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Asymptotic analysis of liquid films dip-coated onto chemically
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The dip coating of chemically heterogeneous surfaces is a useful technique for attaining selective
material deposition. For the case of vertical, wetting stripes surrounded by nonwetting regions,
experiments have demonstrated that the thickness of the entrained film on the stripes is significantly
different than on homogeneous surfaces because of the lateral confinement of the liquid. In the
present work, the asymptotic matching of equations based on lubrication theory is used to determine
the film thickness, and necessary restrictions on the capillary and Bond numbers are provided. The
predictions are in excellent agreement with the existing experimental data, and the classical Landau—
Levich formula for homogeneous surfaces is recovered from the analysis in the limit of very wide
stripes. ©2005 American Institute of PhysidOI: 10.1063/1.1850751

The dip coating of chemically homogeneous plates, rods, Consider the dip coating of a wetting microstripe of

and fibers has been extensively investigated both experimegyidth W on a nonwetting plate that is withdrawn at velocity
tally and theore'ficallfi.‘9 More recently, as microfabrication y from a bath containing liquid of densify, viscosityu, and
has become common and microfluidic applications have insyrface tensiony. The stripe is oriented vertically with the
creased, the dip coating technique has been used to achieygyte withdrawn in the x direction, as shown in Fig. 1, and
selective material depOSition on minOpatterned Surfé%_ég. z is directed Outwarc“y normal from the p|ate surface. The
In particular, the experimental investigation of the dip coat-component of the liquid velocity in the direction isu, and
ing of vertical, wetting stripes on a nonwetting planar surfacet is assumed that the entrained liquid is completely confined
by Darhuberet a|.12 has demonstrated that fluid Confinementto the Wetting Strip(Such confinement was attained experi_
by chemical surface patterning strongly affects the thicknesgentally by Darhubeet all?)
of the entrained liquid film. For the general restrictions of Far above the reservoir, as——x, the thickness of the
small capillary and Bond nur.nbers., scalling arguments werentrained liquid film is independent ofand has centerline
used to predict that the entrameg film th|ckness~at the centgpickness hly:tho=hw. In this region only viscous forces
of the stripe,h,,, scales as,=bWCa'’3, whereW is the (and possibly gravitydetermine the upward flux of liquid.
width of the stripe andCa is the capillary number defined At the reservoir the free surface profil€ig. 2) is a static
below. The numerical prefactérwas not determined. Aside meniscus whose shape is governed by the balance of capil-
from the scaling arguments used by those authors, theoreticlry and possibly hydrostatic pressures. The lubrication film
treatments have been confined to homogeneous surfaces foansitions to the static meniscus through the dynamic menis-
which the key step in the analysis, which has been presentezlis, or overlap region, in which the viscous and capillary
with varying formality and rigor, entails the(one- forces balance. The film curvature in this region smoothly
dimensional matching of the limiting curvature of the en- matches the static meniscus curvature at the lower end, and
trained liquid to that of a static meniscus of liquid on thethe centerline film thickness decaystg as the lubrication
substrate near the liquid reservoir. For the withdrawal of &ilm is approached fox— —oo.
homogeneous plate, the classical Landau—Levich result is The flow is described by the equations of lubrication
theory, which are

h.=0.948_ Ca?"?, (1) ap 2u
T P9t 5=0 (2)
wherel, is the capillary length defined below. The scaling
behavior observed by Darhubet al. is clearly quite differ- and
ent, as the capillary length. is replaced by the much
: _p:')’K:_'VVs'nz')’(hxx'thy)v (3

smaller stripe widthW, and the exponent of the capillary
number decreases from 2/3 to 1/3. The dip coating of suclvherep is the capillary pressures is the (mearn curvature
micropatterned surfaces is reconsidered below, andf the free surface ag=h,n is the unit normal vector di-
asymptotic matching is used to determine the prefaot@x  rected outward from the liquid surfac®, is the surface
simplified exposition is used in place of full mathematical gradient operator, aniis the film thickness. This analysis is

rigor for brevity. restricted to small capillary numbeiGa=uU/y<1, so that
the viscous contributions to the normal stress balance at the
dE|ectronic mail: jmdavis@ecs.umass.edu free surfacé? which would enter aD(Ca?3), may be ne-
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thickness, and..=(vy/pg)*?, which is the scale of a hydro-
static meniscus. Introducing the variabldsh/d, X=x/L.,
andY=y/Winto Eq.(10) and substitutingc~ h,,+h,, yields

H3 [ Hyxx+ Bo Hyyx] = 3673(H - H..) + 5 3(H2 - HY),
(7)

where 8= (d/Ly)%¥3=Ca'® is small and Bo=(W/L.)?
=pgWP/ y is the Bond number.

If Bo>1, then the stripe width is much larger than the
capillary length, and the flat-plate solution should be a rea-
sonable first approximation. THe®Hyyy term will balance
the viscous terms on the right-hand side if the new variables
(side view) (front view) x=62X and ¢y=6"H are used to transform Eq7) into

—-n—hw

U Lubrication film

Dynamic meniscus
l g ktahc meniscus

—
A
z

A
X

- _ 3
FIG. 1. Sketch of the dip coating geometry for the chemically micropat- ',lﬁllfxxx‘* Bo 154',031//\(\()(— (- i) + 52('/130 - %03) (8)
terned surface. The image at left is a side view of the film profile. The . . . .
wetting microstripe of widthw is indicated by the cross hatching in the These scales are identical to those used in analyses of the dlp

image at right. The plate surface surrounding the microstripe is nonwettingtoating of a homogeneous flat pI%Emd a cylindrical rod of
radiusR>L.*°
Substituting=h..¢ and y=3"%h_.¢ and neglecting the
glected in Eq(3). These equations are solved subject to thesmall terms(Bo <1, §°<1) due to the change in trans-
boundary conditions of no slip at the solid-liquid interface, verse curvature and drainage due to gravity convertg&g.
u=-U at z=0, (4) (to leading orderto the universal form

34— -
and vanishing shear stress at the liquid-air interface, $b=¢- 1, ©)
ou subject to the boundary conditioh— 1 as {——w. As ¢
e =0 at z=h(xy). (5) — %, ¢,,— @, Which is a constant that can be found by inte-

grating Eq.(9) numerically. Equating this constant, limiting
The velocityu is found by integrating Eq(2) and using ~ curvature of the lubrication film region with the limiting cur-

the boundary conditions given in Eqgl) and(5). A further ~ vature of the hydrostatic meniscus in a common set of scaled

integration with respect ta yields the fluxQ, which is set  variables completes the matching process in the overlap re-

equal to its asymptotic value &s——x to give gion and leads to Eq1). The formal matching of rigorous
asymptotic expansions in the thin film and meniscus regions

hS% =3Ca(h-h,) + p_g(ﬁfc -hd), (6) has been presented up@s?) by Wilson® The related prob-
2 Y lem of films climbing a homogeneous plane wall under the

influence of surface tension gradients has also been
studied*®’

Now consider the casBo<1, which is the relevant
$mit for the dip coating of chemically patterned surfaces
with arrays of vertical wetting microstripes. Because of the
restrictionCa<1, anx=const cross section of the free sur-
face of the liquid along the microstripe must be an arc of a
circle*® which, within the lubrication approximation, simpli-
fies to a parabola. The substitutiom(x,y)=hy(x)[1
—4(y/\7\l)2] then reduces the analysis to a one-dimensional
matching problem to determirte, the film thickness along
the centerline of the stripe, which is governed by

where subscripts denote differentiation amd-h, as
Xx— =, |n addition to the geometric length scaMy/

=W/ y@, there are two natural length scales based on flui
properties: d=(uU/pg)*?, an apparent scale of the film

hg(hoxxx_ W_zhox) = 3C&(h0 - hw) + p_')?(hfc - hg) (10)

For these narrow stripes the transverse curvature of the liquid
ribbon is significant, and Eq10) must be scaled such that
both curvature terms are comparable to the viscous terms.
Introducing the new variables é=x/W and 7
=h,/[W(3Ca)¥?] transforms Eq(10) into

— - 3
72(Meee = 1) = 1= 17 + Bo(3Ca) 373 - 7). (11
FIG. 2. Sketch of the free-surface profile of the static meniscus. The light

gray region of widthW is the wetting microstripe, and the surrounding dark Neglecting the effects of d_rainage by gravity, which corre-
gray region is nonwetting. spond to the last term in Eq(1ll), therefore requires
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Bo(3Ca)¥3<1, which is more stringent than the constraint
pghi{2y<l (equivalent toBoCa?3<1) given by Darhuber 34
et al.

At leading order, the free surface shape is therefore gov-
erned by

®

h,, (um)

7(Mgee = M) = 1= e (12

subject to the boundary condition— 7., as é——». As &
— %, ng—1n— Cg, Which is a constant that can be found by =  Experiment
numerically integrating Eq(12). The entrained film thick- 0 . . . .
ness is thus given bly,, = 7. W(3Ca)*?, where the numerical 0 25 50 75 100 125
value of the constant,. must be determined such th@g is W (um)
equal to the limiting curvature of the meniscus when ex- 4
pressed in a common set of variables.
In the meniscus regioy is the appropriate scale fog

y, andh, which is analogous to the use of the cylinder radius
to scale both coordinates in the inner region for the static
meniscus on a thin cylindé?.lntroducing the new variables

i > o g 2
H=h/W, X=x/W, andY=y/W into Eq. (6) yields =
=
madK _ o0 T3 _m3
H3— =3Ca(H - H..) + Bo(H: - H3), (13
X
1 :

where k=Wk. The shape of the meniscus is therefore not 10 100 1000
influenced by the motion of the plate or by gravity at the U (pois)

level of approximation made earlier. As noted in an analyti'FlG. 3. Comparison of the prediction of Ed4) to the experimental data of
cal study of the shape of thstatio liquid meniscus near a Darhuberet al. (Ref. 12 for entrained film thicknesh,, vs (a) stripe width
stripwise heterogeneous wall, for Bo<1 the interface W and (b) withdrawal velocityU for 4 mm long stripes from a bath of
within several stripe widths from the wall is a minimal sur- glycerol. In(a), U=30 um/s. In(b), W=49 um. The symbols represent the
face with zero mean curvatufa=0). Because of the con- experimental data, while the line is the theoretical prediction.
straintBo < (3Ca)*’® required to neglect gravity in E¢11),
terms of O(Bo) are uniformly negligible, and corrections to
the shape of the meniscus due to inclusion of gravity aravhich the effects of both gravity and the transverse curvature
insignificant. In order to match the thin film and meniscusof the liquid profile must be taken into account. Becage
solutions in the overlap region, the constrait0, corre- influences the shape of the static meniscus and the dynamics
sponding to the equality of the two principal radii of curva- of the liquid in the overlap region, a general scaling law
ture, is therefore sufficient for negligible Bond number ascannot be found, but the thickness of the entrained liquid
only the limiting value of the mean curvature of the free film transitions from Eq(14) to Eq. (1) as the stripe width
surface at the top of the meniscus is need#dcorrections — increases. As indicated in EqL3), the (statig meniscus
for small but finite Bond number are desired, the exact meshape is determined by the balance of Laplace and hydro-
niscus profile must be determined numericalBvaluatingx  static pressure, and the limiting curvatutg, at the top of
along the centerling/=0 and noting that the free surface the meniscus can be calculated numerically. The entrained
must be symmetri¢and thath,— O at the top of the menis- film thickness is then specified by asymptotically matching
cus to match the lubrication filmreveals thatHsx+HYy  the curvature in the dynamic meniscusQ@g for given val-
— Cy=0 is the desired limiting behavior at the top of the ues ofBo andCa.
meniscus to which the solution in the microstripe should be  For microstripes ranging from 40 to 130m, Darhuber
matched. et al. reported experimental results for the entrained film
A standard shooting method can be used to determinthickness as a function of the stripe width and the velocity
the appropriate value of the constamt. Linearizing about  with which the micropatterned plate was withdrawn from a
7= .., which is valid for&— —c, provides the initial condi- bath of glycerol:* The experimental data are plotted with the
tions required to integrate E¢L2) numerically. The match- predictions of Eq(14) in Fig. 3. Extremely good agreement
ing condition thatCs=Cy, requires thaty,—»—0 as§ between the theoretical predictions and experimental results
— e, which occurs fory,.=0.699 11. The final result for the is attained. For the 23 published experimental measurements,

thickness of the entrained liquid ribbon is then hx/[(3Ca)1’3\7\/]=0.24710.010, which is in exact agreement
_ 13 _ ~ 13 with the theoretical prediction of Eq14). The experiments
h.. = 7.W(3Ca)™= 0.2471IM3Ca)™™. (14) encompassed the ranges 2.50%<Bo0<2.6x102 and
This matching procedure can be extended to include cor3.1x 104<Ca=<4.9x 103, with Bo(3Ca) **<0.023, for
rections for small values of the Bond numbére., Ca  which Eq.(14) is expected to be extremely accurate.
<Bo<Ca'® and generalized to thBo=0(1) regime for The dip coating of a thin, cylindrical fiber is similar to
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that of a microstripe in that the fiber radius is a geometrically ‘L. D. Landau and B. V. G. Levich, “Dragging of a liquid by a moving
imposed length scale that enters the result for the film thick-,Plate.” Acta Physicochim. URSS7, 42 (1942.

. . . .“B. M. Deryagin and S. M. LeviFilm Coating Theory(Focal, New York,
ness because the curvature induced by the fiber radius isgc, ryagl VIF ing Theory W

important in the meniscus region. In the thin film region, 35 A white and J. A. Tallmadge, “Theory of drag out of liquids on flat
however, the term corresponding to the pressure induced byplates,” Chem. Eng. Sci20, 33 (1965.

the curvature of the free surface in the direction transverse tdcC. Y. Lee and J. A. Tallmadge, “Description of meniscus profiles in free
flow is a constant untiD(6%)."® To the first orders of ap- ~_coating,” AIChE J. 18, 858(1972. o _ ]
proximation its derivative is zero, and there is no resulting ,\SA'atDH Fié V‘é'(')sgo(”l'g;ahe drag-out problem in film coating theory,” J. Eng.
dynamical _eﬁeCt' Wllth an approprlate. change of varlab!es,eo_ Regla’t, R. Labrie, and P. A. Tanguy, “A new free-surface model for the
the governing equation for a cylinder in the overlap region iy coating process,” J. Comput. PhyE09, 238 (1993.

thus reduces to the universal form given in [E9). for a flat "P. R. Schunk, A. J. Hurd, and C. J. Brinker Liquid Film Coating edited
plate. The matc_hing of lim...¢,, to the streamwise curva- 8by S.F. Kiffler_and P. M. Schwe_iZé@Papman and Hall, London, 1997
ture of the meniscus proceeds as for the flat plate, and the?l-ggg;‘ere' Fluid coating on a fiber,” Annu. Rev. Fluid MecB1, 347
sameCa?® d.ependence results. ThE% Only_dlﬁerence IS thatgs. J. Weinstein and K. J. Ruschak, “Coating flows,” Annu. Rev. Fluid
the streamwise curvature of the meniscus is controlled by the..p, 36, 29 (2004).

transverse curvature due to the cylindrical geom@nd not  °p_Qin, Y. Xia, B. Xu, H. Yang, C. Zhu, and G. M. Whitesides, “Fabrica-
by the capillary length For a microstripe, by contrast, the tion of ordered two-dimensional arrays of micro- and nanoparticles using
transverse curvature is important throughout the film, as the patterned self-assembled monolayers as templates,” Adv. Matvein-
streamwise change in the transverse curvature, as representgf'™ Gef 11, 1433(1999.

. . H. G. Braun and E. Meyer, “Thin microstructured polymer films by
2
by the Wh,, term in Eq. (10), balances the change in g ce girected film formation,” Thin Solid Films4s, 222 (1999,

streamwise curvatur@,y,,). Unlike the withdrawal of a cyl-  12a A parhuber, S. M. Troian, J. M. Davis, S. M. Miller, and S. Wagner,

inder, h,,, does not approach a constantxas «. Instead, “Selective dip-coating of chemically micropatterned surfaces,” J. Appl.
the total curvaturérepresented by, — W 2h,,) matches the Phys. 88, 5119(2000.

full curvature of the meniscus. The importance of the change H- Y- Fan, Y. F. Lu, A. Stump, S. T. Reed, T. Baer, R. Schunk, V. Perez-
in transverse curvature with distance from the meniscus re--U"& G- P- Lopez, and C. J. Brinker, “Rapid prototyping of patterned

. 13 . . functional nanostructures,” Natuteondon 405, 56 (2000.
sults in the novelCa™" dependence of the entrained film 1z p gpiers, c. v. Subbaraman, and W. L. Wilkinson, “Free coating of a

thickness. newtonian liquid onto a vertical surface,” Chem. Eng. &9, 389(1974.
Finally, in the equivalent limit of negligible gravity for *°S. D. R. Wilson, “Coating flow on to rods and wires,” AIChE 34, 1732

the withdrawal of a cylinde(Bo= pgRe/ y<1), the require- (1988 ) _ _ _

ment of zero mean curvature is analogously sufficient to de- - caes and A.-M. Cazabat, "The thickness of surface-tension-gradient-
. . .. . driven spreading films,” J. Colloid Interface Sci57, 196 (1993.

termineh.., and the matchmg condition is that the Stream'”x. Fanton, A. M. Cazabat, and D. Quéré, “Thickness and shape of films

wise curvature in the overlap region asymptotes to the driven by a Marangoni flow,” Langmuid.2, 5875 (1996.

inverse of the fiber radius. Because of the assumpBon L. A. Romero and F. G. Yost, “Flow in an open channel capillary,” J. Fluid

>Ca made in the analysis of Wilso (in contrast to the ~ Mech. 322 109(199. _ _ _

requirementBo<Ca'”® in the present analysismodifica- L. L. Lo, “The meniscus on a needle—a lesson in matching,” J. Fluid

ti fth . h d ¢ it id quech. 132 65 (1983.
ons o € Meniscus shape due 1o gravity are COonsIderedy g, yka and A. W. Neumann, “An analytical solution of the Laplace
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ture is needed. wall,” J. Colloid Interface Sci.65, 315(1978.
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