COLLEGE OF
 EDUCATION

CBMs and Postsecondary Students with Developmental Disabilities: Examining Technical Adequacy
John L. Hosp, Jeremy W. Ford, Kiersten Hensley, Sally M. Huddle
CEC 2014 Convention \& Expo
April 10, 2014

Benefits of College

- Higher pay
- \$55,700 vs. \$33,800
- Lower unemployment rates
- 2.6 times higher for age 20-24 with HS diploma
- Not just financial
- Better health, community participation, independence, self-esteem
(Baum, Ma, \& Payea, 2010)
COLLEGE OF EDUCATION
Leaders. Scholars. Innovators.

Postsecondary Opportunities for Students with DD

- Less likely than non-disabled peers to:
- enroll in postsecondary programs
- gain employment
- remain employed
(Wagner, Newman, Cameto, Garza, \& Levine, 2005)

Postsecondary Opportunities for Students with DD

- 73% higher weekly income for students with DD who complete a postsecondary program
(Migliore, Butterworth, \& Hart, 2009)

COLLEGE OF EDUCATION
Leaders. Scholars. Innovators.

Increasing Opportunities

\qquad

- Emphasis on transition planning
-4 out of 5 HS students with disabilities (Cameto, Levine, \& Wagner, 2004)
- Over 200 programs in US and Canada (Think College, 2014)
- Traditional degree, certificate programs, other alternative plans (Pampay \& Bambara, 2012)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Academic Focus

- Research demonstrating the continued
\qquad need for academic interventions (e.g, Hua et al., 2012; Woods-Girves etal, 2012) \qquad
- Sensitive measures of performance and progress \qquad
- Formative use of data (Hosp, 2011)

Curriculum-Based Measurement (CBM)

- Developed from Institute for Research on Learning Disabilities at the University of Minnesota
- Reading, written expression, spelling, mathematics
- Dynamic indicators of basic skills (DIBS) (Shinn, 1989)
- Designed to use in making instructional decisions (Hintze \& Silberglitt, 2005)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Purpose

\qquad

- What is the technical adequacy of CBM \qquad with postsecondary students with intellectual disabilities? \qquad
- Does grade level of passage impact reading rate? Prediction? Preference?
\qquad

\qquad
\qquad
\qquad

Method

\qquad
\qquad
\qquad
\qquad

Participants

\qquad

- 45 postsecondary students
- Cognitive/intellectual disabilities
- 37.8% female ($\mathrm{n}=17$)
\qquad
- 95.6% white ($\mathrm{n}=43$)
- Ages $18-25$ yrs.
- Enrolled in the Realizing Education and Career Hopes program at The University of lowa (UI REACH)
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Instruments

\qquad

- CBMs used were part of the AIMSWeb
\qquad suite (Pearson Education, 2012)
- $2^{\text {nd }}, 4^{\text {th }}$, and $6^{\text {th }}$ grade reading materials
- $5^{\text {th }}$ grade math materials
\qquad
\qquad
\qquad
\qquad
\qquad

K3 Emailed Katelyn and Jo to see if there is a particular photo or graphic representation that they would prefer we use with the description of the program.
Kiersten, 3/22/2013

Instruments- CBM

\qquad

Oral Reading Fluency (ORF)

\qquad

- Words read correctly and errors
- Validity . 60 to .80; Reliability .82-. 99 (Reschly, \qquad Busch, Betts, Deno, \& Long, 2009)

Maze

- Correct restorations and errors
- Validity .60-.86; Reliability .68-. 90 (Wayman, Wallace, Wiley, Ticha, \& Espin, 2007)

Instruments- CBM

\qquad
Math Computation (M-COMP) \qquad

- Correct digits and correct problems
- Reliability .83-. 93 (Foegen, Jiban, \& Deno, 2007)

Math Concepts and Application (M-CAP)

- Correct problems and points
- Reliability .80-. 88 (Pearson Assessment, 2009)
\qquad
\qquad
\qquad
\qquad
\qquad

Instrument - Criterion

Woodcock-Johnson III Tests of Achievement \qquad (WJIII; Woodcock, McGrew, \& Mather, 2001)

- Broad Reading:
- Letter Word Identification
- Reading Fluency
- Passage Comprehension
- Broad Math:
- Calculation
- Math Fluency
- Applied Problems

Procedures

\qquad

- Standardized procedures
- CBM measures administered during regularly scheduled class time within \qquad one week
- WJIII data collected by REACH staff \qquad within the past year
\qquad
\qquad
\qquad
\qquad

Data Analysis

- Two stages for technical adequacy
\qquad
- Descriptive statistics on each metric
- Bivariate correlations between each CBM and content-appropriate criterion measure (both cluster and individual) \qquad
- Meng's z to compare correlations to determine better predictors
\qquad
\qquad
\qquad
\qquad
\qquad

Data Analysis

- Two stages for examining grade level of
\qquad passage
- One-way ANOVA to determine if WRC differed \qquad given order the passage was read
- General Linear Modeling to determine if \qquad differences existed in WRC given grade level of passage \qquad
\qquad
\qquad

Data Analysis
- Examining student self-report of favorite
passage
couleg of Evication

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Results

Descriptive Statistics

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Results
Correlations

CBM Correlations be	S							
CBM Measure	$\begin{aligned} & \text { Grade } \\ & 2 \text { ORF } \end{aligned}$	$\begin{aligned} & \text { Grade } \\ & 4 \text { ORF } \end{aligned}$	$\begin{aligned} & \text { Grade } \\ & 6 \mathrm{ORF} \end{aligned}$	Maze	$\begin{aligned} & \text { M-COMP } \\ & \text { CD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M-COMP } \\ & \text { CP } \end{aligned}$	$\begin{aligned} & \text { M-CAP } \\ & \text { CP } \end{aligned}$	$\begin{aligned} & \text { M-CAP } \\ & \text { Pts. } \end{aligned}$
Grade 2 OPR	1.00	. 882	. 965	. 773	. 500	. 484	. 673	. 641
Grade 4 OPR		1.00	. 884	. 763	. 524	. 530	. 552	. 545
Grade 6 OPR			1.00	. 779	. 557	. 546	. 661	. 651
Maze				1.00	. 448	. 438	. 569	. 566
M-COMP CD					1.00	. 960	. 767	. 745
M-COMP CP						1.00	. 698	. 709
M-CAP CP							1.00	. 965
M-CAP Pts.								1.00
Note. $\mathrm{n}=45 . \mathrm{OPR}=$ Oral Passage Reading; M-COMP $=$ Math Computation; $\mathrm{M}-\mathrm{CAP}=$ Math Concepts \& Applications CD $=$ Correct Digits, $\mathrm{CP}=$ Correct Problems, Pts. $=$ Points.								
COLLEGE OF EDUCATION						Leaders. S	colars. Innov	vators.

Reading				
Correlations between Reading CBMs and Criterion Measure				
CBM Measure	WJIII Broad Reading	WJIII Letter Word ID	$\begin{aligned} & \hline \text { WIIII Reading } \\ & \text { Fluency } \end{aligned}$	$\begin{aligned} & \hline \text { WJIII Passage } \\ & \text { Comprehension } \end{aligned}$
Grade 2 OPR	. 828 (<.001)	. 842 (< 0001)	. 693 (<.001)	. 653 (.001)
Grade 4 OPR	. 721 (<.001)	. 712 (6.001)	. 669 (6.001)	. 552 (<.001)
Grade 6 OPR	. 846 (<.001)	. 831 (<.001)	. 760 (<.001)	. 672 (<.001)
Maze	. 762 ((0001)	. 717 (6.001)	. 723 ((.001)	. 612 (6.001)
Note. $\mathrm{n}=45$. WJIII $=$ Woodcock Johnson Tests of Academic Achievement-Third Edition; OPR = Oral Passage Reading; ID $=$ Identification.				
COLLEGE OF EDUCATION				err. Scholars. Innovators.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Math				
Correlations between Math CBMs and Criterion Measure				
CBM Measure	WIIII Broad Math	WJIII Math Calculation	WJIII Math Fluency	WIIII Applied Problems
M-COMPCD	. 803 (6.001)	. 789 ($\times 001$)	. 744 ($\times 001$)	. 701 (<.001)
M-COMPCP	. 818 (<.001)	. 800 (<.001)	. 771 (<.001)	. 718 (<.001)
M-CAPCP	. 761 ((0001)	. 742 ($\times .001$)	. 637 ((. 001)	. 705 (<.001)
M-CAPPts.	. 751 (<.001)	. 735 (<.001)	. 650 (<.001)	. 692 (<.001)
Note. $\mathrm{n}=45$. WJIII $=$ Woodcock Johnson Tests of Academic Achievement-Third Edition; M-COMP = Math Computation; MCAP $=$ Math Concepts \& Applications $\mathrm{CD}=$ Correct Digits, $\mathrm{CP}=$ Correct Problems, Pts. $=$ Points.				
COLLEGE OF EDUCATION			Leaders. Scholars. Innovators.	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Math (continued)				
			"\%61	0.359
	070	${ }_{0} 961$	150	.097
	Osm	${ }_{0} 884$	${ }^{1.276 \%}$	${ }^{0.168}$
	${ }_{0}$ oss	${ }_{0} 88$	1275	${ }_{0} 121$
	${ }_{\text {lass }}$	093	1.50	${ }^{033}$
	039	${ }^{023}$	040	0.4
Note. $\mathrm{n}=45$. WJIII = Woodcock Johnson Tests of Academic Achievement-Third Edition; M-COMP = Math Computation; M-CAP $=$ Math Concepts \& Applications CD $=$ Correct Digits, $\mathrm{CP}=$ Correct Problems, Pts. $=$ Points; ${ }^{*} \mathrm{p}<.1 ; * * \mathrm{p}<.5 ; * * * \mathrm{p}<$.01 .				
coulege of evication				mams

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Results

\qquad
\qquad
Repeated Measures ANOVA

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Results

Preference
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Findings-Technical Adequacy

- Similar to previous study (Hosp, Ford, Hensley, \& Huddle, in review)
- Better prediction of Passage Comprehension (.36/.57 to .55/.61)
- OPR \& Maze no changes in differential prediction
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Findings-Technical Adequacy

\qquad

- M-COMP better prediction
- Broad Math (.67/.69 to .80/.81)
- Applied Problems (.39/.46 to .70/.71)
\qquad
\qquad
- M-COMP \& M-CAP differences for Applied Problems not present \qquad
\qquad
\qquad
\qquad

Findings—Grade Level of Passage

\qquad

- Reading Rate \qquad
- No differences
- Prediction \qquad
- Grade 6 seemed best overall
- > Grade 4 for Broad Reading, Letter-Word ID, and \qquad Passage Comprehension
- > Grade 2 for Reading Fluency
- > Maze for Letter-Word ID \qquad
- Preference
- Grade 4

Limitations

- Sample not nationally representative or random
- Relatively small sample size
- Use of single probe/passage
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

\qquad

- Increasing number of students with ID entering postsecondary programs
- Continuing need for academic focus
- Appropriate tools for this population
\qquad
- Higher grade level of reading material offers slightly better overall prediction
\qquad
\qquad
\qquad
\qquad
\qquad

