}.E p E' p
We thus have derived the quark-model equivalent of the PCAC relation

(k)p(p') iH i
A(p)&= &n(p) iH

i
A(p)&2F

with I' =94 MeV replaced by

f d r[u (r)+v (r)] f (d k/2cok) f d p[m~mz/E(p)E'(p —k)]P(k)X*(p —k)X(p)(2m)
F,„=v 3

r u r —v r f d'p [m~m A /E(p)E'(p) ]X'(p}X(p)(2~)'

(17)

In order to compute F,h we require models for the wave
functions. Donoghue and Johnson have suggested specific
forms. However, for our purposes it is enough to use ap-
proximate expressions

P(k)=C e
(20)

2 2

X~(p) -=X~(p}=C~e

The wave functions are subject to the normalization con-
ditions

v3 1

2R~(ln2)'~ I+—'(R /R )

f d r[u (r)+v (r)]
X f d r[u (r) —v (r)]

Use of the conventional values

RN ——55 GeV ', R =35 GeV

(24)

1= p- 2m XpE p

= f d k (2m. )3(P(k)
i

2cok
(2l)

yields

f d r[u (r)+v (r)]z
I'th ——1.38F~ f d r[u (r) —v (r)]

(26)

so that approximating E(p)=m~ and cok=k we deter-
m1ne

In the nonrelativistic limit we have v(r) =0 and

E,h ——1.38F (27)
3/2

C~ —— — 2, a~ ———R~(ln2)
1 2N )y4 1 1/2

(2~)'
while using bag-model wave functions

(22)

u(r)=mojo(d'or),

v(r)= Nj &(d'or), co=2.—04/R (28)

fd'p, )X(p) ~'(2n. )'=l, (23)

C =, a =—R~(ln2)'i2H'
The wave-function integrals can now be evaluated, yield-
ing

d kf fd'p, P(k)X'(p —k )X(p)(2~)'
267k

~C~
2 & 2n' + 2+N

with N a normalization constant defined in Ref. 4, we find

+th =2.5+~ . (29)

Agreement is reasonable, given the approximations in-
volved.

In order to understand the reliability of our result, we
note the existence of at least two factors which could
modify the calculated value of F,h. The procedure does
not include any measure of bag fissioning. If this intro-
duced a suppression in the amplitude, then the value of
F,h would be larger. We have not been able to obtain any
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estimate of the effect, although previous results do not
suggest this is a large effect. Also neglected was any
momentum dependence for the B~8'm vertex. One
would expect that this vertex should have a dependence on
k, the pion momentum, that could be parametrized by a
form factor F(k ). Inclusion of this term would lower the
calculated value of F,h. To estimate the size of this de-
crease we can choose a simple form for F(k ), namely,

P = —,(r ),„;,)=0.09R~

The integral in Eq. (23) now becomes

(31)

(30)

where P can be fixed by requiring that the form factor
have the same expansion about k =0 as does the form
factor of the axial-vector current, i.e.,

f f d p, P(k)X'(p —k)X(p)F(k )(2~) =
k E(p)E (p —k ) ct 2+ & ~ 2+p2

(32)

and the final value [Eq. (29)] now reads

Fth ——0.97F~ .

Agreement is obviously excellent. However, we have in-
troduced this discussion not to obtain the right answer but
rather to emphasize some of the inherent uncertainties in
our result.

The direct calculation of the weak-decay matrix ele-
ments can now proceed in a manner similar to evaluations
which use PCAC. The main features have already been
pointed out, in a somewhat different context, by
Desplanques and the authors. A complete correspon-
dence can be seen between the diagrams of 8—+B'~ and
those obtained via PCAC and 8—+B'. In particular, the
Clebsch-Gordan coefficients are the same, so the relative

weights of the diagrams are unchanged. The Pati-Woo
theorem, which states that B—+S' is purely dd = —,', also
carries over to the calculation of B +B'n., —so that a
Ll = —,

' rule is obtained. '

We have thus utilized the wave-packet technique
developed in the bag model to derive a relation between
B~B'~ matrix elements and B~B' amplitudes which is
similar in form to that of PCAC, and numerically agrees
to within a factor of about 2. This then provides a direct
quark-model calculation of the hyperon decay amplitudes.
However, despite the interest in such a procedure, the un-
certainties are sizable, and the most reliable method
remains the standard techniques involving PCAC.
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Science Foundation.
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