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Abstract

Project management decision rules presume that fixed and inflexible targets have been de-

fined for the project. If a project’s slack is defined as the difference between actual project

performance and these targets, then these decision rules can be characterized as maximizing the

probability that slack is non-negative (i.e., maximizing the probability of meeting the targets).

These rules rely on z-scores to compare uncertain performance to target levels. Following these

decision rules will not always suffice for the project manager to act consistently with customer

preferences. In particular, actual requirements may be uncertain or subject to change, and

customers may have some flexibility. A decision analytic approach accounting for these factors

can allow the project manager to maximize the customer’s expected utility. We redefine project

slack to reflect the difference between performance and a random target that reflects both the

customer’s risk tolerance and uncertainty about the actual requirement. The z-score associated

with this slack is shown to be proportional to the certainty equivalent for a project. Thus utility

maximizing decision rules in the language of decision analysis can be readily translated into

z-score maximizing decision rules in the language of project management. From this, we discuss

how related decision analytic concepts such as value of information might be applied to families

of problems in project management.

1 Introduction

Project management (PM) is a broad discipline encompassing numerous techniques for assuring

the successful completion of projects. This discipline, as presented in the Project Management
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Body of Knowledge (PMBOK, Project Management Institute, 2013) sets requirements, develops

plans for activities, allocates resources to those activities in order to satisfy the requirements, and

monitors and controls those activities. Furthermore, the certified project manager, as a professional,

is committed to a code of ethics (Project Management Institute, 2014) which references the duty

of loyalty, i.e., acting in the best interests of the client, and this paper presumes that the project

manager wishes to use decision rules that are consistent with those interests. While decision analysts

evaluate alternatives based on the certainty equivalents of the prospects associated with them, PM

typically uses simple z-scores to evaluate the prospects of plans in the face of uncertainty. This

paper reconciles these two views by defining z-scores and decision rules based on them that are

consistent with the principles of decision analysis and dutifully incorporate additional information

the customer’s about risk tolerances and requirements.

With many moving parts, project management is complex. For this reason, quantitative ap-

proaches to project management decision making tend to focus on deterministically optimizing

under fixed constraints. An example of this is the Critical Path Method, or CPM (Kelley, 1963;

PMBOK p. 176). CPM assumes completion times for a set of interdependent activities. It identi-

fies those critical activities whose acceleration will accelerate the completion of the project. It then

allocates additional resources to critical activities to the point that the project will be completed

on time.

In practice, much is uncertain in projects. For example, activities might have better or worse

results than assumed. Tools have been developed to deal with this kind of performance uncertainty,

e.g., project risk management ascribes uncertain completion times to individual activities, and from

these calculates uncertain project completion times. To manage project risk, the Program Evalua-

tion and Review Technique, or PERT (Malcom et al, 1959), which includes these uncertainties, is

often combined with CPM so that resources can be allocated to activities with the aim of reducing
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the risk that a project will fail to meet its requirements.

Such formalized approaches still face practical challenges arising from the following two implicit

assumptions:

Assumption 1: Project requirements are inflexible, with no additional benefit for performance that

exceeds the requirements rather than just meeting them, and no benefit for performance that almost

meets the requirement rather than falling far short of it. But this may not reflect customers’ actual

preferences.

Assumption 2: Project requirements are known and fixed. But in fact, requirements can change.

Since PM recognizes this, PM’s qualitative processes for managing changes are well-developed.

While the two assumptions simplify analysis, they can lead to imprecise analysis and to time-

consuming follow up efforts that may involve costly course corrections.

Decision analytic techniques can potentially incorporate uncertainties and preferences into PM

decision making. In fact, there have been significant efforts to apply decision analysis to PM (e.g.,

Powell and Buede, 2009, Schuyler, 2001, Virine and Trumper, 2007), and decision trees are known

to PM (e.g., PMBOK, p.339). But the use of decision analysis in such cases has been an augment

to – and largely distinct from – traditional PM practice.

This paper develops an approach that treats project requirements as changing or uncertain, and

treats customer preferences more flexibly than traditional PM. The approach used draws on target

oriented utility (TOU), which recognizes a kind of equivalence between utility functions and the

cumulative distribution function (cdf) of random variables. Target-oriented utility was originally

interpreted in terms of uncertain requirements in Castagnoli and LiCalzi (1996) and Bordley and

LiCalzi(2000), as well as in multiattribute extensions by Bordley and Kirkwood (2004), Tsetlin

and Winkler (2006), Tsetlin and Winkler (2007). Abbas and Matheson (2005, 2009) emphasized
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however that the interpretation of utility as a cumulative probability distribution reflected a util-

ity/probability duality which does not require that utility be interpreted in terms of uncertain

requirements. Consistent with this research, this paper presents an integrated treatment which

includes both the case in which the customer has requirements about which a project manager is

uncertain as well as the case in which the customer has a utility function. For example, a continu-

ous utility function for performance on a metric can be replaced by (or can replace) a continuous

random variable where there is utility of 1 for performance meeting or exceeding the value of this

variable and utility of 0 for performance that falls short of it. We shall see that this idea fits

naturally with PM formulations which project managers find comfortable and, presumably, are not

eager to change. It allows results that extend standard formulations, especially when we assume

suitable Gaussian distributions, and thus may be relatively painless to incorporate into existing

practice.

The rest of the paper is structured as follows. In section 2, we develop the simple example of a

decision between two alternative project plans. In this setting, we motivate and define key terms and

and illustrate the basic ideas with a set of numerical examples. Section 3 presents results involving

several types of decision analytic value calculations including certainty equivalents, marginal utility,

and value of information. In section 4, we summarize the potential effects on practice of this

approach, and point to directions for expanding it.

2 Uncertain target approach

2.1 Basic model

Consider a simple PM decision: choosing a plan with uncertain project performance. Under As-

sumptions 1 and 2 above, the objective used by the project manager is equivalent to maximizing the
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probability of meeting the customer’s fixed targets. This section assumes that project performance

is evaluated on the basis of one dimension, e.g., completion time, with all of the other dimensions

(e.g., cost, quality, etc. being presumed known). But this approach will also apply if there is a more

general performance measure that is a function of cost, quality, etc. To fix an example in mind,

we quantify performance as the negative of project completion time (in order to have a metric for

which higher scores are better).

A standard approach, consistent with PMBOK, makes the following assumption:

Assumption 0 is that the project manager’s uncertainty about project performance is sufficiently

approximated by a Gaussian distribution.

We note that accounting practice also often assumes cost-variances are Gaussian (e.g., Weil and

Maher, 2005, p.459), and statistical quality metrics often involve this distribution (e.g., Pyzdek

and Keller, 2009, p.278). We introduce the following notation:

X is a random real-valued variable denoting the performance of the project.

E[X] is the expectation of X, and

σX is the standard deviation of X.

x denotes a particular level of performance, and

t denotes a particular target level.

PM refers to the disparity between the completion time and the required completion time as

the level of project slack. We incorporate this notion as follows:

y = x− t denotes project slack for a particular level of performance, while

Y denotes an uncertain level of project slack (e.g., because X is uncertain), where

E[Y ] is the expected project slack, and

σY is the standard deviation of Y , and
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z = E[Y ]/σY is the z-score PM uses to evaluate uncertain slack associated with a project plan.

Φ(z) denotes the standard normal cumulative distribution function evaluated at z.

Since y = x − t, and t is known, E[Y ] = E[X] − t, and σY = σX (and the variance of Y is

thus equal to the variance of X). Following Abbas et al (2009), we assign utility function u(x, t)

a value of 1 in the case of success (x ≥ t) and 0 in the case of failure (x < t). Since y = x − t,

u(y, 0) = u(x, t). We shall henceforth suppress the second argument, 0, in writing u(y), and note

u(y) = 1 if y ≥ 0, and u(y) = 0 if y < 0. The customer’s expected utility E[u(Y )] is equal

to Pr{Y ≥ 0)}. Given the Gaussian assumption (Assumption 0), Pr{Y > 0)} = Φ(z) which is

monotonically increasing in z. Thus, to maximize the customer’s expected utility, the manager

should simply choose the plan that maximizes z. The way we think about this z-score plays a

critical role in the rest of the paper.

The primary contribution of this paper is in showing how the z-score (or standardized expected

slack metric), with some minor updating, can still be used even if both Assumptions 1 and 2 are

generalized. This section will show how assumptions 1 and 2 can be generalized and the z-score

metric updated. The remaining sections then show how this updated z-score can be used in project

management.

Let us replace Assumption 1 (inflexible requirements) with

Assumption 1*(flexible requirements): Customer preferences over performance are described

by a Gaussian utility function where performance at level x has expected utility equal to the cu-

mulative density of a Gaussian variable with mean t and standard deviation σe.We can do this by

introducing a random variable e following a Gaussian distribution with mean 0 and standard devi-

ation σe, and giving utility of 1 when x ≥ t+ e, so that E[u(x, t, e)] = Pr{x ≥ t+ e}. In working

with this assumption, we shall denote particular values of e with the symbol ε. As σe decreases to
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zero, Assumption 1* reverts to Assumption 1.

We note several consequences of this assumption.

1. The curve for this Gaussian utility function (Berhold, 1973) has the same S-shape as the

cumulative density function for a variable with mean t and standard deviation σe. To represent

customer preferences, the value t would be selected to have utility halfway between the worst

case and the best case.

2. Utility for performance is convex for x ≤ t, concave for x ≥ t and has risk tolerance σ2
e/(x−t).

For performance metrics such as completion time, this S-shape can be justified by asymptotic

behavior that bounds utility, e.g., a project that is too late has utility dropping toward some

minimum, and while there may be economic benefit to a project finishing ahead of schedule, we

might expect diminishing marginal returns to improved completion time. A similar argument

could hold for quality, depending on how it is measured.

3. The Gaussian utility function is risk-seeking with respect to losses and risk averse in terms

of gains relative to the threshold. Thus, a decision maker with such a utility function for

a dimension of performance – even one for whom this utility is not just a descriptive result

of framing effects – would demonstrate some of the behavior described by prospect theory

(Kahneman and Tversky, 1979) as observed by Abbas (2006) as well as by Castagnoli and Li

Calzi (1996).

4. The Gaussian utility function implies that risk tolerance is increasing with performance on

timeliness. Increasing risk tolerance would be a less suitable assumption for the attribute of

wealth.

Note, as is often the case with assumptions, the use of a Gaussian utility function simplifies
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analysis. Before applying this assumption in any particular situation, however, it would be prudent

to judge whether such a function reasonably approximates customer preferences.

We might also replace Assumption 2 (known requirements) with

Assumption 2*(uncertain requirements): To be successful, rather than meeting a known target,

the project performance must reach some uncertain threshold level (Θ) described by a Gaussian

distribution with mean E[Θ] and standard deviation σΘ.A particular value of Θ will be denoted

θ. A Gaussian distribution may be reasonable if, for example, deviations from the estimate are

the result of numerous unanticipated events or errors in forming the judgement. Note that as σΘ

shrinks to zero, Assumption 2* reduces to Assumption 2. If we also assume that Θ is independent of

X, then the distribution on project slack Y has mean E[Y ] = E[X]−E[Θ], and standard deviation

σY =
√

(σ2
X + σ2

Θ). As before, to maximize the customer’s expected utility, the manager maximizes

the probability of success Pr{Y ≥ 0)} by choosing the plan that maximizes z = E[Y ]/σY . The

only difference is that in obtaining the variance of Y , the variance of Θ is now added to the variance

of X.

While Assumption 1 and Assumption 1* are statements about the nature of the customer’s

preferences, Assumption 2 and Assumption 2* can be thought of as statements about the project

manager’s knowledge about the customer’s preferences.

Assumption 1* and Assumption 2* can be combined in the following manner. We define a new

random variable:

T = Θ+e, which represents a random target centered on the unknown threshold, with standard

deviation σT =
√
σ2

Θ + σ2
e . Particular values of T are t = θ + ε. The uncertain project slack with

respect to this random target is Y = X − T , where y = xθ + ε, so u(x, t, ε) = u(y, 0, 0), and

again, we suppress the latter arguments and write u(y) = 1 when y ≥ 0 (i.e., when performance
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meets or exceeds the random target) and u(y) = 0 for y < 0. Now, E[u(x, T )] = Pr{x ≥ T},

E[u(X,T )] = Pr{X ≥ T}, and E[u(Y )] = Pr{Y ≥ 0}.

This paper’s primary modification to project management is redefining slack so that, instead of

being calculated with respect to an actual known target, it is defined with respect to this random

target (which will be the same as an actual target when the customer is only concerned with meeting

a particular real target.) As this paper will show, this simple adjustment allows for the more general

application of decision analytic reasoning to project management.

In later sections, some of the results involve only X and T , without distinguishing whether

the distribution on T is associated with the customer’s utility function or with uncertainty about

the threshold, or both. Furthermore, T and X will be assumed Gaussian and independent unless

otherwise stated.

2.2 Numerical examples

The different combinations involving Assumptions 1 and 1* and Assumptions 2 and 2*, their

meaning, and the way we represent them in terms of how we define the z-score associated with the

uncertain project slack can be summarized as follows:

1. Case 1 - Standard project management (Assumption 1 and Assumption 2): Maximize prob-

ability of exceeding a known target. In this case the z-score is computed with project slack

defined relative to an actual known threshold.

2. Case 2 - Uncertain requirements (Assumption 1 and Assumption 2*): Maximize probability

of exceeding the random target: In this case, the z-score is computed with project slack defined

relative to an actual but unknown threshold.

3. Case 3 - Flexible requirements (Assumption 1* and Assumption 2): Maximize expectation
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of a known customer utility function: In this case, the z-score is computed with project slack

defined relative to a random target centered on a known threshold.

4. Case 4 - General case (Assumption 1* and Assumption 2*): Maximize expectation of the

uncertain customer utility function: In this case, the z-score is computed with project slack

defined relative to a random target centered on an unknown threshold.

We now develop a numerical example across these four cases. By illustrating the calculations

for making decisions under each set of assumptions, this example gives context to the concepts

introduced here. Beyond that, the different cases of the example demonstrate that, indeed, the

assumptions the project manager makes can quite easily affect choices made by the project manager

– which means that project managers making the wrong assumptions might be making the wrong

decisions.

Case 1 – Standard project management: The required completion time for a project is 100 days.

The decision maker must choose between

Plan A: Time to completion is normal with mean 90, standard deviation 10, and

Plan B: Time to completion is normal with mean 85, standard deviation 20.

For consistency later on in this paper, we shall in all cases use performance measures where

higher scores are better, so we define the performance metric ”timeliness” as the negative of com-

pletion time (in days in this case). Thus, the threshold for success is t = −100. For Plan A,

timeliness has expected value E[X] = −90, and standard deviation σX = 10. Thus, Y = X − t

(the gap between performance and the requirement), has expected value E[Y ] = 10, standard de-

viation σY = 10, and z = E(Y )/σY = 1.0. The expected utility E[u(X, t)] = Pr{X ≥ t}, which

is clearly equal to E[u(Y, 0)] = Pr{Y ≥ 0}. This probability is Φ(1.0) = 0.84. For Plan B, we

have E(X) = −85, σX = 20, and thus z = 15/20 = 0.75, and E[u(X, t)] = Φ(0.75) = 0.77. Thus,
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the plan (Plan A) associated with the higher z-score has higher expected utility and is preferred.

Note, although PM commonly assumes Gaussian completion times, a well-known limitation of this

assumption is that in reality, completion times are non-negative. When E[X]/σX is far from 0,

however, this has negligible effect on probability calculations.

Case 2 – Uncertain requirements: In Case 1, we can replace t with θ, the particular value of the

random variable Θ, which here happens to have standard deviation σΘ = 0 and mean E[Θ] = −100.

Project slack is then the random variable Y = X−Θ, and z remains E[Y ]/σY . Because σΘ = 0, σY

is unchanged, and so are the z-scores and utilities. For Case 2, assume there is uncertainty about

the required timeliness, i.e., Θ is a random variable with positive standard deviation. Assume Plan

A and Plan B are as in case 1, while Θ follows a normal distribution with mean E[Θ] = −100, but

now with standard deviation σΘ = 20.

Then for Plan A, E[Y ] = 10, σY =
√

102 + 202 = 22.36, so z = 0.447 and E[u(Y )] = 0.673.

For Plan B, E[Y ] = 15, σY =
√

202 + 202 = 28.28, z = 0.53, and E[u(Y )] = 0.702.

Thus, with the uncertainty added to the target, the improved mean performance grows in impor-

tance compared to the uncertainty of that performance. This results in a higher z-score for Plan B

than for Plan A, and thus a higher utility, and Plan B is now preferred.

Case 3 – Flexible requirements: We now define slack Y = X − t+ e and let the target oriented

utility function be u(x, t, e) = Pr{x ≥ t + e} so that E[u(Y )] = Pr{Y ≥ 0} incorporates the

variable e which has mean 0 and standard deviation σe. Case 1 assumed there is no additional

upside to early completion, and no difference between missing the requirement by a small amount

or a large amount, which is equivalent to assuming σe = 0, so that the values of σY and thus the

expected utilities for Plan A and Plan B are unchanged.

For Case 3, assume that the customer assigns a Gaussian utility function to timeliness, where

a project meeting the requirement of 100 days has utility halfway between the worst and best
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possible cases, and where the utility for a project that is ten days late has utility halfway between

the worst case and the case where the project exactly meets its requirement. We represent this with

u(x, t, e). Fitting u(100, t + e) = 0.5 = Pr{100 ≥ t + e} and u(90, t, e) = 0.25 = Pr{90 ≥ t + e},

we find σe = 14.8. Thus, for Plan A, σY = 17.9, z = 10/17.9 = 0.559, and E[u(Y )] = 0.712.

For Plan B, σY = 24.9, z = 15/24.9 = 0.603, and E[u(Y )] = 0.726. Thus, for the customer with

higher risk tolerance in Case 3 vs. Case 1, the riskier but on-average better performance of Plan

B becomes preferable. Case 4 – General case: We now assume that, in contrast to Case 1, the

customer has a utility function around the threshold, but the project manager is also uncertain

about this threshold. We include the random variables added in both Case 2 and Case 3, letting

E[Θ] = −100, σΘ = 20, and σe = 14.8, and assume e and Θ independent. Defining Y = X −Θ + e,

we find that for Plan A, σY = 26.8, z = 0.373 and E[u(Y )] = 0.645, while for Plan B, σY = 0.319,

z = 0.470, and E[u(Y )] = 0.681. Not only is Plan B preferred to Plan A in this case, but the

difference in utility is larger than in Case 2 or Case 3.

Thus, the question of whether or not the project manager should even select the project with

the shorter completion time if it comes with more uncertainty depends on how consequential that

uncertainty is. This is reflected in the calculation of z-scores which correspond to the resulting

expected utilities. In the first case, it was consequential enough to make the manager choose

Plan A, while in cases 2 (due to the manager’s uncertainty about requirements) and 3 (due to the

customer’s risk tolerance) the risk is less consequential and Plan B is preferred. Finally, in case

4, both factors make the faster but riskier Plan B even more attractive relative to Plan A. The

pattern of which plan is preferred in which case could change with different values on any of the

parameters.

Figure 2 illustrates the utility functions that may be faced by the project manager. The solid

curve consisting of a vertical line at −100 is the utility function for Case 1; Case 2 is not shown, but
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Figure 1: Comparison of numerical example cases

would just have different possible positions of the vertical line corresponding to different possible

threshold levels; Case 3 is illustrated by the center dashed curve (labelled M) showing the customer’s

utility when the threshold is known to be 100 and the customer has flexible requirements; in Case 4,

the customer’s threshold is also uncertain, the dashed curves on the left and right represent possible

customer utility functions with low (L) and high (H) thresholds one standard deviation above and

below the mean threshold, while the wider solid curve represents the expected utility taking into

both the flexibility of the customer’s requirements and the uncertainty of the customer’s threshold
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Figure 2: Project utility functions under different assumptions

level.

In Figure 3, we compare Case 1 and Case 4 by inspecting the cdf for the slack associated with

the two project plans. The expected utility of each plan is 1 − Pr{Y < 0}. In Case 1, with the

fixed target, Plan A has a higher z-score and hence lower chance of having negative slack (failure)

than plan B, while in Case 4, Plan A has a higher chance of failure.

3 Results

3.1 The certainty equivalent

Having gone from z-scores to expected utilities, we now circle back to decision analytic certainty

equivalents (CEs). We shall let cX denote the CE for performance, i.e., the particular performance

level x which has the same expected utility as the uncertain performance X. Both perspectives can

be useful. To show that these two ways of ranking decisions are consistent, we prove:

Proposition 3.1. In a project with independent Gaussian distributions for performance and target,

the certainty equivalent for performance is linear in the product of the risk tolerance and the z-score
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Figure 3: Everything combined into uncertain project slack

for project slack.

Proof: Suppose X and T are Gaussian and independent, and u(x, t) = 1 if x ≥ t and u(x, t) = 0

if x < t. Then we can write

u(x) = Pr{x ≥ T} = Φ(
x− E[T ]

σT
)

Since cX , the certainty equivalent for X, solves u(cX) = Pr{cX ≥ T} = u(X) = Pr{X ≥ T},

Φ[ cX−E[T ]
σT

] = Φ[E[X−T ]
σX−T

]. Since the z-score is E[X−T ]√
σ2
X+σ2

T

. this implies

cX = E[T ] +
σT
σX−T

E[X − T ] = E[T ] + zσT

Note that u(x) = Φ(x−E[T ]
σT

), u′(x) = Φ′(z)/σT and u′′(x) = Φ′′/σ2
T . As a result, the risk tolerance

is −u′/u′′ = σTΦ′/Φ′′ where Φ′ and Φ′′ are independent of σT . Thus cX = E[T ]− z u′u”
Φ”
Φ′ and cX is

linear in the product of z and the risk tolerance −u
′

u′ . QED

Thus, in the PM context, the z-score as developed here can function as a simple proxy for

the conventional certainty equivalent for project managers to maximize. Other surrogates or even
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alternate formulations of the certainty equivalent have been adopted in different applied contexts,

e.g., risk and return based formulations in finance. Thus there may be practical value to other

statistics that are similar to the CE. This paper’s formulation suggests several such possibilities

which we consider in the appendix.

Related to the CE of an uncertain outcome is its risk premium, which quantifies the undesir-

ability of the risk in a gamble as the difference between its CE and its expected value. If we define

the risk-adjusted weighting factor as ρ = σT /(σ
2
T + σ2

X)1/2 then the certainty equivalent cX can be

rewritten as E[T ] + ρE[Y ] where ρ < 1 implies risk aversion in X. In the limit, as σT →∞, ρ→ 1,

a condition which implies risk-neutrality. It is then meaningful to talk about a performance risk

premium, E[X] − cX = (1 − ρ)E[Y ] = (1 − ρ)zσT and this is also an affine transformation of the

z-score.

In plan A of our previous example, z = 10/26.8 = 0.373, σT = 24.88, and E[T ] = −100, so

cX = −100 + 0.373 ∗ 24.88 = −90.72 and the risk premium is 0.72 (which is fairly low because the

risk tolerance is somewhat higher than the amount of performance risk).

This can be seen graphically if we modify the parameters to accentuate the effects. If E[X] =

−90, E[T ] = −100, so that E[Y ] = 10 as before, but σX = 20 and σT = 15, so that σY = 25,

z = 10/25 = 0.4, ρ = 15/25 = 0.6, zσT = 6, and cX = E[T ] + zσT = −94. In Figure 4, we see that

the cdf for X − T intersects the cdf for E[X]− T at the 50th percentile, and intersects the cdf for

cX − T at 0, as the curve is shifted left by the risk premium (1− ρ)σT = 4.

3.2 Sensitivity to changes in means and standard deviations

In the standard case with a fixed target, t, if a particular change to the plan adjusts the mean

timeliness by some amount δE[X] and the standard deviation by some amount δσX , then a first-

16



Figure 4: Performance certainty equivalent and the distribution on project slack

order approximation of the change in z-score for project slack is

δz ≈ −δE[X]

σX
− E[X]− t

σ2
X

δσX =
1

σX
δE[X]− zδσX

Since the project manager should only accept changes which improve the z-score, any change

which increases σx by δσX will only be acceptable if it improves expected performance by zδσX .

We can interpret the right-hand side of the equation above as a decision rule for contemplated

changes. It shows whether the change in mean is offset by the change in standard deviation in

such a way that the z-score improves and therefore the probability of success improves. Hence the

impact of a change on the z-score also defines the amount of added risk δσX which the manager is

willing to accept in order to receive an incremental improvement, δE[X], in expected performance.

When the target T is uncertain, the first-order change in z-score induced by a change in E[X]

and σX is now

δz ∝ δE[X]

σY
− 1

2

E[X]− E[T ]

(σ2
X + σ2

T )3/2
2σXδσX =

1

σY
δE[X]− zσX

σY
δσX
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As before, the decision about whether to make the change is guided by whether the change

increases the z-score for project slack, which now incorporates target uncertainty. When the target

T is uncertain, the coefficient of δσX in the previous expression changes from z to z σxσy . As a result,

a δσX increase in the plans standard deviation will now be acceptable if it improves performance

by z σxσY . As the risk tolerance increases, σY increases and the required improvement in performance

decreases.

3.3 Value of information

In this section, we derive an equation describing the increase in expected utility arising arising from

acquisition of information. From this, value of information can be readily calculated in particular

situations.

During the course of the project, the manager will have the opportunity to obtain information

prior to make some decisions. Consider the following two-stage problem. In the first stage, the

manager has a choice of whether or not to gather information I. In the second stage, the manager,

based upon the information collected in the first stage, can decide between continuing with his

current plan A or moving to a different plan B. The manager has three choices

1. Do not acquire information I and choose plan A

2. Do not acquire information I and choose plan B

3. Acquire the information I and choose either plan A or plan B depending upon what I reveals.

Let XA denote the uncertain performance associated with the execution of plan A while XB denotes

the same for plan B, with YA = XA − T , YB = XB − T . Assume XA and XB are Gaussian with

means E[XA] and E[XB] and standard deviations σXA
and σXB

so that the project slack associated
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with the plans would be Gaussian with means E[YA] and E[YB] and standard deviations σYA and

σYB implying z-scores zA = E[YA]/σYA and zB = E[YB]/σYB .

After learning I, the manager forms updated probability distributions for XA|I , XB|I and TI ,

which we shall assume are also Gaussian with standard deviations σXA|I , σXB|I and σT |I . The

manager then calculates distributions for YA|I and YB|I , with means E[YA|I ] and E[YB|I ] with

standard deviations σYA|I and σYB|I , and calculates the associated z-scores with zA|I and zB|I .

The expected utility of choosing plan A is thus Φ(zA) prior to collecting the information and

Φ(zA|I) after, and likewise for the expected utility of choosing plan B.

The manager’s decision problem is shown in Figure 5. We see here that some calculation

is required to estimate the probability that acquired information will lead to Plan A or Plan B

being preferred, but once that information is acquired (or if no information is acquired), the choice

between Plan A and Plan B is straightforward. Finally, more calculation is required to determine

the chance of success once that plan is selected. Thus, determining the value of information is not

trivial.

The project manager should, upon learning I, switch to plan B if zB|I ≥ zA|I since this offers

the manager a higher utility. Thus if k = 1 when zA ≥ zB and zero otherwise, the project manager’s

utility upon learning I is

Φ(zA|I)k + Φ(zB|I)(1− k)

The distributions associated with the variables before learning I will be called prior distribu-

tions and the distributions associated with the variables after learning I will be called posterior

distributions. Prior to learning I, the means of the posterior distributions for the variables E[XA|I ],

E[XB|I ], E[TI ] can themselves be considered as (Gaussian) random variables with means equal to

the means of the prior distributions and variances equal to the difference between the variances of
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Figure 5: Decision tree for selecting a project plan, with an opportunity to acquire information

their prior and posterior distributions (as in Raiffa and Schlaifer, 1961). Thus, prior to learning

I, E[YA|I ], E[YB|I ], zA|I and zB|I can also be treated as random variables whose distributions can

be calculated. When treating the last two as random variables, we shall use the notation z̃A|I and

z̃B|I . As z̃A|I and z̃B|I are random variables, Φ(z̃A|I) and Φ(z̃B|I) are themselves random variables,

with expected values E[Φ(z̃B|I)] and E[Φ(z̃B|I)].

With this treatment, the manager’s new expected utility for the project prior to learning the

outcome of I (but after committing to gather the information) is

E[Φ(z̃A|I)|{z̃A|I ≥ z̃B|I}] Pr{z̃A|I ≥ z̃B|I}+ E[Φ(z̃B|I)|{z̃B|I > z̃A|I}] Pr{z̃B|I > z̃A|I}

We can rewrite the original expected utility (where Plan A is selected regardless of what I reveals)
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as Φ(zA) = E[Φ(zA|I)|zA ≥ zB] Pr{zA ≥ zB}] + E[Φ(zA)|zA < zB] Pr{zA < zB}. Taking the

difference between the new and original levels shows that information I increases expected utility

by

Pr{z̃A|I < z̃B|I}[E[Φ(z̃B|I)− Φ(z̃A|I)]|{z̃A|I < z̃B|I}]

If S is a standardized Gaussian random variable (with Φ(k) = Pr{S ≤ k}), then this change in

utility can be written as

Pr{S ≤ z̃B|I , z̃A|I < z̃B|I} − Pr{S ≤ z̃A|I , z̃A|I < z̃B|I} = Pr{z̃A|I < S < z̃B|I}

This can be rewritten as Pr{(XA|I − T )/σYA|I} < S < Pr{(XB|I − T )/σYB|I}

= Pr{(E[XA|I − E[T ])/σYA|I < S S < (E[XB|I − E[T ])/σYB|I}

= Pr{(XA|I < T ) (T < XB|I)} = Pr{XA|I < T < XB|I} i.e., it is the probability of the information

indicating that plan B exceeds the threshold while plan A does not. This formula can be computed

from the probability density for the maximum of two correlated random variables.

To compute this probability density, let M and s, and µ and σ denote the mean and standard

deviation of the two performance scores. Also let r be the correlation between the two completion

times. Nadarajah and Kotz (2008) show that, if X1 and X2 are correlated Gaussian random

variables, withX = max(X1, X2), f0(x), the probability density function for this maximum, satisfies

f0(x) = f1(−x) + f2(−x) (1)

where

f1(x) =
1

σ
φ(
x+ µ

σ
)Φ(

r(x+ µ)

σ
√

1− r2
− x+M

s
√

1− r2
)

f2(x) =
1

s
φ(
x+M

s
)Φ(

r(x+M)

s
√

1− r2
− x+ µ

σ
√

1− r2
)

If we define a = 1/
√

1− r2, x̂c = µ−x
σ , x̂n = M−x

s then equation (1) becomes

f0(x) =
1

σ
φ(x̂c)Φ(a[rx̂c − x̂n]) +

1

s
φ(x̂n)Φ(a[rx̂n − x̂c]).
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The cumulative distribution of the maximum of these two variables can be computed from the prob-

ability density using common numerical integration methods such those based on the trapezoidal

rule (Davis and Rabinowitz, 1984). This specifies the change in utility induced by the information

as a function of the parameters of the distribution of zA and zB.

In this paper, performance is in terms of time rather than in terms of money, and we can

calculate the value of information in those units (e.g., the delay the project manager would be

willing to accept in order to obtain the information) as follows: Let δp denote increase of utility

just obtained, and and define p0 as max[Φ(zA),Φ(zB)]. We calculate certainty equivalents cX s.t.

E[u(cX , T ] = p0 and c′X s.t. E[u(c′X , T )] = p0 + δp. The value of information is then c′X − cX .

In our Gaussian example, without information the expected utility is Φ(z) where z = E[Y ]/σY .

Define z′ so that Φ(z′) = max[Φ(zA),Φ(zb)]. Suppose we define δE[X] as the amount by which

timeliness on the current project would have to be improved in order to get the same utility as

the PM could attain by getting new information. Then Φ([δE[X] + E[Y ]
σY

) = Φ(z′) and δE[X] =

σY z
′ − E[Y ].

To translate value of information to monetary units, we would need to have a customer utility

function um over money, and the value of information would then be u−1
m (p0 + δp) − u−1

m (p0). If

project cost were linear in X, value of information in terms of acceptable delay could be translated

to an equivalent increased cost. Another straightforward case is where the monetary value of

project success is V and failure has value 0, and um is linear over [0, V ]. Then the monetary value

of information is simply V δp.

3.4 Solutions for Different Kinds of Information

As an example, consider the situation depicted in the influence diagram in Figure 6, where the slack

on both plans A and B depends in linear fashion on the timeliness Xi of some common activity
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i, and the manager must decide whether or not to obtain information about Xi before choosing

a plan. Hence if the expected timeliness of this activity is E[Xi] and the actual timeliness is xi,

the slack on both A and B will change by xi − E[Xi]. Learning the timeliness of this activity will

also reduce the variance in the slack of both A and B by the same common amount σ2
Xi

. Letting

δi = xi − E[Xi] implies that

zA|I =
E[YA] + δi
σYA|I

=
zAσYA + δi
σYA|I

and zB|I =
zBσYB + δi
σYB|I

The manager will reach the point of switching to plan B when

zB|I − zA|I = δi[
1

σYB|I
− 1

σYA|I
] + zB

√
1 + (

σXi

σYB|I
)2 − zA

√
1 + (

σi
σYB|I

)2

Hence if plan B is riskier than plan A, the coefficient of δi is negative and the manager’s tendency to

switch will be greater when δi is smaller. This is consistent with the manager only switching to the

riskier plan B when the outcome of activity i falls significantly short of the manager’s expectations.

In addition, the coefficient of zB is smaller than the coefficient of zA since σYB|I is larger. Thus the

difference between zB|I − zA|I places greater weight on zA than zB.

If activity i was only present in plan A, then zB|I = zB and getting perfect information on the

performance of activity i will bring the manager to the point of switching to B if

zB|I − zA|I = zB −
zAσYA + δi
σYA|I

= − δi
σYA|I

+ (zB − zA) + zA
σYA|I − σYA

σYA|I

In this case, the greater the residual uncertainty (as measured by σYA|I ) in plan A, the less prone

the manager will be to switch given adverse information about activity i. In particular, if slack is

in part based on the random variable centered around the threshold, this component of uncertainty

associated with T does not resolve, hence, for the same difference in expected utility of A and B,

the greater the customer’s risk tolerance, the lower the value of information.

To generalize this result, suppose that the manager, instead of collecting perfect information

about the activity’s timeliness, conducts an imperfect experiment about activity i, producing a
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Figure 6: Influence diagram for problem of value of information about an activity common to both

plans

signal about Xi. As before, let σ2
Xi

denote the uncertainty in the manager’s beliefs about activity

i’s timeliness. Let σ2
D denote the uncertainty in the signal. Suppose that the signal differs from

the expected timeliness by δi. If the prior estimate of timeliness was E[Xi], then the revised mean

timeliness is

(E[Xi]/σ
2
Xi

) + (E[Xi] + δi)/σ
2
D)

(1/σ2
i ) + (1/σ2

D)
= E[Xi] +

δi
1 + (σ2

D/σ
2
Xi

)

If we let βi = 1/[1 + σ2
D/σ

2
Xi

], then the posterior mean differs from the prior mean by βiδi. The

posterior variance can be computed from

(1/σXi|I )2 =
1

σ2
D

+
1

σ2
Xi

= [
σ2
Xi

σ2
D

+ 1]
1

σ2
Xi

=
1

1− βi
1

σ2
Xi

so that

(σXA|I )2 = σ2
XA

+ σ2
Xi|I − σ

2
Xi

= σ2
XA

+ (1− βi)σ2
Xi
− σ2

Xi
= σ2

XA
− βiσ2

Xi

which is equivalent to the previous results apply with δi replaced by βδi and σ2
Xi

by βσ2
Xi

. As the

signal approaches perfection, σ2
D approaches zero and βi approaches one.
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Hence the increase in expected utility associated with δi is the probability that δi lies within

that interval where plan B meets the threshold but A does not.

4 Conclusion

Project management practice incorporates uncertainty about performance in a way that is correct

(utility maximizing) from a decision analytic perspective. We have described how approaches that

work for a range of problems using the assumption of fixed requirements can be extended into a

target-oriented utility based approach that works when requirements are uncertain and when they

are flexible. Common simplifying assumptions to make logical decision rules tractable with fixed

targets, e.g., Gaussian distributions, remain tractable with uncertain targets. Standard decision

rules function by managing the uncertain slack between performance and requirements; we can allow

these requirements to vary while continuing work in terms of project slack. Doing so facilitates

integration into formal project management of the information about external uncertainties and

customer preferences.

This translation between PM and DA formulations lays the groundwork for future modeling of

an array of PM problems as sequential decision problems containing uncertainty about performance

and targets, and identify or outline statistics and decision rules to maximize z-scores that project

managers may readily calculate, or quantities derived from them.

Future work would move beyond the illustrative examples in this paper to additional formu-

lations capable of capturing more of the considerations that arise in realistic settings. Specific

developments might include applications to practical PM problems, such as:

• selecting among alternative project plans affecting separate activities in networks;

• developing tractable decision rules using utility functions that are more flexible than the
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Gaussian;

• making tradeoffs in achieving performance on cost, quality and time aiming to meet either a

set of targets based on all three of these dimensions;

• designing optimal product testing and validation procedures into project plans based on value

of information.

Theoretical developments could also allow for more flexible modeling, e.g. incorporating multi-

level uncertain targets, e.g., where there is a value of 1.0 for meeting a stretch goal, 0.5 for meeting

a lower threshold, and 0 for failing to meet that lower threshold; or incorporating distributions

other than Gaussian.

By explicitly treating targets as both flexible and uncertain, it is possible to formalize many

of the practical challenges of PM. This creates interesting theoretical and applied opportunities to

enhance PM with powerful decision analytic methods.

A Appendix: Equivalence concepts related to certain equivalence

The concept of certain equivalence in DA is useful in part because it allows the decision maker to

remove the dimension of uncertainty in evaluating prospects. In this paper’s formulation, where

there are several different ways of viewing utility based on several uncertain variables, CE-related

devices may be useful when one wishes to remove different aspects of that uncertainty from discus-

sion. The case considered in the main text is similar to the CE common in decision analysis, except

that instead of being expressed in monetary units, it is expressed in units of performance (X). As

the approach here incorporates targets, it is also possible to calculate an aspiration equivalent as

defined in Abbas and Matheson, 2005, which we may think of for present purposes as a CE for the
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target. We can extend this idea by searching for constant values of other variables or combinations

of variables for which similar equations hold, we define several new variations on the CE theme.

As with the performance CE, in the Gaussian case these new values are are simply sums of E[T ]

and multiples of the original z-score (proofs are left as an exercise for the reader).

1. Performance CE: cX such that E[u(X,T )] = E[u(cX , T )], in the Gaussian case here cX =

E[T ] + zσT , finds the certain performance with the same expected utility as the random

performance;

2. Target CE: cT such that E[u(X,T )] = E[u(X, cT )], here cX = E[T ]+zσX ,reduces the general

case with an unknown and non-binary customer utility function to a fixed target with the

same probability of non-negative slack;

3. Threshold CE: cΘ such that E[u(X,T )] = E[u(X, cΘ+e)], here cX = E[T ]+z
√
σ2
X + σ2

e ,reduces

the case with a Gaussian customer utility function with unknown mean to one with a known

mean;

4. Requirement CE: ce such that E[u(X,T )] = E[u(X,Θ + ce)], here ce = E[T ] + z
√
σ2
X + σ2

Θ,

reduces the general case to one with a binary customer utility function and an unknown

threshold shifted to account for the customer’s risk tolerance;

5. Threshold risk adjusted performance CE = cX,Θ such that E[u(X,T )] = E[u(cX,Θ, E[Θ]+e)],

here cX,Θ = E[T ]+zσe, assumes the threshold is as expected and finds the certain performance

with the same expected utility as the random performance against an unknown threshold;

6. Risk sensitivity adjusted performance CE = cX,e such that E[u(X,T )] = E[u(cX,e,Θ)], here

cX,e = E[T ] + zσΘ, allows an uncertain threshold but assumes the customer has a binary

utility function and finds a performance CE with the same expected utility as the random
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performance against a Gaussian customer utility.

Beyond one-dimensional CE values, we can also identify the following iso-utility curves:

Target uncertainty adjusted iso-utility curve: the set of points (c1, c2) such that E[u(X,T )] =

E[u(c1, c2 + e)]; and

Risk-tolerance adjusted iso-utility curve: the set of points (c1, c2) such that E[u(X,T )] = E[u(c1,Θ+

c2)], the position of which depends on the customer risk tolerance.

In addition, two more variations on the CE involve situations where some official requirement

q is given that has not accounted for customer preferences. In this case, we can find a fixed

target for which the uncertain performance has the same expected utility as performance at the

requirement as for the uncertain target, i.e., cq such that E[u(q, T )] = E[u(X, cq)]. Alternatively,

we might compute the expected utility of performance using the requirement as a threshold, and

find a certain performance level that gives the same expected utility against the uncertain target,

E[u(X, q)] = E[u(cq, T )].

Like the traditional performance CE, the variations described here may be of interest to design-

ers of decision rules, who can use them as markers against which possibilities are compared.

Acknowledgments

The authors are grateful to the generous editors, referees and colleagues who provided detailed and

valuable feedback through the revisions of this manuscript.

References

Abbas, A. E. (2006). Maximum entropy utility. Operations Research 54(2):277-290.

Abbas, A.E., R.A. Howard. (2005). Attribute Dominance Utility. Decision Analysis 2(4):185-206.

28



Abbas, A., J. Matheson. (2005). Normative target-based decision making Managerial and Decision

Economics 26:373-385.

Abbas, A., J. Matheson. (2009). Normative decision making with multiattribute performance tar-

gets. Journal of Multi-Criteria Decision Analysis 16:67-78.

Abbas, A., J. Matheson, R. Bordley. (2009). Effective utility functions induced by organizational

target-based incentives. Managerial and Decision Economics 30(4):235-251.

Abbasi, G. Y., A.M. Mukattash. (2001). Crashing PERT networks using mathematical program-

ming. International Journal of Project Management 19:181-188.

Berhold, M. H. (1973). The use of distribution functions to represent utility functions. Manage-

ment Science 19(7):825-829.

Bordley, R., C. Kirkwood. (2004). Multiattribute preference analysis with performance targets.

Operations Research 52(6):823-835.

Bordley, R., M. LiCalzi. (2000). Decision theory using targets instead of utility functions. Deci-

sions in Economics and Finance 23:53-74.

Castagnoli, E., M. Li Calzi.(1996). Expected utility without utility. Theory and Decision 41:281-

301.

Davis, P.J., P. Rabinowitz. (1984). it Methods of numerical integration, 2nd Edition. Academic

Press, Orlando Florida. Ha, A., E. Porteus. (1995). Optimal timing of review with concurrent

design for manufacturability. Management Science 41(9):1431-1447.

1(2):185-197.

Huchzermeier, A., C. Loch. (2001). Project management under risk: Using the real options ap-

proach to evaluate flexibility in R&D. Management Science 47(1):85-101.

Kahneman, D., A. Tversky. (1979). Prospect theory: an analysis of decisions under risk. Econo-

metrica 47:263-291.

29



Kavadias, S., C. H. Loch. (2003). Optimal project sequencing with recourse as a scarce resource.

Production & Operations Management 12(4):433-444.

Keisler, J., P. Mang (2011). Applying value of information and real options to R & D and new

product development. Wiley Encyclopedia of Operations Research and Management Science Vol.

1:138-158.

Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial

Scheduling (Muth, J. F., & Thompson, G. L., Eds.) Prentice Hall. 347-365.

Malcolm, D. G., J.H. Roseboom, C.E. Clark, C. E., W. Fazar. (1959). Application of a technique

for research and development program evaluation. Operations Research 7(5):646-669.

Nadarajah, S., S. Kotz. (2008). Exact distribution of the max/min of two gaussian random vari-

ables. IEEE Transactions on Very Large Scale Integration Systems 16(2):210-212.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer.

PMI Code of Ethics and Professional Conduct. (2014). Project Management Institute. http:www.pmi.orgAbout-

UsEthics˜mediaPDFEthicsap pmicodeofethics.ashx, accessed August 4, 2014.

Powell, R.A., D.M Buede (2009) The Project Manager’s Guide to Making Successful Decisions.

Management Concepts. Vienna, VA

A Guide to the Project Management Body of Knowledge (2013). Fifth Edition. Project Manage-

ment Institute, Newtown Square, Pennsylvania

Pyzdek, T., Keller P. (2009). The Six Sigma Handbook, Third Edition. McGraw-Hill, New York,

NY

Raiffa, H., R. Schlaifer (1961) Applied Statistical Decision Theory. Division of Research, Harvard

Business School, Boston.

Schuyler, J. (2001). Risk and Decision Analysis for Projects. (2nd ed.) Project Project Manage-

ment Institute.

30



Smith, R., S. Eppinger. (1997). Identifying controlling features of engineering design iteration.

Management Science 4(3):276-293.

Thomke, S., D. Bell. (2001). Sequential testing in product development. Management Science

47(2):308-323.

Tsetlin, I. & R. Winkler (2006). On equivalent target-oriented formulations for multiattribute util-

ity. Decision Analysis 55:226-233.

Tsetlin, I. & R. Winkler (2007). Decision making with multiattribute performance targets: The

impact of changes in performance and target distributions. Operations Research 55:226-233.

Verzuh, E. (2011). Fast Forward MBA in Project Management Fourth edition, Wiley, Hoboken

Virine, L., M. Trumper (2007) Project Decisions: The Art and Science. Management Concepts,

Vienna, VA.

Weil, R. M. Maher (2005). Handbook of Cost Accounting. Wiley, Hoboken, NJ.

31


	University of Massachusetts Boston
	From the SelectedWorks of Jeffrey Keisler
	2015

	Project management decisions with uncertain targets
	tmpRCxwcC.pdf

