Eastern Illinois University

From the SelectedWorks of Henry R. Owen

1996

Haploid plant regeneration from anther cultures of three north american cultivars of strawberry (Fragaria x ananassa Duch.)

Henry R. Owen, *Eastern Illinois University* A. Raymond Miller, *Ohio State University*

Available at: https://works.bepress.com/henry_owen/25/

Haploid plant regeneration from anther cultures of three north american cultivars of strawberry (Fragaria x ananassa Duch.)

Henry R. Owen and A. Raymond Miller

Summary. A study was conducted to maxmuze plant regeneration frequencies from cultured anthers of Chandler', 'Honeoye', and 'Redchief strawberries (Fragaria x ananassa Duch.). A comparison of auxins (IAA, NAA), cytokinins (BA, BPA, KIN) and carbohydrates (sucrose, glucose, maltose) in MS medium showed that the highest shoot regeneration across cultivars (8%) occurred when using a medium containing 2 mgtl IAA, I mgtl BA, and 0.2 M glucose. A comparison ofMS, NN, and HI inorganic medium (a new formulation based on the anther culture literature) solidified with either agar or gellan gum and containing IAA, BA, and glucose, showed the highest shoot regeneration across cultivars (19%) when using HI and gellan gum. Lastly, media containing Fe-EDTAyielded more shoots than media containing Fe-Metalosate, and anthers cultured on Fe-EDT A media in darkness for 30d followed by 30d in white light produced more shoots (16% average regeneration) than those cultured on Fe-EDTA media under white or yellow light (16h photoperiod) for the initial 30d (0.3% and 5% respectively). Plants were acclimated ex vitro where they flowered and set :fruit. Chromosome counts of root tip cells confirmed that haploid plants were obtained from all three cultivars.

Abbreviations: IAA: indoleacetic acid, NAA: naphthaleneacetic acid, BA: 6benzylarninopurine; BP A: N-benzyl-9-(2-tetrahydropyranyl)-adenine, KIN: 6furfurylaminopurine; MS: Murashige & Skoog (I 962); NN: Nitsch & Nitsch (1969)

Introduction

Cultivated strawberry (Fragaria x ananassa Duch.) is a highly heterozygous, octoploid species (2n = 8x = 56). Traditional breeding efforts to improve strawberry quality and yield are labor intensive, costly, and time-consuming, since many generations of crossing and selection are routinely required for cultivar development. Reducing the ploidy level of breeding material via androgenesis may accelerate plant improvement efforts by more direct exposure of genetic traits at the haploid level, by phenotypic expression of gametes for assessment of pollen-donor potentials, and, together with chromosome redoubling techniques, by the production of highly homozygous lines for fwther use as parental lines.

Several laboratories have attempted to regenerate haploid plants via anther culture of a number of Fragaria x ananassa cultivars (Fowler eta/. 1971; Hennerty eta/. 1987; Laneri & Damiano 1981: Quarta eta/. 1991; Rosati eta/. 1975; Sayegh & Hennerty 1989; Svensson & Johansson 1994). In these investigations, however, haploid plants were not obtained. Successful regeneration of haploids from anther culture has been reported for only four cultivars, produced and cultivated in Europe (Niemirowicz-Szczytt & Zakrzewska 1981; Niemirowicz-Szczytt et a/. 1983). Haploid plants have also been produced by crossing F. x ananassa with Potentilla species where the Potenti/la chromosomes have been eliminated after hybridization (Niernirowicz-Szczytt 1987). In one of these studies (Niemirowicz-Szczytt & Zakrzewska 1981), a combination of IAA,

BA, and 2,4-dichlorophenoxyacetic acid (2,4-D) was favorable to haploid plant regeneration, with an overall haploid regeneration frequency of approximately 2.5%. Unfortunately, use of this combination of growth regulators did not result in the production of either callus or shoots in preliminary experiments in our laboratory using several North American cultivars. This is not surprising, given the very broad genetic base from which modem, North American cultivars have been developed (Sjulin and Dale 1987). Therefore, a series of experiments was designed to investigate the cultural influences on callus and shoot regeneration from anther cultures of several North American cultivars.

Specifically, the objective of the present study was to successfully regenerate shoots and haploid plants from three current, commercial, North American strawberry cultivars in sufficient quantities to be useful in a strawberry breeding program. Further, we wished to examine and quantify the effects of several cultural factors (plant growth regulators, carbohydrates, inorganic basal media, culture medium gelling agent, iron chelate, and light exposure and quality) on shoot regeneration and haploid plant production across all three cultivars examined in order to develop a procedure with the potential to be applicable to a range of North American cultivars. These factors were examined in three separate experiments, for the purpose of manageability, and sequenced in terms of their expeCted influence, from highest to lowest, after an examination of previously published tissue culture media developed for a range of plant genera, including Fragaria.

Materials and Methods

In all experiments, three cultivars were examined ('Chandler', a California variety, and 'Honeoye' and 'Redchief, two varieties developed for the eastern United States). All treatments utilized 10 ml semisolid medium (see individual experiments) in 15 x 60 mm petri plates, 15 anthers (1 mm length, uninucleate stage) per plate, and five plates per treatment (75 anthers per treatment). Floral buds were surface-sterilized by a 30 sec. dip in 70% ethanol, followed by inunersion in a 5.25% sodium hypochlorite solution for 20 min. and 3 rinses in sterile, distilled water. Contamination rates were very low (1-2%, data not shown). All media contained MS vitamins (Murashige & Skoog 1962) and were prepared to obtain a post-autoclave pH of 5.8 (Owen et aL 1991).

Experiment 1: Two auxins (2 mglliAA or 0.2 mgll NAA), three cytokinins (BA, BPA, or KIN at 1 mgll), and three carbohydrates (0.1 M sucrose, 0.1 M maltose, or 0.2 M glucose) were examined in corrected MS medium (Owen & Miller 1992) solidified with 0.6% Phytagar (Gibco, Grand Island, NY). BPA is structurally similar to BAP, and has recently become commercially available. Glucose was used at 0.2 M to give equivalent moles of available monosaccharide; however, osmotic potentials would be different. A total of 4050 anthers were cultured. Callus formation after 30d dark culture (21-24C) and shoot formation after an additional30d light exposure (16h photoperiod) were recorded.

Experiment 2: Three inorganic medium formulations [MS; Nitsch & Nitsch 1969 (NN); and H1] and two gelling agents (0.6% Phytagar or 0.15% Gelrite (Carolina Biological)]

were examined in media containing the growth regulators and carbohydrate shown to produce the highest overall shoot regeneration frequencies from experiment 1 (2 mglliAA, 1 mgll BA, and 0.2 M glucose). HI inorganic medium was formulated after a comprehensive examination of basal media reported for successful androgenesis from a broad range of plant species (fable 1). Successful anther culture techniques have used a number of different of medium formulations. Thus, H1 medium was formulated to take into account several of these differences (see discussion). A total of 1350 anthers were cultured. Callus formation after 30d dark culture (21-24C) and shoot formation after an additional 30d light culture (16h photoperiod) were recorded.

	<u>M.W.</u>	<u>mg/1</u>	<u>Molarity</u>
NH NO	80.05	400	5mM
KNO,	101.10	2022	20mM
KH,PO	136.09	272	2mM
MgSO ₄ 7H ₂ O	246.38	246	lmM
CaCl ₂ 2H ₂ O	146.99	294	2mM
FeSO, 7H2O	277.91	27.8	100µM
Na ₂ -EDTA 2H ₂ O	372.25	37.2	100µM
H,BO,	61.84	6.2	100µM
CoCl ₂ 6H ₂ O	237.85	0.024	100nM
CuSO, 5H ₂ O	249.61	0.025	100nM
MnSO, 4H2O	223.00	22.3	100µM
Na ₂ MoO ₄ 2H ₂ O	241.92	0.24	lμM
KI	166.02	0.17	iμM
ZnNa2-EDTA4H2O	471.63	9.4	20µM

Table 1. Composition of H1 Medium

Experiment 3: Three light/dark treatments during the initial 30d callus formation period [16h photoperiod white light (130 μ mol m-2 sec1 light intensity), 16h photoperiod under a yellow #2208 filter (Almac Plastics, Inc., Akron Ohio)(Stasinopoulos & Hangarter 1990), or dark culture] and two iron chelates [100 μ M Fe-EDT A or Fe-Metalosate (Albion Laboratories, Clearfield Utah)] were examined in the medium shown to produce the highest overall shoot regeneration frequencies across cultivars from experiment 2 (2 mg/I IAA, 1 mg'I BA, 0.2 M glucose, H1 inorganic medium, and 0.15% Gelrite). A total of 1350 anthers were cultured. Callus formation after 30d and shoot formation after an additional 30d light exposure (16h photoperiod) were recorded. Regenerated shoots were rooted in the same medium devoid of growth regulators for 8-12 weeks, transplanted into coarse sand in 10 em pots, and acclimated ex vitro. Chromosome counts from root tips of the 34 plants which were successfully acclimated were made according to Owen & Miller (1993).

Results and Discussion

The best combination of auxin, cytokinin, and carbohydrate for callus formation and shoot production across all three cultivars (53% and 8%, respectively) was 2 mg/1 IAA, I mg/1 BA, and 0.2 M glucose (Table 2). This combination is very similar to that used previously in strawberry micropropagation media (Boxus 197 4), and confirms its utility for androgenesis as well as organogenesis. Kinetin was found to be virtually ineffective for stimulating shoot formation at the levels tested in this study. BP A was shown to be only moderately effective. Of the three carbohydrates tested, glucose was moderately effective for callus proliferation (46%) and superior for shoot regeneration (2.9%) across the three cultivars and five growth regulators examined. This may be due to the higher osmotic potential of the medium containing 0.2 M glucose than media containing 0.1 M disaccharide. Cultivar differences were observed, particularly for carbohydrate source; however, the combination of glucose/IAA/BA resulted in shoot formation for all three cultivars examined, and thus it was used in the second experiment.

The influence of inorganic basal media and medium gelling agents (experiment 2) on callus formation and shoot regeneration from cultured anthers are listed in Table 3. Across all cultivars and gelling agent treatments, HI inorganic medium was similar to MS and NN inorganic medium formulations for callus formation (61% vs. 59% and 61%, respectively), but superior for plant regeneration (17% vs. 6% and 9%, respectively), illustrating that a medium may influence cell division and organ regeneration events differently. Notable differences between HI and either MS or NN include a significant reduction of ammonium nitrate (400 mg/1 vs. 1650 mg/1 and 720 mg/1, respectively), an increase of potassium phosphate (272 mg/1 vs. 170 mg/1 and 68 mg/1, respectively). Anthers cultured on either Phytagar or Gelrite regenerated shoots; however, the combination of HI and Gelrite produced a greater percentage of shoots across all three cultivars (19%) than HI and Phytagar (15%). Therefore, HI basal medium and Gelrite were used in the third experiment.

Iron in plant tissue culture media has been shown to catalyze the photo-oxidation ofEDTA to formaldehyde and is involved in light-induced IAA degradation (Hangarter & Stasinopoulos 1991). These types of photochemical changes in culture media can be prevented with a yellow long-pass filter (Stasinopoulos & Hangarter 1990). In the present study, we examined the influence of light and iron chelating agent on shoot regeneration frequencies, since the regeneration medium contained IAA. The combination of iron chelating agent and light/dark treatment (experiment 3) produced interesting results (Table 4). In this experiment, callus formation and shoot regeneration were reduced when anther cultures containing Fe-EDTA were exposed to yellow light during the first 30d and shoot regeneration was virtually eliminated when the cultures were exposed to white light. These results show that light is inhibitory to plant regeneration from strawberry anther cultures, presumably by some mechanism other than via EDT Amediated IAA degradation.

Table 2. Influence of cultivar, carbohydrate source, and auxin/cytokinin treatment on anther culture response (n=75 for each treatment). All media contained MS inorganics and vitamins and were solidified with 0.6% Phytagar.

Treatment	Chandler Honeoye		Redchief	average	
	% forming % forming				
<u> </u>	callus shoots	callus shoots	callus shoots	callus shoots	
Sucrose					
IAA + BA	65a* 19a	49abc 9a	57ab 0b	57ab 9a	
IAA + BPA	45abcd 4bcde	53ab 1bc	56ab 4ab	51abcd 3abcde	
IAA + KIN	43abcd 0e	29defg 0c	23e 0b	32fgh 0f	
NAA + BA	32d 3cde	31efg 0c	23e 0b	29h 1def	
NAA + BPA	64a 3cde	43abcde 1bc	35cde Ob	47abcd 1def	
NAA + KIN	35cd 1de	25fg 0c	25e Ob	28gh 0ef	
Maltose					
IAA + BA	61ab 11ab	43abcde 1bc	47abcd 4a	50abcd 5abc	
IAA + BPA	49abcd 8abcd	39abcdef 0c	34bcde 0b	41cdef 3def	
IAA + KIN	41bcd 0e	25fg 0c	23e 1ab	30gh 0ef	
NAA + BA	63ab 8bcde	36bcdefg 0c	49abc 3ab	49abcd 4cdef	
NAA + BPA	51abcd 7bcde	43abcdef 0c	51abc 5a	48abcd 4bcde	
NAA + KIN	49abcd 0e	29efg 0c	51abc Ob	43bcdef 0f	
Glucose					
IAA + BA	53abc 12abc	57a 9ab	49abc 3ab	53abc 8ab	
IAA + BPA	48abcd 5abcde	31cdefg 3bc	53abc 4ab	44abcde 4abcd	
IAA + KIN	63a 0e	35bcdefg 0c	24e 0b	41defg Of	
NAA + BA	56ab 4bcde	55ab 4abc	60a 0b	57a 3bcdef	
NAA + BPA	49abcd 1de	48abcd 3bc	51abc 4ab	49abcd 3def	
NAA + KIN	53abc 0e	23g 0c	29de Ob	35efgh Of	

* Values within columns followed by different letters are significantly different (P=0.05).

Table 3. Influence of cultivar, culture medium gelling agent, and basal medium on anther culture response (n=75 for each treatment). All media contained MS vitamins, 2 mg/l IAA, 1 mg/l BA, and 0.2 M glucose.

<u>Treatment</u>		andler % forming shoots		neoye g % forming shoots		Ichief % forming shoots		verage ning % forming <u>shoots</u>
Phytagar								
MS	79a*	7ab	45ab	11bc	53ab	1Ъ	59a	6c
NN	72a	7a	53ab	13ab	48b	4ab	58a	8bc
H1	81a	21a	48ab	15ab	55ab	9ab	61a	15ab
Gelrite								
MS	72a	ОЬ	48ab	3c	57ab	11ab	59a	5bc
NN	84a	9a	57a	11bc	49b	7ab	63a	9abc
H1	79a	13a	41b	28a	64a	16a	61a	19a

* Values within colums followed by different letters are significantly different (P=0.05).

Table 4. Influence of cultivar, iron chelating agent, and light/dark treatment on anther culture response (n=75 for each treatment). All media contained H1 basal medium, MS vitamins, 2 mg/1 IAA, 1 mg/1 BA, 0.2 M glucose, and 0.15% Gelrite.

Freatment	atment Chandler		Honeoye		Redchief		average	
Standard Standard Standard	% forming % forming	g % formi	% forming % forming		% forming % forming		% forming % forming	
	callus shoots	callus	shoots	<u>callus</u>	shoots	callus	shoots	
	친구들은 모습 문이 가지?			이 나는 것이 같이 것	3 8 24 24			
e-EDTA	· 이 홍수한 등 이 이 관 이 이 수 있는 것이 하는 것이 않는 것이 하는 것이 하는 것이 하는 것이 않아, 것이 하는 것이 않아, 이 하는 것이 않아,	_		나는 아프랑리는 것				
Light	43bc* 1b	8c	ОЪ	4c	Ob	18c	0c	
Yellow filter	61ab 4ab	40b	5Ъ	35b	7ab	45b	5b	
Dark	77a 13a	65a	20a	68a	16a	70a	16a	
	a shekar ta Alasha i			Service and the service of the servi				
e-Metalosate					전문 사람이 있는 것이 같아.			
Light Andrea	12c 0b	5c	0Ь	3c	0b	7c	0c	
Yellow filter	59ab 4b	60ab	7Ь	69a	7ab	63ab	6b	
Dark	79a 3b	52ab	5b	57ab	7ab	63ab	5Ъ	
야당한 여름 옷을 다 가 가슴을 가셨다.				a dat da ser				

* Values within columns followed by different letters are significantly different (P=0.05).

Anthers cultufed on a mediwn containing Iron Metalosate (an amino acid chelate formulation developed for field application). behaved similarly to anthers cultured on a medium containing Fe-EDTA for both callus formation and shoot regeneration when cultures were exposed to white or yellow light, but produced fewer shoots than anthers cultured on a medium containing Fe-EDTA when cultures were incubated in darkness for the initial30d. Additionally, anthers cultured on a medium containing Iron Metalosate and incubated in darkness showed a plant regeneration frequency similar to anthers incubated under yellow light. These results demonstrate that Fe-Metalosate is less effective for shoot regeneration than Fe-EDTA at equal concentrations when cultures are incubated in darkness, but unlike Fe-EDTA it is not inhibitory ii1 the presence of yellow light. Additional experiments would be needed to determine if other concentrations of Fe-Metalosate would be effective in increasing plant regeneration frequencies to equal or surpass the frequencies observed with Fe-EDTA for cultures incubated in darkness.

 	5 86.85 33	en e entre es	
Table 5. Chromosom	e counts of	regenerated plants	
The second and a second second	Section Street	Charles a	

Genotype designatio	Left from the second second	SD	Genotype designation	Mean	SD
C3 ~	53.4	3.2	C24	52.0	7.7
C4 🦗	49.2	~ 7.5 🦷	C25	32.6	3.3
C5* 85	28.4	2.4	C26	27.4	2.1
C6	52.8	2.4	C27	50.8	6.4
C7*	27.2	1.9	H2*	28.0	2.6
C8	55.6	1.0	H9*	26.0	0.9
C9	55.2	1.2	H10	55.2	2.5
C10	53.6	3.4	H13	52.6	3.4
C11*	28.4	2.1	H14	54.4	1.5
C13	55.8	2.6	H15*	28.0	1.4
C14*	27.2	1.5	H16	53.8	2.2
C15	55.6	2.4	R3	52.6	3.9
C16	54.8	2.5	R4*	29.0	1.7
C18	54.8	1.9	R6	50.0	2.8
C19	54.2	2.9	R9*	27.4	2.0
C21	54.6	3.8	R11	53.8	3.2
C23*	27.8	2.5	R13	53.6	3.5

C= Chandler, H= Honeoye, R= Redchief, *= haploid range, n= 10

Chromosome counts of regenerated plants are listed in Table 5. Of the 34 plants which survived acclimation to greenhouse conditions, II exhibited chromosome nwnbers within the haploid range (n = 4x = 28), giving an overall haploid regeneration frequency of 0.8% for the fmal experiment. This frequency is lower than the frequency reported by Niemirowicz-Szczytt and Zakrzewska (1981) for European cultivars, but it is within an acceptable range for generating haploids for use in a breeding program. It was not determined whether the 23 plants having chromosome numbers within the diploid range

were regenerants from somatic cells, or from gametic cells that had doubled during in vitro culture, producing ditetrahaploids. The acclimated plants were grown in a greenhouse and have since flowered and set fruit. Thus, fertility was maintained at the tetrahaploid level, suggesting their potential, after chromosome doubling, for use as homozygous parental material for a traditional plant breeding program. By the anther culture method described in this paper (HI medium, 2 mg/IIAA, I mg/1 BA, 0.2M glc, 0.15% Gelrite, 30d darkness, 30d light incubation), haploid plants can be produced at frequencies of 0.4-1% for the three North American cultivars examined. These frequencies are sufficient to allow plant breeders the opportunity to better describe the genetic compliment of desirable cultivars and also use haploid plants in much the same way as inbred lines are used in traditional plant breeding programs. Further studies would be needed to confirm gametic ploidy levels of regenerants (for possible use in interploidy crosses), to determine fertilization mechanisms (male and/or female fertility), and to quantify phenotypic characteristics of the regenerants, including strawberry quality attributes.

Acknowledgements: We thank Joe Scheerens for statistical assistance. This work was supported in part from state and federal funds appropriated to the Ohio Agricultural Research & Development Center, The Ohio State University, Wooster, OH. Journal manuscript No. 29-95.

References

Boxus Ph (1974) The production of strawberry plants by in vitro micropropagation. J. Hort. Sci. 49:20910.

Fowler CW, HG Hughes, J Janick (1971) Callus formation from strawberry anthers. Hort. Res. 11:116-117.

Hangarter RP, TC Stasinopoulos (1991) Repression of plant tissue culture growth by light is caused by photochemical change in the culture medium. Plant Science 79:253-257.

Hennerty MJ, AJ Douglas, AJ Sayegh (1987) Studies on androgenesis of the strawberry. Proc. Irish Bot. Mtg., Cork, 25-27 March. p. 76-80.

Laneri U, C Damiano (1981) Strawberry anther culture. Ann. d'Instit. Sperimentale par Ia Frutticoltura 1980., p.43-48.

Murashige T, F Skoog (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497.

Niemirowicz-Szczytt K (1987) Strawberry (Fragaria x ananassa Duch.) haploids and their generative progeny. Induction and characteristics. Warsaw Agric. Univ. Press, p.1-64.

Niemirowicz-Szczytt K. Z Zakrzewska (1981)Fragaria x ananassa anthers [sic] cultures.

Bull. L'Acad. Polonaise Sci. Ser. Sci. Bioi. 28:341-347.

Niemirowicz-Szczytt K. Z Zakrzewska, S Malepszy, B Kubicki (1983) Characteristics of plants obtained from Fragaria x ananassa in anther culture. Acta Hort. 131:231-235.

Nitsch JP, C Nitsch (1969) Haploid plants from pollen grains. Science 163:85-87.

Owen HR. AR Miller (1992) An examination and correction of plant tissue culture basal medium formulations. Plant Cell Tiss. Organ Cult. 28:147-150.

Owen HR. AR Miller (1993) A comparison of staining techniques for somatic chromosomes of strawberry. HortScience 28:155-156.

Owen HR, D Wengerd, AR Miller(1991) Culture medium pH is influenced by basal medium, carbohydrate source, gelling agent, activated charcoal, and medium storage method. Plant Cell Reports 10:583-586.

Quarta R, D Nati, FM Paoloni (1991) Strawberry anther culture. Acta Hort. 300:335-339.

Rosati P, M Devreux, U Laneri (1975) Anther culture of strawberry. HortScience 10:119-120.

Sayegh AJ, MJ Hennerty (1989) Androgenesis and embryo rescue for strawberry haploid production. Acta Hort. 265: 129-13 5.

Sjulin TM, A Dale (1987) Genetic diversity of North American strawberry cultivars. J. Amer. Soc. Hort. Sci. 112:375-385.

Stasinopoulos TC, RP Hangarter (1990) Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol. 93:1365-1369.

Svensson M, LB Johansson (1994) Anther culture of Fragaria x ananassa: Environmental factors and medium components affecting microspore divisions and callus production. J. Hort. Sci. 69:417-426.