
Western Kentucky University

From the SelectedWorks of Dr. Huanjing Wang

December, 2011

Stability and Classification Performance of
Feature Selection Techniques.
Huanjing Wang, Western Kentucky University
Taghi M. Khoshgoftaar, Florida Atlantic University
Qianhui Althea Liang

Available at: https://works.bepress.com/huanjing_wang/18/

http://www.wku.edu
https://works.bepress.com/huanjing_wang/
https://works.bepress.com/huanjing_wang/18/

Stability and Classification Performance of Feature Selection Techniques

Huanjing Wang
huanjing.wang@wku.edu

Taghi M. Khoshgoftaaar
khoshgof@fau.edu

Qianhui (Althea) Liang
althea.liang@gmail.com

Abstract

Feature selection techniques can be evaluated based on
either model performance or the stability (robustness) of the
technique. The ideal situation is to choose a feature selec-
tion technique that is robust to change, while also ensuring
that models built with the selected features perform well.
One domain where feature selection is especially important
is software defect prediction, where large numbers of met-
rics collected from previous software projects are used to
help engineers focus their efforts on the most faulty mod-
ules. This study presents a comprehensive empirical ex-
amination of seven filter-based feature ranking techniques
(rankers) applied to nine real-world software measurement
datasets of different sizes. Experimental results demon-
strate that signal-to-noise ranker performed moderately in
terms of robustness and was the best ranker in terms of
model performance. The study also shows that although
Relief was the most stable feature selection technique, it
performed significantly worse than other rankers in terms
of model performance.
Keywords: feature ranking, stability, classification.

1 Introduction

Software metrics data collected during the software de-
velopment process contain valuable information about a
software project. Software defect prediction models are
commonly built to detect faulty software modules based on
software measurement data (software metrics). Previous
studies have shown that the performance of these models
improves when irrelevant and redundant metrics (features)
are eliminated from the original dataset [15, 16]. During the
past decade, numerous studies have examined feature selec-
tion with respect to classification performance, but very few
studies focus on the robustness (or stability) of feature se-
lection techniques. The purpose of studying the stability
of feature selection techniques is to determine which tech-
niques provides feature subsets that are robust to changes
in the data (addition or deletion of instances to the dataset).
These robust feature selection techniques would choose fea-

ture subsets that can be used even after changes to the num-
ber of instances in the dataset.

The primary focus of this paper is to evaluate seven filter-
based rankers (feature selection techniques), including chi-
square (CS), information gain (IG), gain ratio (GR), two
forms of the ReliefF algorithm (RF and RFW), symmetri-
cal uncertainty (SU), and signal-to-noise (S2N) in terms of
stability (robustness) and classification performance using
datasets from a real-world software project, Eclipse [19].
The software defect prediction models were built using Lo-
gistic Regression learner.

The key contributions of this research are that:

• We consider the stability of feature selection tech-
niques by comparing the selected features before
and after some instances are deleted from a dataset
(or equivalently, before and after some instances are
added), rather than directly comparing separate sub-
samples of the original dataset. This is an important
distinction because in many real-world situations, soft-
ware practitioners want to know whether adding addi-
tional instances to their dataset will change the results
of feature selection.

• We investigate the stability and model performance
of feature selection techniques together on real-world
software metrics data.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of related work, while Section 3
presents the seven filter-based feature ranking techniques
(rankers). Section 4 describes the datasets and experimental
results for stability and classification performance. Finally,
we conclude the paper and provide suggestions for future
work in Section 5.

2 Related Work

The main goal of feature selection is to select a subset
of features that minimizes the prediction errors of classi-
fiers. Guyon and Elisseeff [4] outlined key approaches used
for attribute selection, including feature construction, fea-
ture ranking, multivariate feature selection, efficient search

methods, and feature validity assessment methods. Hall and
Holmes [5] investigated six attribute selection techniques
that produce ranked lists of attributes and applied them to
several datasets from the UCI machine learning repository.
Liu and Yu [11] provided a comprehensive survey of feature
selection algorithms and presented an integrated approach
to intelligent feature selection.

Feature selection has been applied in many data mining
and machine learning applications. However, its application
in the software quality and reliability engineering domain
is limited. Chen et al. [2] have studied the applications of
wrapper-based feature selection in the context of software
cost/effort estimation. They concluded that the reduced
dataset improved the estimation. Rodrı́guez et al. [14] ap-
plied attribute selection with three filter models and two
wrapper models to five software engineering datasets using
the WEKA [17] tool. Both techniques are feature subset
selection and not ranking techniques. It was stated that the
wrapper model was better than the filter model; however,
that came at a very high computational cost.

The stability of a feature selection method is normally
defined as the degree of agreement between its outputs
when applied to randomly-selected subsets of the same in-
put data [9, 12]. To assess robustness of feature selection
techniques, past works have used different similarity mea-
sures, such as Hamming distance [3], correlation coeffi-
cient [7], consistency index [9], and entropy [10]. Among
these four similarity measures, consistency index is the only
one which takes into consideration bias due to chance. Be-
cause of this, in our work the consistency index was used as
stability measure. The term consistency index was defined
by Kuncheva et al [9]. The consistency index is a measure
of similarity between two different feature subsets. He de-
vised this measure as a way to choose the best set of features
for an experiment.

3 Filter-based Feature Ranking Techniques

Filter-based feature ranking techniques (rankers) rank
features independently without involving any learning al-
gorithm, and then the best features are selected from the
ranked list. Researchers have developed a large number of
methods to rank features. In this study, we use seven filter-
based feature ranking methods, including chi-square, infor-
mation gain, gain ratio, two types of ReliefF, symmetrical
uncertainty, and signal-to-noise.

The chi-square (CS) test [13] is used to examine the dis-
tribution of the class as it relates to the values of the feature
in question. The null hypothesis is that there is no corre-
lation; each value is as likely to have instances in any one
class as any other class. CS is more likely to find signifi-
cance to the extent that (1) the relationship is strong, (2) the
sample size is large, and/or (3) the number of values of the

two associated features is large.
Information gain, gain ratio, and symmetrical uncer-

tainty are measures based on the concept of entropy, which
is based on information theory. Information gain (IG) [17]
is the information provided about the target class attribute Y,
given the value of independent attribute X. Information gain
measures the decrease of the weighted average impurity of
the partitions, compared with the impurity of the complete
set of data. A drawback of IG is that it tends to prefer
attributes with a larger number of possible values; that is,
if one attribute has a larger number of values, it will ap-
pear to gain more information than those with fewer values,
even if it is actually no more informative. One strategy to
counter this problem is to use the gain ratio (GR), which pe-
nalizes multiple-valued attributes. Symmetrical uncertainty
(SU) [5] is another way to overcome the problem of IG’s
bias toward attributes with more values, doing so by divid-
ing IG by the sum of the entropies of X and Y.

Relief is an instance-based feature ranking technique in-
troduced by Kira and Rendell [8]. ReliefF is an extension
of the Relief algorithm that can handle noise and multiclass
datasets, and is implemented in the WEKA tool [17]. When
the WeightByDistance (weight nearest neighbors by
their distance) parameter is set as default (‘false’), the al-
gorithm is referred to as RF; when the parameter is set to
‘true’, the algorithm is referred to as RFW.

Signal-to-noise is a measure used in electrical engineer-
ing to quantify how much a signal has been corrupted by
noise. It is defined as the ratio of signal’s power to the
noise’s power corrupting the signal. Signal-to-noise (S2N)
can also be used as feature ranking method [18]. For
a binary class problem (such as fp vs. nfp), the S2N
is defined as the ratio of the difference of class means
(µfp − µnfp) to the sum of the standard deviations of each
class (σfp + σnfp). If an attribute’s expression in one class
is quite different from its expression in the other, and there
is little variation within the two classes, then the attribute is
predictive. Therefore S2N favors attributes where the range
of the expression vector is large, but where most of that vari-
ation is due to the class distribution. S2N was implemented
by our research group in the framework of WEKA tool.

4 Experiments

To test the stability and model performance of different
feature selection techniques under different circumstances,
we performed a case study on nine different software met-
ric datasets, using seven filter-based feature selection tech-
niques, four different levels of dataset perturbation, and nine
different numbers of features chosen. Discussion and re-
sults from this case study are presented below.

Table 1. Software Datasets Characteristics
Project Data #Metrics #Modules %fp %nfp

E2.0-10 209 377 6.1% 93.9%
Eclipse 2.0 E2.0-5 209 377 13.79% 86.21%

E2.0-3 209 377 26.79% 73.21%
E2.1-5 209 434 7.83% 92.17%

Eclipse 3.0 E2.1-4 209 434 11.52% 88.48%
E2.1-2 209 434 28.8% 71.2%
E3.0-10 209 661 6.2% 93.8%

Eclipse 3.1 E3.0-5 209 661 14.83% 85.17%
E3.0-3 209 661 23.75% 76.25%

4.1 Datasets

The software metrics and fault data for this case study
were collected from a real-world software project, the
Eclipse project [19]. From the PROMISE data reposi-
tory [19], we obtained the Eclipse defect counts and com-
plexity metrics dataset. In particular, we use the metrics
and defects data at the software package level. The original
data for Eclipse packages consists of three releases denoted
2.0, 2.1, and 3.0 respectively. We transform the original
data by: (1) removing all nonnumeric attributes, including
the package names, and (2) converting the post-release de-
fects attribute to a binary class attribute: fault-prone (fp) and
not fault-prone (nfp). Membership in each class is deter-
mined by a post-release defects threshold t, which separates
fp from nfp packages by classifying packages with t or more
post-release defects as fp and the remaining as nfp. In our
study, we use t ϵ {10, 5, 3} for release 2.0 and 3.0 and t ϵ
{5, 4, 2} for release 2.1. All nine derived datasets contain
209 attributes. Releases 2.0, 2.1, and 3.0 contain 377, 434
and 661 instances respectively. Table 1 lists the characteris-
tics of the nine datasets utilized in this work, which exhibit
different distributions of class skew (i.e, the percentage of
fp module).

4.2 Stability of Feature Selection

In this study, we consider stability based on changes to
the datasets (perturbations) at the instance level. we chose a
fraction c of instances to keep and randomly removed 1− c
of the instances from both the majority and minority classes
separately, where c is greater than 0 and less than 1. We
removed from each class instead of just from the dataset as
a whole in order to maintain the original level of class bal-
ance/imbalance for each dataset. For each c this process was
repeated thirty times giving us thirty new datasets for each
original dataset (m instances) and level of c, each having
c×m instances, where each of these new datasets is unique
(since each was built by randomly removing (1 − c) × m
instances from the original dataset). In this study, c was set
to 0.95, 0.9, 0.8, or 2/3. In total, 9 datasets ×4 levels of per-
turbation ×30 repetitions = 1080 datasets are generated.

Table 2. Average Stability Across All Datasets
with 2/3rds of the Datasets

Number of Features Selected
Ranker 2 3 4 5 6 7 8 9 10
CS 0.5669 0.5230 0.5273 0.5294 0.5575 0.5687 0.5865 0.6021 0.6183
GR 0.3001 0.3358 0.3561 0.3539 0.3673 0.3778 0.3848 0.4043 0.4157
IG 0.5743 0.5582 0.5555 0.5431 0.5544 0.5637 0.5724 0.5863 0.6051
RF 0.7905 0.7661 0.7342 0.7275 0.7138 0.7034 0.7008 0.7094 0.7043
RFW 0.7324 0.6935 0.7014 0.7160 0.7359 0.7212 0.7212 0.7155 0.7191
SU 0.4059 0.4138 0.4217 0.4313 0.4450 0.4518 0.4769 0.4849 0.5024
S2N 0.6944 0.6571 0.6391 0.6350 0.6237 0.6250 0.6277 0.6381 0.6429

In order to measure stability, we decided to use consis-
tency index [9] because it takes into consideration bias due
to chance. We compute the consistency index between two
feature subsets as follows. Let Ti and Tj be subsets of fea-
tures, where |Ti| = |Tj | = k. The consistency index [9] is
obtained as follows:

IC (Ti, Tj) =
dn− k2

k (n− k)
, (1)

where n is the total number of features in the dataset, d is
the cardinality of the intersection between subsets Ti and
Tj , and −1 < IC (Ti, Tj) ≤ +1. The greater the con-
sistency index, the more similar the subsets are. When we
apply consistency index to the original dataset and one of
the derivative datasets we can use the resultant consistency
measurement as a measurement of stability for the feature
ranker.

For each dataset and feature ranking technique, the fea-
tures are ranked according to their relevance to the class,
and then a subset consisting of the most relevant ones (top
k features) is selected. In this study, nine subsets are cho-
sen for each dataset. The number of features that is retained
in each subset for each dataset are 2, 3, 4, 5, 6, 7, 8, 9, and
10. These numbers were deemed reasonable after some pre-
liminary experimentation conducted on the corresponding
datasets [16]. Thus, given a dataset and a feature ranking
technique, 1080 IC values are obtained, since each of the
four choices of c and nine choices of feature subset size has
30 stability values (30 repetitions).

Tables 2 through 5 summarize the results of robustness
analysis of each ranker, with each table holding perturbation
level constant and showing the results for all feature rankers
and number of selected features separately. All datasets are
averaged together. The top value at each column is in bold-
face. In general, it can be observed that GR shows the least
stability and RF and RFW show the most stability.

Figure 1 shows the effect of the degree of dataset pertur-
bation on the stability of feature ranking techniques across
all feature selection techniques, the nine datasets, and nine
feature subsets. The figure demonstrates that the more
instances retained in a dataset (e.g., the fewer instances
deleted from the original dataset), the more stable the fea-
ture ranking on that dataset will be.

Table 3. Average Stability Across All Datasets
with 80% of the Datasets

Number of Features Selected
Ranker 2 3 4 5 6 7 8 9 10
CS 0.6323 0.6199 0.6017 0.6039 0.6394 0.6610 0.6723 0.6791 0.6909
GR 0.4305 0.4512 0.4560 0.4535 0.4587 0.4639 0.4830 0.5085 0.5238
IG 0.6632 0.6379 0.6528 0.6352 0.6443 0.6483 0.6497 0.6642 0.6777
RF 0.8520 0.8466 0.8282 0.8179 0.7991 0.7844 0.7839 0.7971 0.7907
RFW 0.8184 0.7925 0.7937 0.8045 0.8176 0.7986 0.7980 0.7926 0.7952
SU 0.4875 0.5078 0.5186 0.5152 0.5266 0.5388 0.5640 0.5700 0.5842
S2N 0.7819 0.7628 0.7314 0.7269 0.7127 0.7152 0.7214 0.7372 0.7497

Table 4. Average Stability Across All Datasets
with 90% of the Datasets

Number of Features Selected
Ranker 2 3 4 5 6 7 8 9 10
CS 0.7221 0.7070 0.7051 0.6973 0.7259 0.7417 0.7503 0.7612 0.7727
GR 0.5699 0.5689 0.5813 0.5788 0.5857 0.5927 0.6120 0.6335 0.6461
IG 0.7347 0.7143 0.7294 0.7174 0.7224 0.7280 0.7331 0.7469 0.7622
RF 0.8977 0.9125 0.9025 0.8941 0.8745 0.8668 0.8631 0.8688 0.8627
RFW 0.8768 0.8728 0.8903 0.8826 0.8852 0.8716 0.8768 0.8679 0.8676
SU 0.5965 0.6209 0.6269 0.6427 0.6430 0.6409 0.6672 0.6766 0.6898
S2N 0.8636 0.8444 0.8341 0.8324 0.8112 0.8143 0.8248 0.8323 0.8471

Table 5. Average Stability Across All Datasets
with 95% of the Datasets

Number of Features Selected
Ranker 2 3 4 5 6 7 8 9 10
CS 0.7681 0.7715 0.7870 0.7729 0.7949 0.8127 0.8162 0.8285 0.8269
GR 0.6779 0.6758 0.6976 0.6922 0.6872 0.6937 0.7120 0.7344 0.7431
IG 0.8082 0.7895 0.7840 0.7816 0.7821 0.7878 0.7952 0.8056 0.8165
RF 0.9285 0.9427 0.9400 0.9330 0.9107 0.9039 0.9025 0.9094 0.9054
RFW 0.9128 0.9207 0.9269 0.9275 0.9258 0.9080 0.9185 0.9045 0.9067
SU 0.6691 0.7142 0.7200 0.7346 0.7263 0.7306 0.7485 0.7569 0.7641
S2N 0.9084 0.8826 0.8867 0.8714 0.8528 0.8626 0.8691 0.8812 0.8889

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

66.67% 80.00% 90.00% 95.00%

Level of Perturbation

Figure 1. Degree of Perturbation Impact on
Stability

Table 6. Analysis of Variance, Stability
Source Sum Sq. d.f. Mean Sq. F p-value
A 290.45 6 48.409 995.86 0
Error 826.52 17003 0.0486
Total 1116.97 17009

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

S2N

SU

RFW

RF

IG

GR

CS

Figure 2. Multiple Comparisons, Stability

We performed an ANalysis Of VAriance (ANOVA) [1]
to statistically examine the robustness (e.g., stability) of fea-
ture selection techniques. An n-way ANOVA can be used to
determine if the means in a set of data differ when grouped
by multiple factors. If they do differ, one can determine
which factors or combinations of factors are associated with
the difference. The factor A of our one-way ANOVA model
includes the seven rankers. For the ANOVA test, the per-
turbation level was held constant at 80%, and the results
from all nine datasets were taken into account together. The
ANOVA results are presented in Table 6. The p value of
Factor A is 0, which indicates there was a significant dif-
ference between the average IC values of the seven rankers.
Additional multiple comparisons for the main factor was
performed to investigate the differences among the respec-
tive groups (levels). All tests of statistical significance uti-
lize a significance level α of 5%. Both ANOVA and multi-
ple comparison tests were implemented in MATLAB.

The multiple comparison results are presented in Figure
2, displaying graphs with each group mean represented by a
symbol (◦) and the 95% confidence interval as a line around
the symbol. Two means are significantly different if their
intervals are disjoint, and are not significantly different if
their intervals overlap. It can be observed that RF comes
out best, with RFW, S2N, IG, CS, SU, and GR following in
that order.

Table 7. Classification Performance
E2.0-10 E2.0-5 E2.0-3 E2.1-5 E2.1-4 E2.1-2 E3.0-10 E3.0-5 E3.0-3

CS 0.8369 0.9094 0.8703 0.8884 0.8868 0.8863 0.9165 0.9437 0.9117
GR 0.8325 0.8247 0.7593 0.8324 0.8413 0.8813 0.8917 0.9391 0.9062
IG 0.8553 0.9104 0.8657 0.9105 0.8998 0.8876 0.9269 0.9434 0.9122
RF 0.8589 0.8827 0.7997 0.7739 0.7178 0.7222 0.8779 0.8433 0.8037
RFW 0.8435 0.8829 0.8027 0.8103 0.6864 0.8751 0.7918 0.8373 0.8066
SU 0.8314 0.9002 0.8600 0.8906 0.8840 0.8843 0.9006 0.9434 0.9103
S2N 0.8814 0.9014 0.8487 0.9220 0.9002 0.8844 0.9219 0.9380 0.9227

4.3 Classification Performance

To evaluate a feature selection technique, stability of fea-
ture selection may not be enough to find a good feature se-
lection technique. We should also consider model perfor-
mance. Software defect prediction models have been used
to improve the fault prediction and risk assessment process.
Finding faulty components in a software system can lead
to a more reliable final system and reduce development and
maintenance costs. Classifiers were built with a well-known
classification algorithm, Logistic Regression. Logistic Re-
gression (LR) [17] is a statistical regression model for cate-
gorical prediction which operates by fitting data to a logis-
tic curve. Based on the training data, a logistic regression
model is created which is used to decide the class member-
ship of future instances. For our experiments, the default
settings of WEKA [17] are used. The classification mod-
els are evaluated using the area under the ROC (Receiver
Operating Characteristic) curve (AUC) performance metric.
AUC is widely used, providing a general idea of the pre-
dictive potential of the classifier. A higher AUC is better,
as it indicates that the classifier, across the entire possible
range of decision threshold, has a higher true positive rate.
It has been shown that AUC has lower variance and is more
reliable than other performance metrics (such as precision,
recall, or F-measure) [6].

During the experiments, ten runs of five-fold cross-
validation were performed. For each of the five folds, one
fold (20% of instances) is used as test data while the other
four (80% of instances) are used as the training data. First,
we ranked the attributes using the seven rankers separately.
Once the attributes are ranked, the top four attributes are
selected (as well as the class attribute) [16] to yield final
training data. After feature selection, we applied the Lo-
gistic Regression classifier to the training datasets with the
selected features, and then we used AUC to evaluate the per-
formance of the classification model. In total, 7 rankers ×
9 datasets × 10 runs × 5 folds = 3150 combinations of fea-
ture ranking techniques were employed, and corresponding
models were built.

Experimental results are reported in Table 7. Each value
presented in the table is the average over the ten runs of
five-fold cross-validation outcomes. The best model for
each dataset is highlighted with boldfaced print. The re-
sults demonstrate that among the seven rankers, S2N out-

Table 8. Analysis of Variance, Classification
Source Sum Sq. d.f. Mean Sq. F p-value
A 0.88664 6 0.14777 70.53 0
Error 1.3052 623 0.0021
Total 2.19184 629

performed the others for 4 out of 9 cases.
We also carried out a one-way ANOVA test [1] on the

AUC performance metric. The factor A represents seven
rankers. In this ANOVA test, the results from all nine
datasets were taken into account together. A significance
level of α = 5% was used for all statistical tests. The
ANOVA results are presented in Table 8. The test results
indicate the classification performances of seven rankers
(Factor A) were significantly different from each other (p
= 0). The multiple comparison results are presented in Fig-
ure 3. The figure shows the following facts: for the classifi-
cation models built with Eclipse, we can divide the seven
rankers into three groups, {RF, RFW}, {GR}, and {SU,
CS, IG, S2N}, ordered by their performances from worst
to best. The rankers from different groups performed sig-
nificantly different, while the rankers from same group per-
formed similarly (or insignificantly different). For the last
group, S2N outperformed IG, CS, and SU.

4.4 Stability vs. Classification

From Figures 2 and 3, we can observe that RF is the
most stable ranker, however it is the worst ranker when
classification model was built using the features selected by
the ranker. One of the reasons for this is that the software
metrics datasets we used in the study are imbalanced. Ex-
perimental results also demonstrate that the signal-to-noise
(S2N) ranker performed moderately in terms of robustness
and was the best ranker in terms of model performance.
Therefore, S2N is recommended in this study.

5 Conclusion

Feature (software metric) selection plays an important
role in the software engineering domain. This empirical
study investigates the stability (robustness) and classifica-
tion performance of seven filter-based feature ranking tech-
niques on nine software metrics datasets.

For the evaluation of the feature ranking techniques, the
consistency index proposed by Kuncheva [9] is used. Re-
sults also show that the number of instances deleted from
the dataset affects the stability of the feature ranking tech-
niques. The fewer instances removed from (or equivalently,
added to) a given dataset, the less the selected features will
change when compared to the original dataset, and thus the

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92

S2N

SU

RFW

RF

IG

GR

CS

Figure 3. Multiple Comparisons, Classifica
tion

feature ranking performed on this dataset will be more sta-
ble. We also built classification models using Logistic Re-
gression learner. The classification accuracy is evaluated
in terms of the AUC performance metric. The experimen-
tal results demonstrate that the signal-to-noise ranker per-
formed moderately in terms of robustness and was the best
ranker in terms of model performance. The empirical study
also shows that Relief was the most stable feature selection
technique, even though performed significantly worse than
other rankers in terms of model performance.

Future work will involve conducting additional empir-
ical studies with data from other software projects and ap-
plication domains, and experiments with other ranking tech-
niques and classifiers for building classification models.

References

[1] M. L. Berenson, M. Goldstein, and D. Levine. Intermediate
Statistical Methods and Applications: A Computer Package
Approach. Prentice-Hall, Englewood Cliffs, NJ, 2 edition,
1983.

[2] Z. Chen, T. Menzies, D. Port, and B. Boehm. Finding
the right data for software cost modeling. IEEE Software,
(22):38–46, 2005.

[3] K. Dunne, P. Cunningham, and F. Azuaje. Solutions to Insta-
bility Problems with Sequential Wrapper-Based Approaches
To Feature Selection. Technical Report TCD-CD-2002-28,
Department of Computer Science, Trinity College, Dublin,
Ireland, 2002.

[4] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research,
3:1157–1182, March 2003.

[5] M. A. Hall and G. Holmes. Benchmarking attribute selection
techniques for discrete class data mining. IEEE Transactions
on Knowledge and Data Engineering, 15(6):1437 – 1447,
Nov/Dec 2003.

[6] Y. Jiang, J. Lin, B. Cukic, and T. Menzies. Variance analysis
in software fault prediction models. In Proceedings of the
20th International Symposium on Software Reliability Engi-
neering, pages 99–108, 2009.

[7] A. Kalousis, J. Prados, and M. Hilario. Stability of feature
selection algorithms: a study on high-dimensional spaces.
Knowledge and Information Systems, 12(1):95–116, Dec.
2006.

[8] K. Kira and L. A. Rendell. A practical approach to feature
selection. In Proceedings of 9th International Workshop on
Machine Learning, pages 249–256, 1992.

[9] L. I. Kuncheva. A stability index for feature selection. In
Proceedings of the 25th conference on Proceedings of the
25th IASTED International Multi-Conference: artificial in-
telligence and applications, pages 390–395, Anaheim, CA,
USA, 2007. ACTA Press.

[10] P. Křı́žek, J. Kittler, and V. Hlaváč. Improving stability
of feature selection methods. In Proceedings of the 12th
international conference on Computer analysis of images
and patterns, CAIP’07, pages 929–936, Berlin, Heidelberg,
2007. Springer-Verlag.

[11] H. Liu and L. Yu. Toward integrating feature selection algo-
rithms for classification and clustering. IEEE Transactions
on Knowledge and Data Engineering, 17(4):491–502, 2005.

[12] S. Loscalzo, L. Yu, and C. Ding. Consensus group stable
feature selection. In KDD ’09: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 567–576, New York, NY,
USA, 2009.

[13] R. L. Plackett. Karl pearson and the chi-squared test. Inter-
national Statistical Review, 51(1):5972, 1983.

[14] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-
Ruiz. Detecting fault modules applying feature selection to
classifiers. In Proceedings of 8th IEEE International Confer-
ence on Information Reuse and Integration, pages 667–672,
Las Vegas, Nevada, August 13-15 2007.

[15] J. Van Hulse, T. M. Khoshgoftaar, A. Napolitano, and
R. Wald. Feature selection with high dimentional imbal-
anced data. In Proceedings of the 9th IEEE International
Conference on Data Mining - Workshops (ICDM’09), pages
507–514, Miami, FL, December 2009. IEEE Computer So-
ciety.

[16] H. Wang, T. M. Khoshgoftaar, and N. Seliya. How many
software metrics should be selected for defect prediction?
In Proceedings of the Twenty-Fourth International Florida
Artificial Intelligence Research Society Conference, pages
69–74, May 2011.

[17] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2 edi-
tion, 2005.

[18] C.-H. Yang, C.-C. Huang, K.-C. Wu, and H.-Y. Chang. A
novel ga-taguchi-based feature selection method. In IDEAL
’08: Proceedings of the 9th International Conference on In-
telligent Data Engineering and Automated Learning, pages
112–119, Berlin, Heidelberg, 2008.

[19] T. Zimmermann, R. Premraj, and A. Zeller. Predicting de-
fects for eclipse. In ICSEW ’07: Proceedings of the 29th
International Conference on Software Engineering Work-
shops, page 76, Washington, DC, USA, 2007. IEEE Com-
puter Society.

	Western Kentucky University
	From the SelectedWorks of Dr. Huanjing Wang
	December, 2011

	Stability and Classification Performance of Feature Selection Techniques.
	tmpZXoIjY.pdf

