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Abstract 

Using state-of-the-art computational techniques, a genetic algorithm (GA) and an accuracy-based 

learning classifier system (XCS) were shown to produce optimal operational solutions for gate structures 

in irrigation canals.  An XCS successfully developed a set of operational rules for canal gates through the 

exploration and exploitation of rules using a GA, with the support of an unsteady-state hydraulic 

simulation model.  A computer program which implemented the XCS was used to develop operational 

rules to operate all canal gate structures simultaneously, while maintaining water depth near target values 

during variable-demand periods, and with a hydraulically stabilized system when demands no longer 

changed.  This model can be applied to canal networks with constant or variable demands within the 

limits of current hydraulic simulation capabilities.  The program output is a set of feasible and optimal 

operating rules for multiple gate structures, facilitating the automation of open-channel irrigation 

conveyance systems.  Results from sample applications of this technique are presented in a companion 

paper (Part II: Results). 
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Background and Previous Work 
 

One way to achieve water management improvements in open-channel irrigation conveyance 

and distribution systems is through the use of advanced technologies to help make decisions to operate 

gate structures.  A hydraulic model with a mathematical optimization procedure can be used to generate 

sets of operating rules for canal gate structures.  The rules can be custom-developed for a specific canal 

system.  One type of optimization procedure is based on classifier systems which use genetic algorithms. 

As an optimization procedure based on Darwin’s natural evolution theory, genetic algorithms are 

a powerful tool to solve different types of problems.  Genetic algorithms (GA) are based on a principle 

similar to “the survival of the fittest,” where characteristics of parent rules are transmitted to children by 

means of reproduction, cross-over, and mutation, and prevalence of the fittest rules (those that perform 

best in meeting operational objectives).  Based on natural selection and genetics, Holland (1975) created 

the original genetic algorithm theory, and presented the correspondence between rules used in artificial 

systems to biological chromosomes, detectors or features to genes, and feature values to alleles, among 

other characteristics.  Genetic algorithms are the core for the discovery of new rules and the exploitation 

of extant rules, and they have recently been used in hydraulic engineering as an optimization tool for 

reservoir operation for the irrigation of multiple crops (Nagesh et al. 2006), least-cost design of water 

distribution systems (Babayan et al. 2006), water quality prediction in water distribution systems (Zheng 

2006), design of drainage systems (Peng and Jia 2004), design of composite channels (Jain et al. 2004), 

scheduling of water pipe replacement (Dandy and Engelhardt 2001), water distribution systems (Simpson 

and Wu 2001), and location of control valves in pipe networks (Pezzinga et al. 1999). 

Accuracy-based classifier systems (XCS) represent a major recent development in classifier 

systems research.  Since its origin (Wilson 1995), XCS has provided repeatable results that are generally 

better than those produced by the majority of models developed since Holland’s initial work (Butz et al. 

2004).  Accuracy-based classifier systems represent the knowledge extracted from a problem as 

encapsulated in a set of rules.  A rule is a prescribed mathematical method for taking actions to achieve 

operational objectives.  A rule set is incrementally evaluated by means of interactions with an external 

environment through a reinforcement learning process, and it is improved by a search mechanism based 

on a GA (Bernado-Mansilla and Ho 2005).  Models of physical phenomena (e.g. hydraulic simulation 
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models) can help an XCS to determine whether an action is plausible or not, by means of a reinforcement 

program.  The reinforcement program assigns rewards and penalties according to system behavior (real 

or simulated) after the application of a specific action. 

Until now, XCS had not been used for developing general operating rules for canal gate 

structures.  However, GAs have been used for decision support in irrigation project planning (Kuo et al. 

2000) where relative crop yield and water demand information was applied to maximize the projected 

benefits.  Genetic algorithms have also been applied for optimal seasonal furrow irrigation (Montesinos et 

al. 2002), where a model produced an irrigation season scheduling for maximizing farmer’s profit, and 

along the same lines, GAs have been applied for optimizing off-farm irrigation scheduling (Nixon et al. 

2001).  More recently, a classifier system supported by a GA has been developed for rule-based 

operation of canal gates (Chittaladakorn and Merkley 2005). 

 
Introduction 
 

This paper provides a detailed description of the elements that comprise an XCS model, a GA, 

and the hydraulic model used in the study.  A companion paper presents results from the XCS model for 

different operational scenarios in various simulated canal systems.  The hydraulic model was used to 

predict the response from the application of different gate operation rules as generated by the XCS and 

GA.  The response was evaluated through the XCS so as to develop a set of gate operating rules which 

could be applied to successfully control the hydraulics of a given canal system, achieving specified 

operational objectives.  The principal operational objective was the maintenance of stable canal water 

depths. 

Both trapezoidal and rectangular canal cross sections were used in this study.  Structures 

included in-line gates and turnouts (water delivery points).  In-line structures were located at the upstream 

and downstream ends of each canal reach, and they included rectangular gates and weirs.  Turnouts 

directed water from the simulated canal system to delivery points outside of the system, and they were 

always located near the downstream end of each canal reach.  Turnout demand hydrographs were 

generated randomly to simulate various operational conditions in the canal system and provide a more 

generally applicable rule set.  Each hydraulic simulation began with all canal reaches full of water and 
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steady-state flow conditions.  The delivery of water through turnout structures caused unsteady hydraulic 

conditions and the XCS was tasked with developing rules to operate the in-line structures in a way that 

would best achieve the operational objectives and re-establish steady-state hydraulic conditions.  

Following a period of changing turnout delivery demands, the rules were supposed to rapidly bring the 

canal system to a new steady-state condition. 

A computer program was written in the C# .NET language for personal computers (PCs) to 

implement the model.  Minimum computer requirements are a processor similar to the Pentium II CPU 

398 MHz, and 1 GB of RAM.  Data were input and output using a console interface and saved in 

database and text files. 

 
The Classifier System 

 
An XCS was combined with a hydraulic model to simulate the response from a set of canal gate 

operation rules.  The hydraulic model also provided information from which rewards and penalties were 

computed through the XCS reinforcement program.  The XCS acted as a reinforcement learning agent, 

meaning that it learned to perform a task through trial-and-error interactions with an unknown 

environment which provided feedback in terms of numerical reward.  The definition applied in this 

research corresponded to a classifier system that learned actions for the adjustment (operation) of gate 

structures, when it received rewards and penalties according to variations in canal water depth relative to 

specified target depths, hydraulic stability, and demand-supply deviation, among other aspects  of the 

reinforcement program as indicated below.  Those interactions occurred continuously during each 

hydraulic simulation.  The input to the XCS was the current hydraulic state of the canal system, also 

referred to as the environment.  The output from the XCS was a set of actions which was applied to the 

canal system, and the hydraulic response was evaluated by means of a reward, a penalty, or a 

combination of both.  The goal of the XCS was to maximize the rewards by developing a set of optimal 

operational rules for the gate structures.  Herein, the definition of an “action” is simply whether to open or 

close a gate structure, and the magnitude of the setting change (which could be zero if there is to be no 

gate setting adjustment). 
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Classifiers in this XCS consisted of a condition, an action, and three main parameters.  The main 

parameters were the prediction, the prediction error, and the fitness.  The prediction estimated the 

average payoff that the system expected when a classifier was selected for an operational action.  The 

payoff was an outcome obtained from the system according to rewards or penalties deserved for action 

application.  The prediction was computed as a weighted-average fitness of all classifiers that matched 

the current environment, and which were invoked by the current action.  The prediction error gave the 

average error between the classifier’s prediction and the received payoff.  The fitness was an estimate of 

the classifier’s accuracy relative to other classifiers, and the classifier’s accuracy was calculated from the 

prediction error.  All of these data were stored in a population of rules.  The population contained possible 

solutions that could solve the operational problem and each classifier corresponded to a potential solution 

for one particular environment, which might or might not be evaluated through the process, depending on 

whether the classifier was selected as an action to be applied to the canal system.  As the population 

grew, the average classifier fitness increased if all the parameters were defined adequately, whereby the 

population was evolving. 

Through rules, conditions and actions interacted with the canal system, the status of which is 

known as the environment.  In the computer program which implemented the XCS, the condition, action, 

and environment were coded independently as binary sequences (or “strings”).  Rules in the population 

were made up of pairs of condition and action strings.  The three main parameters, as described above, 

guided the evolution of the process with the help of a GA.  A condition specified the input states that the 

classifier could have, which could be from a real or hypothetical canal system.  Hydraulic conditions can 

be sensed or calculated from the canal system to provide input to the XCS in the form of an environment 

string.  Each environmental situation had a corresponding condition value. 

The XCS determined the implementation of actions upon the environment.  The role of the XCS 

was to decide what set of actions the system should take to reach the operating goals, and it selected 

one set of actions at a time to operate the canal system.  One set of actions corresponded to a set of gate 

structure settings for every gate in the canal system.  These settings were applied to the hydraulic system 

as simultaneous gate operations.  There were many potential actions that might be selected for 

application, but the XCS used only one set at a time.  For one specific condition, there might be many 
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actions according to the number of gates to operate, and the number of different gate settings.  All actions 

were created randomly from pseudo-random numbers. 

A schematic view of the XCS general architecture is presented in Fig. 1.  The computer model 

started with initializations for the hydraulic status of the canal system and generated a random population 

of rules.  The XCS created what is referred to as a matching rule set (described below), a prediction 

array, and an action set.  One set of actions was selected to be applied to the gates in a canal system 

through a hydraulic model.  Therefore, the XCS relied on a hydraulic model, as well as on the 

reinforcement program, which had an embedded GA, to evaluate the performance of the entire canal 

system and decided whether to continue improving the population or not.  When the population matured, 

there was little or no improvement in its strength and at this time the learning process was complete. 

 
Matching Procedure 

 
After initializations, the current population was compared to the environment to create a “match 

set,” which was composed of classifiers whose condition corresponded to the hydraulic situation in the 

canal system.  The condition parts of the classifiers (rules) were compared one-by-one to the current 

environment.  If a particular classifier corresponded to the environment, it was added to the match set; 

otherwise it was ignored and the process continued until considering all members of the population.  

Every time there was a match, a counter was incremented to keep track of the match set size.  If the 

match set was smaller than a specified threshold value, after comparing all classifiers from the 

population, a “covering procedure” was invoked as described below. 

The covering procedure was used to guarantee that there was a sufficient number of classifiers 

that matched the environment.  Therefore, when covering was required, classifiers were created in such 

way that conditions were equal to the environment, and actions were generated using pseudo-random 

numbers.   Classifiers generated by covering were added to the match set, and to the current population.  

If the population was considered to be too large, the same amount of classifiers generated by covering 

were removed from the population, deleting the classifiers with the lowest fitness. 
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Fig. 1.  General architecture  for generating canal structure automation rules 

 
System Prediction and Action Selection 

 
The prediction estimated the payoff that the system expected if a given classifier were used to 

take an action in the canal system.  At every time step, the XCS created a new matching set, [M], which 

contained the classifiers that matched the current environment.  For each action in the match set, the 
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XCS computed the system prediction P(a).  The system prediction was computed as the weighted-

average of the predictions based on classifier fitness, as shown in Eq. 1: 

 

 

(cl.p)(cl.F)
cl. cl. cl.a M

cl. cl. cl.a M

P(a)
(cl.F)

 
  

 
  

= ∧ ∈

= ∧ ∈

=

∑

∑
 (1) 

 
where cl.a is the action of classifier cl; cl.p is the prediction of classifier cl; and, cl.F is the fitness of 

classifier cl. 

The summations in Eq. 1 were performed over all classifiers that invoked action “a,” and which 

belonged to match set [M].  The different values of P(a) were collected in the prediction array, which was 

the basis for action selection.  In each case, the XCS selected the action with the greatest system 

prediction from the values in the prediction array.  Then, all classifiers in the match set which contained 

this action were added to the action set. 

 
Parameter Updates 
 

During the learning process, the prediction, the prediction error, and the fitness were periodically 

updated.  As a result, fitness was computed for every rule in the action set.  Initial values for prediction (p) 

were very close to zero for the initial population.  The prediction, which gave an estimate of the payoff that 

the system was expected to gain when the classifier was selected, was updated as follows: 

 
 p p (R p)= + β −  (2) 
 
where β is the learning rate (0 < β ≤ 1); and, R is the desired reward, which was computed as: 
 
 ( )maxR r P(a)= + γ  (3) 
 
in which r is the previous reward; γ is the discount factor (0 < γ ≤ 1); and, P(a)max is the classifier’s 

maximum prediction for this action. 

The prediction error ( ε ), which estimated the precision of the classifier’s prediction, was updated 

as follows: 
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 ( )R pε = ε + β − − ε  (4) 

 
To update the classifier fitness, the accuracy (κ) was determined as follows: 
 

 if ε < ε0, then κ = 1 (5) 
 
otherwise, 

 
0

−ν
 ε

κ = α ε 
 (6) 

 
If the prediction error (ε) was below the threshold error (ε0), the classifier was said to be accurate, 

meaning that had an accuracy of one, and errors were regarded as having equal accuracy; otherwise, the 

accuracy (κ) dropped off quickly, depending on the values of α and ν, which were parameters used to 

define the exponential function during the model calibration period. 

The accuracy values (κ) for the classifiers in the action set were converted to relative accuracies 

(κ’) as follows: 

 

[ ]
x

x A∈

κ′κ =
κ∑

 (7) 

 
The relative accuracy was used to compute the classifier fitness (F), which was an estimate of the 

classifier’s accuracy relative to other classifiers in the action set [A].  The fitness evaluated the accuracy 

of the prediction.  Classifier fitness was updated toward the classifier’s current relative accuracy as: 

 
 F F ( F)′= + β κ −  (8) 
 
Genetic Algorithm 

 
The GA selected two classifiers with probabilities proportional to their fitness.  These classifiers 

acted as parents to generate two children.  Initially, one child was identical to one of the parents, and the 

second child was the same as the second parent.  Subsequently, crossover and or mutation could take 

place in the children with specified probabilities χ and µ, respectively.  Two-point crossover was applied 

and one random bit was mutated whenever crossover and or mutation were/was invoked, respectively.  

The children were inserted into the population to compete with their parents and all other members of the 

population.  The prediction and the prediction error for child rules were set as the respective averages of 
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the two parents.  The fitness was set as 10% of the average parent fitness.  A “numerosity” value was 

defined as the number of identical (redundant) classifiers in a population and it was created to reduce the 

database size by manipulating the magnitude of this parameter while deleting repetitions.  The child 

numerosity, which was the number of identical classifiers in the population, was given a value of one.  

The children’s experience value, which was the number of times that the child participated as parent in a 

genetic algorithm, was set to zero.  When a member of the current population was found to be identical to 

a generated child rule, the classifier’s numerosity for the existing member was incremented by one, and 

the child was not added to the population. 

In this study, different initial populations were tested.  The first versions contemplated huge 

populations containing millions of members which were stored in a relational database to accommodate 

the size.  The XCS main parameters were not randomly selected; instead, default values were assigned 

for the initial population.  The approach of starting with a huge population had two disadvantages.  First, it 

was time consuming, because all members were generated bit-by-bit using pseudo-random numbers, 

and second because database input and output consumed a large amount of computer processing time.  

After trying different sizes smaller than the initial approach, with thousands of members, and without 

success, a tiny population of ten members was selected as an initial population.  The advantage of this 

approach was that a small population could be defined with relatively strong rules, its generation took less 

than one second (instead of hours), and database processing was more streamlined.  The presence of 

“good” rules in the initial population was found to be irrelevant, because the population quickly grew in 

size, and the XCS created rules with better fitness in the long run.  Therefore, the final version for the 

initial population was one with only ten members, and it was generated randomly. 

The population usually grew each time the GA was applied.  Due to the small size of the initial 

population the deletion of classifiers from the population was disabled, thereby allowing the population to 

grow.  Default values for the main XCS parameters were selected according to Butz and Wilson (2000), 

which established that prediction, prediction error, and fitness should have very small values.  Thus, the 

default value used for prediction was 0.05; the prediction error was 0.001; and, the fitness was 0.001. 
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Local and Global Hydraulic Variables 

 
The variables of interest to run the program were defined by taking into account that they had to 

satisfy operational objectives.  Local hydraulic variables were those that were taken in close proximity to a 

given gate in the canal system, and global variables were based on system-wide conditions.  A strong 

emphasis was given to the balance of local and global hydraulic variables and their impact on the 

classifier system as a whole.  Operational actions were influenced by the magnitudes of hydraulic 

variables and they were applied locally as well as globally, depending on how beneficial they were for 

individual canal reaches, and for the entire system.  Hydraulic indicators governed the actions to be 

applied to the canal system and included the following local and global variables: 

 
Local Variables: 

 
• Deviation from the target depth for the previous and current time steps of the hydraulic 

model; 

• A local hydraulic stability index; 

• Current gate structure setting; 

• Average velocity change between hydraulic model time steps in a reach; and, 

• Infeasible operations. 

 
Global Variables: 

 
• Supply flow deviation from required amounts of water delivery at turnouts; 

• A system hydraulic stability index; 

• Average velocity change between consecutive canal reaches; 

• Average velocity change between hydraulic model time steps in a reach; and, 

• Average discharge change at gate structures throughout the system. 

 
Condition String 

 
The condition string was the concatenation of substrings which defined the magnitude of a 

particular variable (local or global).  Every substring was a concatenation of binary bits.  A substring 

defined an instance value that a variable represented.  The condition string contained variables that 
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described the hydraulic status of the canal system.  However, a given condition string might or might not 

describe a physically feasible situation because each string was randomly generated.  For the purpose of 

constructing the condition string some local and some global variables were used, as follows: 

 
• Supply flow deviation from total water demand; 

• System hydraulic stability index; 

• Average velocity change between consecutive reaches; 

• Current depth deviation from the target; and, 

• Current structure setting. 

 
The current depth deviation and gate setting were computed for every “pivot point” and every 

gate, respectively.  The pivot point was the location in a reach where a target depth was specified, and 

was always either the upstream or downstream end of a reach.  This implied that larger canal systems 

had larger condition strings than small systems, because they have more gates and pivot points.  These 

two parameters were included in the condition string as local variables, but they behaved as a single 

global variable.  The current hydraulic state for the canal system, known as the environment string, had 

the same format as a condition string, but it represented a particular situation which was currently 

occurring in the canal system at that time step.  This current state was translated from the hydraulic 

model results to a string, which was subsequently matched to one or more condition strings in the 

population. 

Substrings were the supply flow deviation from delivery demands, the system stability index, the 

average velocity change between consecutive reaches, the water depth deviation, and the current gate 

setting for the time step in consideration.  The substring representing the current gate setting was located 

along the condition string immediately after the depth deviation partial string.  These two substrings were 

repeated as many times as necessary in the canal system, but their magnitudes were different, in 

general. 
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Action String 

 
The action string was a concatenation of actions taken for all gates in the canal system.  Each 

part of this concatenation contemplated the option of opening or closing each gate by a specific amount.  

Therefore, the length of the action string depended upon the number of gates in the system.  The virtue of 

this concatenation was that it combined all local actions into a single string, and at the same time it had a 

global context as it was a complete set for the entire system under consideration.  Global actions 

generated widespread structure operations involving one or several structures along the canal system.  

Local actions generated a change in structure settings which were closer to the place in reference. 

Local actions produced an effect upstream and downstream structures.  Global actions were 

applied over the whole canal system.  Thus, both global and local actions merged as a unique action for 

each structure in the system.  The resultant action was applied over structures located throughout canal 

reaches between the upstream source of water and the downstream end of the last reach.  Of course, in 

some cases a local or global action was “maintain the previous setting, and do nothing.”  The final action 

was bounded depending on the current gate setting to disable possible actions which could go beyond 

physical limits. 

 
Hydraulic Model 
 

The RootCanal hydraulic model (Merkley 2007) was used to interact with the XCS as an 

environment that changed according to applied gate structure actions, as shown in Fig. 1.  The hydraulic 

model predicted how the system responded, hydraulically, to gate setting actions generated by the XCS.  

The hydraulic model was condensed into a dynamic link library and was used to define the canal system, 

including reaches, structures, and other system features.  The first interaction of the hydraulic model with 

the XCS was to compute the initial situation.  This response from the hydraulic model was an input to the 

XCS after conversion to an environment string.  Each time an action was selected by the XCS, it was 

passed to the hydraulic model, and based on the simulated response from the canal system, rewards and 

penalties were applied by the reinforcement program.  The selected action was a set of particular 

operations which were applied to different gate structures in the canal system.  With these new structure 

settings, the hydraulic model computed a new current system status, and as a result, the following 
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variables were updated: water depths, average velocities, reach inflows and outflows, stability indexes, 

and structure settings.  This new situation was evaluated by the reinforcement program, and it was used 

to analyze the classifier population’s evolution process. 

Computed values were the basis for comparison for reward and penalty estimation by means of 

the reinforcement program.  Depths were compared to target values and depth deviations were 

calculated.  Velocities and discharges were compared to determine how fast the system status was 

changing, and how close it was to a stable hydraulic condition.  Current turnout delivery demands were 

compared to previous demands as a measure of operational performance.  Gate settings were used to 

detect the magnitude of changes and the occurrence of infeasible operations. 

 
Reinforcement Program 

 
Rewards and penalties were assigned depending upon rule matching to the environment.  The 

magnitude of these rewards or penalties depended upon the impact of global and local variables on the 

canal system.  The core of the “apportionment of credit” (reward and penalty) algorithm was based on 

reaching and maintaining water depths at the respective target values, and on minimizing the demand-

supply deviation and stability index for the whole canal system.  In addition, the velocity changes between 

consecutive reaches, and the velocity change in time for every reach through the canal system, had a 

strong influence over the apportionment of credit calculation. 

When assigning rewards, it was important to keep the objective function in mind.  The main role 

of the objective function was to minimize water depth fluctuations generated by gate operations, while 

maintaining the water depths at or near the respective targets.  The objective function was also designed 

to minimize the hydraulic stabilization time after the completion of a series of demand hydrograph 

changes.  Rewards were based on both global and local system responses to a particular gate setting 

action (opening or closing). 

 
Local Rewards 
 

Local rewards were applied per structure depending upon the variable used in the analysis, and 

the location in the canal system.  Local rewards were applied to gates to reinforce local behavior, as 

global rewards did for the entire canal system. 
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Depth Deviation from the Target.  After running the hydraulic model following a given gate 

structure setting change, the model recomputed water depths in each reach.  These water depths were 

compared with the target depths, and a deviation was computed to show how far the current water depth 

was from the target depth.  Whenever the current depth was at the target depth in a given reach, a full 

reward was applied for the corresponding action. 

Deviations from the target depth were positive when current depth was above the target, and 

negative otherwise.  When the last deviation was compared with the previous deviation, a response from 

the system was analyzed, and local rewards assigned.  When the current water depth was moving toward 

the target after a change in gate structure setting, a partial reward was applied proportionally, taking 

100% for the last deviation as a basis for computation.  In the case of target depth overshooting 

(changing the sign of the deviation from positive to negative, or vice versa), the reward was computed as 

mentioned above, but it was reduced according to the percentage of overshoot.  For the case where the 

previous depth was closer to the target depth than the current depth, a penalty was assigned instead of a 

reward.  Whenever a previous depth deviation was equal to the current deviation, no reward was applied, 

irrespective of how far the current depth was from the target. 

A mechanism was developed to maintain water depths constant after they have reached the 

respective target values.  For every reach, a “flag” variable, Cr, was computed for the cases when the 

current depth was equal to the target depth.  The flag variable was incremented by one each time the 

current depth remained at the target depth, and it was set equal to zero when the water depth did not 

remain at the target depth since the last time step.  When the calculated depth was maintained at the 

target depth a higher reward (a bonus) was assigned.  To avoid excessively large rewards with respect to 

other parameters, the reward for reaching the target depth was assigned an upper limit. 

When the water depth reached the target the first time, it was rewarded by a basic amount, Rb, 

and if it was maintained at the target depth, the reward grew exponentially as follows: 

 
 

n
tl b o rR R C C= +  (9) 

 
where Rtl is the reward for reaching the target depth; Rb is the base reward; Co is a constant; Cr is the 

number of consecutive time steps remaining at the target; and, n is a constant (n > 1). 
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Local Stability Index.  The reward from the stability index (SI) was a function of the current and 

target water depths.  A zero stability index was rewarded in full if the current water depth reached the 

target depth.  Whenever the current depth was below the target depth, a positive stability index was 

desirable because it increased the amount of water coming into the canal system at the source, leading to 

an increase in the depths, in general.  If the current depth was above the target depth, decreasing the 

amount of water entering the system was a way to deplete water depths, and in this case a negative 

stability index was rewarded. 

Demand supply deviation at turnouts was a factor that influenced the stability index.  An extra 

reward was assigned for the case when demand was equal to the supply, having a stability index of zero, 

as well as a current water depth at the target depth.  This extra reward was because this is the most 

desirable situation when considered on a local basis. 

To assign a reward for local stability index, RSI, the absolute value of the stability index, |SI|, was 

used.  The absolute value of the variable was required, because the reward should be the same for the 

case when outflows were greater than inflows, and vice versa.  As the system approached a hydraulically 

stable condition, the stability index approached zero.  The stability index had a range from -1.0 to +1.0.  

The reward for local stability index was inversely proportional to the absolute value of the stability index.  

As the stability index reached zero when inflows were equal to outflows, the local stability index reward, 

RSI, reached its maximum value of Csi.  To compute the local stability index reward, the absolute value of 

the stability index, |SI| was affected by a coefficient, Csi, and an exponent m which was used to weight it 

with respect to other rewards, as: 

 SI
SI m

CR
1 SI

=
+

 (10) 

 
Reach Velocity Change between XCS Time Steps.  Reach velocity change between XCS time 

steps represented how fast the water was flowing through the system according to the magnitude of the 

last action applied to the canal system.  In order to assign rewards for reach velocity change between 

XCS time steps, current and target depth were considered.  Rewards were applied for velocity changes 

that reduce the difference between the current depth and the target.  Whenever the current depth was 
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below the target depth, a positive reach velocity change between simulations was rewarded.  A null reach 

velocity change between simulations generated a reward, if the current depth was at the target depth.  

When the target depth was below the current depth, a negative reach velocity change leaded to a 

decrease in the depth, and this situation was rewarded. 

 
Global Rewards 
 

Global rewards had a major impact on the environment because they involved one, many, or all 

gate structures in the canal system.  These rewards were applied spatially over all of the structures in the 

canal system, and they were based on the criteria described below. 

Demand Supply Deviation.  System demand and supply were computed by the hydraulic model 

after an action was applied.  Whenever demand equaled supply, a maximum reward was granted.  If 

there was a deviation between demand and supply, proportional rewards were assigned according to the 

deviation.  Demand supply deviation values greater than a threshold value did not generate any reward.  

This applied to the apportionment of credit in general, so that if the absolute turnout demand supply 

deviation was greater than a specified threshold value for the deviation, no reward was applied. 

Global Stability Index.  To compute the global stability index, total inflow and outflow from the 

system were considered.  Reward from global stability index was also a function of demand-supply 

deviation relationship.  A zero stability index was rewarded in full if demand was equal to supply, 

otherwise a partial reward was applied.  Partial rewards were applied depending on the sign of the 

stability index.  Whenever the demand was greater than the supply flow rate, a positive stability index was 

desired because it helped compensate for the volumetric deficit.  Thus, a positive stability index 

generated a partial reward when the demand was greater than the supply of water to the system.  On the 

other hand, if supply was greater than demand, a negative stability index was partially rewarded.  The 

most desirable situation considering the entire system was the case when the current water depths were 

within a dead band, and the stability index was zero.  An extra reward is granted whenever these goals 

were met. 

Change in Gate Discharge between XCS Time Steps.  The magnitude of the change in discharge 

through gate structures between XCS time steps was indicative of the impact of the last applied set of 
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actions over the whole system.  Higher magnitudes of change meant that the last set of actions was more 

drastic relative to the current set of actions.  A zero value meant that there was no net discharge change 

after the last action was applied.  Rewards for change of discharge through gates between XCS time 

steps were applied according to the magnitude of the demand supply deviation.  Greater demand supply 

deviations generated larger rewards for larger discharge changes than for smaller changes. 

Velocity Change between Reaches.  This parameter indicated how fast the water was moving 

through the system and, consequently, how fast the system responded  Full reward was applied for zero 

velocity change between reaches when demand equaled supply.  For positive demand supply deviations, 

meaning demand greater than supply, rewards were applied for positive changes in velocity between 

reaches.  For a case when supply was greater than demand, rewards were applied for decreasing 

velocities.   

Therefore, applying the superposition principle to all mentioned rewards, the total reward was 

defined as the summation of rewards that apply to a particular gate structure.  A gate structure had 

different sources of rewards depending on its particular condition.  It had rewards granted locally, globally, 

or both at the same time. 

 
Penalties 

 
Penalties were assessed as a function of the number of consecutive times the water depth had 

not reached the target depth and the absolute value of the stability index.  Infeasible structure 

adjustments were also penalized. 

Penalty for Leaving the Target Depth.  A large penalty was assessed when a given rule caused 

the calculated depth to deviate from the target depth after it had been reached in the previous time step, 

and this penalty was increased if it was not achieved consecutively.  After reaching the target depth, any 

deviation from the target depth was penalized.  In this case, the penalty was computed as: 

 

 k
tl b mP P C=  (11) 

 

where Ptl is the penalty, Pb is the base penalty, Cm is the number of times missing the target depth since 

last time it was at the target; and, k is a calibration exponent, which is less than 1.0.  The depth was 
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considered to be correct whenever the calculated value was within a ±8% dead band around the target 

depth. 

Penalty for Instability.  An instability penalty, PSI, was apportioned when the system had reached 

a hydraulically stable conditions, and the stability was lost during the next simulation.  For large 

differences in the stability index between two XCS time steps, greater penalties were applied.  Low 

penalties were considered when the stability index difference value was close to zero and maximum 

penalties when it was close to 1.0.  The penalty was proportional to aforementioned difference, and it was 

adjusted according a coefficient, Cps, and a specified exponent, u, to make the penalty proportional to 

other penalties. 

 
u

SI ps t 1P C SI SI+= −  (12) 
 

Penalty for Infeasible Operation.  A structure operation penalty was computed when a rule 

corresponded to an infeasible operational adjustment.  These were the cases when a structure with a 

current small opening was required to be closed by an amount greater than what was physical 

permissible, when a completely open structure was required to be opened an additional amount, or when 

a specified gate structure operation forced a flow regime change (e.g. orifice to non-orifice flow) at the 

structure. 

 
Summary 
 

An accuracy-based learning classifier system (XCS) and a multi-objective genetic algorithm were 

developed using an unsteady-flow hydraulic model to simulate operational conditions in irrigation canals.  

The model was defined to answer the question of generating operational rules that maintain water depths 

inside a dead band, surrounding a target depth, with acceptable stability.  The XCS was developed to 

produce acceptable operational solutions for gate structures in canal systems based on a specified 

objective function.  A multi-objective function was defined to minimize: (1) water depth fluctuations; (2) the 

absolute value of the stability index; and, (3) the demand-supply flow rate difference.  The resulting set of 

operational rules obtained from the XCS can be applied in the field by deploying them in a data-logger, 

which will require the development of code to communicate the recommended gate structure 

adjustments, according to the current status of the canal system. 
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Symbols 
 
The following symbols are used in this paper: 
 
 cl.a  classifier action 

 cl.F  classifier fitness 

 cl.p classifier prediction 

 Cm number of times missing the target depth 

 Co  coefficient for water depth deviation from the target 

 Cps coefficient for stability penalty 

 Cr  number of consecutive repetitions when reaching the target depth 

 Csi coefficient for stability reward 

 k calibration exponent for penalty for leaving the target depth 

 m exponent for stability rewards 

 [M] match set 

 n exponent for water level deviation from the target depth 
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 P(a) system prediction 

 P(a)max classifier’s maximum prediction for an action 

 Pb  base penalty 

 PSI stability penalty 

 Ptl  penalty for leaving the target depth 

 R  desired reward 

 r  previous reward 

 Rb base reward 

 RSI reward for stable rules 

 Rtl reward for reaching the target depth 

 |SI| absolute value of the stability index 

 u exponent for stability penalty 

 α  parameter for accuracy 

 β  learning rate 

 ε prediction error 

 ε0 prediction error threshold 

 γ  discount factor 

 κ accuracy values for classifiers 

 µ  probability of mutation 

 ν exponent for accuracy 

 χ probability of crossover 

 κ’ relative accuracy 
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