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Predicting Tree Species Origin of Soil Organic Carbon 
with Near-Infrared Reflectance Spectroscopy

North American Forest Soils Conference Proceedings

Quaking aspen is a major species in montane ecosystems of the semi-
arid region of western North America, occurring predominantly as 
a pioneer species that is replaced by conifers in later stages of succes-

sion (Mueggler, 1985). Fire suppression and ungulate browsing is believed to have 
caused a loss of aspen cover during the last century (Bartos and Campbell, 1998). 
Although changes in aspen cover may be within the range of historical fluctuation 
(Kulakowski et al., 2004), a shift toward coniferous species may modify soil physi-
cal, chemical, and biological properties (Ayres et al., 2009), including soil organic 
C (SOC) dynamics and CO2 emissions into the atmosphere.
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Near-infrared reflectance spectroscopy (NIRS) and partial least squares 
regression were used to develop prediction models for identifying the species 
of origin of soil organic C (SOC) in semiarid montane forests of quaking 
aspen (Populus tremuloides Michx.) and mixed conifers in Utah. Artificial 
mixtures of mineral soils (0–15 cm) sampled under pure aspen and pure 
conifer cover (n = 415) at four locations were divided into a calibration–
validation set (n = 265) for model development and an independent 
validation set (n = 150) to test model robustness. Models in the 10,000 to 
4000 cm−1 spectral region were developed separately with original soil 
spectra (OS) and organic matter spectra (OM) using the full and truncated 
(10th–90th percentile) sample sets. The OS models performed better than 
OM models, and the best OS models showed good prediction ability at the 
validation step, with R2 = 76%, ratio of standard deviation of reference value 
to standard error of prediction (RPD) = 2.1 for aspen SOC, and R2 = 74%, 
RPD = 2.0 for conifer SOC. Model performance decreased at independent 
validation (R2 = 33– 49%, RPD = 1.2–1.6), probably due to unaccounted 
variability of site-specific factors in SOC chemical composition within and 
among aspen and conifer soils. Current models are still somewhat limited 
for accurately predicting contributions of aspen vs. conifers in independent 
samples. More detailed site information, such as texture, mineralogy, geology, 
and land use history is needed to improve models so that they can be used to 
provide insight into SOC properties changes along a continuum of aspen to 
conifer forests in the western United States.

Abbreviations: CM, Cedar Mountain; C-V, calibration–validation; DLL, Deseret Land and 
Livestock; FB, Franklin Basin; IV, independent validation; MM, mineral matrix spectra; 
NIRS, near-infrared reflectance spectroscopy; OS, original spectra; OM, organic matter 
spectra; PLSR, partial least squares regression; RMSEP, root mean square error of prediction; 
RPD, ratio of standard deviation of reference value to standard error of prediction; SOC, 
soil organic carbon; TOC, total organic carbon; TWDEF, T.W. Daniel Experimental Forest.
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Previous studies in montane forests of western North 
America have found that aspen stands store more SOC in the 
first 60 cm of the mineral soil than adjacent conifer stands 
(Woldeselassie et al., 2012). The results further indicated that 
SOC in aspen soils has slower microbial turnover than conifer 
soils (i.e., more stable SOC) and that aspen have a higher pro-
portion of SOC associated with mineral surfaces (Woldeselassie 
et al., 2012), which increases the residence time of SOC (von 
Lützow et al., 2007). Differences in input, litter chemical com-
position, and environmental soil conditions following conifer 
encroachment can also affect SOC dynamics (Olsen and Van 
Miegroet, 2010; Woldeselassie et al., 2012). Soil organic C stor-
age and its properties under mixed stands may not necessarily be 
predicted through linear interpolation between SOC contents 
and the properties of pure aspen and conifer stands. Being able 
to distinguish the vegetation type legacy on SOC (i.e., the con-
tribution of aspen- and conifer-derived portions of SOC) would 
greatly contribute to our understanding of changes in SOC stor-
age and dynamics as aspen transitions to mixed aspen–conifer 
forests. This challenge may be addressed using near-infrared re-
flectance spectroscopy (NIRS). To our knowledge, no study has 
used NIRS to distinguish the relative contributions of tree spe-
cies belonging to different forest types (broadleaved vs. conifers) 
to SOC in the mineral soil.

Near-infrared reflectance spectroscopy is an empirical, non-
destructive, inexpensive, and rapid technique that is commonly 
used in the food and chemical industries and agricultural sci-
ence to simultaneously determine the concentration of various 
organic and inorganic components. Therefore, NIRS may be an 
appropriate technique for analyzing chemically heterogeneous 
SOC. In soil science, NIRS has been applied to predict organic 
C and N concentrations in agricultural soils (Dalal and Henry, 
1986; Morra et al., 1991), the relative abundance of functional 
groups (Terhoeven-Urselmans et al., 2006), the concentrations 
of C, N, and P in litter at different stages of decomposition 
(Gillon et al., 1999), or SOC fractions (Coûteaux et al., 2003; 
Cozzolino and Morón, 2006). Near-infrared reflectance spec-
troscopy is based on the absorption of infrared radiation (800–
2500 nm) by C–H, N–H, and O–H bonds (Foley et al., 1998) 
as found in organic and inorganic constituents of plant and soil 
materials. Thus, the near-infrared reflectance (NIR) spectrum 
of a material can be interpreted as the overall chemical com-
position of the soil organic matter (Palmborg and Nordgren, 
1996; Coûteaux et al., 2003). When NIRS is combined with 
chemometrics, it is possible to develop prediction models for 
NIR-active constituents of known concentrations. As opposed 
to the characterization of individual compounds by wet chemi-
cal analyses, NIRS permits the determination of the chemical 
composition of heterogonous samples and does not produce 
chemical wastes (Cozzolino and Morón, 2006). Gruselle and 
Bauhus (2010) used NIRS successfully to predict the species of 
origin of the forest floor in mixtures of European beech (Fagus 
sylvatica L.) and Norway spruce [Picea abies (L.) Karst.]. Few 
studies have used NIRS to distinguish the vegetation origin of 

organic matter in mineral soils. Mineral soil is defined in this 
study as soil material distinct from the O horizon and litter 
and containing <20% (w/w) of SOC (Soil Survey Staff, 2010) 
and will hereafter be referred to as soils. Coûteaux et al. (2003) 
were able to predict 13C and 15N derived from labeled wheat 
(Triticum aestivum L.) straw with NIRS models 3 yr after the 
straw was added to coniferous forest soils. Michel and Ludwig 
(2010) used NIRS models to predict C derived from C3 and C4 
plants in pools from the RothC model. Ertlen et al. (2010) used 
NIRS to discriminate soils originated under grassland or forests. 
These studies indicate that NIRS can be used to differentiate 
the origin of SOC by land use type and plants differing in meta-
bolic pathways. Moreover, they invite the hypothesis that NIR 
spectra can reflect the types of vegetation and their relative con-
tribution to the SOC concentration in the mineral soil where 
components of plant (aboveground and belowground) litter 
have been recycled into microbial biomass and/or result from 
advanced decomposition.

We investigated whether NIRS and chemometrics can be 
used to predict the concentration of SOC in soil derived from 
aspen and coniferous species using soils sampled directly under 
aspen and conifer canopies at different locations in Utah. We 
further wanted to test whether the legacy of vegetation on SOC 
could be predicted in the presence of the mineral matrix of the 
soil or whether it was necessary to remove the influence of the 
mineral matrix on NIR spectra before NIRS model develop-
ment.

Materials and methods
Study Areas and Land Use History

Four study areas located in northern Utah (Franklin Basin 
[FB], T.W. Daniel Experimental Forest [TWDEF], and Deseret 
Land and Livestock [DLL]) and in southern Utah (Cedar 
Mountain [CM]) were sampled between 2007 and 2011 to cap-
ture the broad range of physical settings encompassed by aspen 
(Fig. 1). The FB, TWDEF, and DLL sites are located in the phys-
iographic province of the Middle Rocky Mountains and CM is 
located on the Kolob Terrace, within the Colorado Plateau (Fig. 
1) (Fenneman and Johnson, 1946). These are montane or subal-
pine ecosystems, with elevations ranging from 1770 to 3200 m 
(Table 1). The climate is characterized by cold winters and hot, 
dry summers. Annual precipitation across the sites ranges be-
tween 812 and 1197 mm (Table 1), decreasing from north to 
south. Precipitation occurs mainly as snow. Average temperatures 
of the hottest month are fairly similar across all study areas, rang-
ing between 14.0 and 16.4°C (Table 1). Average temperatures 
of the coldest month decrease toward the north (Table 1), rang-
ing from −3.8°C at CM to −10.0°C at TWDEF. The geology 
differs somewhat across the study areas: soils in CM developed 
mainly on sedimentary (shale, sandstone, or limestone) and igne-
ous rock (basalt, basic or intermediate igneous rock) (Soil Survey 
Staff, 2014); at TWDEF and DLL, the parent material is derived 
from Wasatch conglomerate (Woldeselassie et al., 2012); and at 
FB, soils developed on sedimentary rock (limestone or quartz-
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ite sandstone) (Kusbach, 2010). In our study areas, aspen was 
present as large pure stands or in patches embedded in moun-
tain meadows, shrublands, or conifer forests. In mixtures, aspen 
was associated with a variety of coniferous species (Table 1). The 
understory vegetation under aspen stands commonly consists of 
diverse grasses, forbs [Delphinium ´occidentale (S. Watson) S. 
Watson or Achillea millefolium L.], legumes (Lupinus spp.), and 
shrubs (Symphoricarpos oreophilus A. Gray, Ribes spp.), and are 
denser than under conifer stands, which often have bare soils or 
sparse grasses, forbs, and shrubs.

Complete soil profile descriptions for the plots at DLL 
and TWDEF can be found in Woldeselassie et al. (2012). Soil 
profile descriptions were not available for the sites in CM and 
FB. However, Kusbach (2010) described several other soil pe-
dons under aspen and conifer stands at FB, and as reported by 
Woldeselassie et al. (2012), soils under aspen generally have a 
thick and pronounced A horizon (?30–50 cm) and are clas-
sified as Mollisols. Conifer soils have a shallower and lighter A 
horizon (?5–30 cm) and are commonly classified as Alfisols but 
also as Entisols or Inceptisols (Table 1).

Documentation on land use for the western United States 
is anecdotal before the 1900s, and for most of the 20th century 
there is a paucity of land use cartography for our study areas; thus, 
information on historical vegetation had to be derived from the 
literature. Rogers et al. (2011) characterized the transition in as-
pen communities in the last 150 yr in the Bear River Range, where 
FB and TWDEF are located, as being dominated by mixed and 
conifer stands in the early 1800s, with subsequent expansion of 
pure aspen stands during the end of the 19th century due to a shift 
in climatic conditions coupled with disturbances associated with 
the European settlement (e.g., timber extraction, sheep grazing, 
high-intensity fires). During the 20th century, fire suppression, 
cattle and sheep grazing, and a moist climate contributed to the 
natural succession toward mixed and conifer stands (Rogers et al., 

2011). Similarly, grazing and intensive logging of accessible coni-
fer stands were the main land uses in DLL in the late 1800s and 
early 1900s. Aspen communities at CM are presumably stable 
stands that self-regenerate continuously or through gap-phase re-
generation (Kurzel et al., 2007), while conifer stands are found in 
the edges of the plateau and northern slopes. Intensive sheep graz-

Fig. 1. Location of study areas in Utah relative to the physiographic 
provinces defined by Fenneman and Johnson (1946) and aspen 
habitat distribution by Little (1971): Franklin Basin (FB), T.W. Daniel 
Experimental Forest (TWDEF), Deseret Land and Livestock (DLL), and 
Cedar Mountain (CM).

Table 1. General characteristics of the study areas.

Study 
area†

Latitude Longitude
Elevation 

range
Mean annual 
precipitation

MMT‡ mMT§ Common soil orders
Coniferous 
species¶

Sources

m mm —— °C ——

FB 41°56¢ N 111° 34¢ W 1770–3030 1197 16.4 −6.9 Mollisols and Alfisols
subalpine fir
Douglas-fir
limber pine

Kusbach (2010)
NRCS (2013)

TWDEF 41°51¢ N 111°30¢ W 2600 950 14 −10 Mollisols and Alfisols
Engelmann spruce

subalpine fir

Olsen and Van Miegroet 
(2010)

Woldeselassie et al. (2012)

DLL 41°8¢ N 111°14¢ W 1889–2700 910 16 −5
Mollisols, Entisols, 

Aridisols and Inceptisols
subalpine fir
Douglas-fir

Woldeselassie (2009)
NRCS (2013)

CM 37°31¢ N 113°8¢ W 1800–3200 812 15.5 −3.8 Mollisols and Alfisols
subalpine fir
Douglas-fir

white fir

McNab and Avers (1994)
Evans (2010)

Rogers et al. (2010)
NRCS (2013)

† FB, Franklin Basin; TWDEF, T.W. Daniel Experimental Forest; DLL, Deseret Land and Livestock; CM, Cedar Mountain.
‡ MMT, maximum mean monthly temperature.
§ mMT, minimum mean monthly temperature.
¶ Subalpine fir [Abies lasiocarpa (Hook.) Nutt.], Douglas-fir [Pseudotsuga menziesii (Mirbel) Franco], limber pine (Pinus flexilis E. James), 
Engelmann spruce (Picea engelmannii Parry ex Engelm.), white fir [Abies concolor (Gordon & Glend.) Lindl. ex Hildebr.].
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ing since the European settlement may have profoundly modified 
the structure of aspen stands (Rogers et al., 2010) and caused a 
shift in understory composition from forb to graminoid domina-
tion (Bowns and Bagley, 1986).

Sampling Design
We used two sampling designs: the first sampling campaign 

(2007) was done at the plot level; subsequently (2009–2011), 
points were sampled along transects to capture the influence of 
a single tree on soil properties under its canopy. In July 2007, 
a total of six paired plots (20 by 20 m) (designated as plots in 
Table 2) were located at TWDEF and in two small watersheds 
named Upper Frost and Bear Canyon at DLL (DLL Frost and 
DLL Bear hereafter), under either a conifer- or aspen-dominated 
overstory. Each pair of plots had similar conditions of elevation 
and slope, and the plots were located between 10 and 100 m 
from each other (Woldeselassie et al., 2012). After removing the 
litter layer (when present), five soil cores (5-cm diameter) were 

taken to a depth of 15 cm in each plot and combined into one 
composite sample per plot. Soil sampling was done by depth 
rather than by horizon, but consisted entirely of the A horizon 
under aspen and the A horizon with some portion of the under-
lying B, AB, or E horizon under some conifers (Olsen and Van 
Miegroet, 2010; Woldeselassie et al., 2012). A second sampling 
design (designated as transects [T] in Table 2) was applied in the 
fall of 2009 at three sites (DLL Bear, DLL Frost, and TWDEF) 
close to the 2007 plots. Three transects were laid out at each lo-
cation, and within each transect, two soil cores (0–15 cm) were 
sampled beneath conifer or aspen canopy, after removal of the lit-
ter layer, and composited on site. The elevation, slope, and aspect 
were similar along each transect. In addition, four sites at CM 
(CM1, CM2, CM57, and CM111) and two sites at FB (FB1 
and FB2) were sampled using the transect method in the fall 
of 2010 and 2011, respectively. In CM and FB, soil cores were 
taken to a depth of 15 cm and the middle section (5–10 cm) 
was used in subsequent analyses. Because SOC characteristics 

Table 2. Aspen and conifer soil organic C (SOC) concentrations and texture of end member soils (i.e., aspen and conifer soils) and 
range of concentrations in the artificial mixtures.

Study area† Site‡
Transect 
or plot

Artificial 
mixtures

End member SOC Soil texture Artificial mixture SOC range
Aspen Conifer Aspen Conifer Aspen Conifer

no. —— g C kg−1 soil —— ——— g C kg−1 soil ———

CM

CM1 T1 0 64.8 –§ loam –

CM1 T2 0 81.1 – loam –

CM1 T3 0 74.2 – loam –

CM2 T1 0 39.2 72.4 silt loam silt loam

CM2 T2 20 41.7 49.6 loam silty clay loam 4.2–36.6 2.8–42.2

CM2 T3 30 66.2 84.7 NA¶ clay loam 4.1–53.4 3.4–66.4

CM57 (IV) T2 22 53.8 35.9 sandy clay loam sandy clay loam 2.4–46.3 1.4–31.7

CM57 (IV) T3 20 30.2 24.3 loam loam 2.2–24.1 0.9–19.4

CM111 T1 20 24.1 17.3 sandy loam sandy loam 1.8–21.2 0.7–14.9

CM111 T2 0 14.0 – sandy loam –

CM111 T3 20 10.9 14.1 sandy loam sandy loam 1.1–8.7 0.6–11.1

FB

FB1 T1 30 62.2 55.9 loam clay loam 2.8–49.1 2.5–41.9

FB1 T2 30 48.6 61.7 silt loam loam 2.0–39.0 1.6–57.8

FB1 T3 0 43.1 49.5 loam silt loam

FB2 (IV) T1 25 70.6 37.8 NA silty clay loam 3.2–57.7 1.1–31.3

FB2 (IV) T2 0 54.6 43.4 silty clay loam clay loam

FB2 (IV) T3 25 50.6 49.2 silty clay loam silty clay loam 6.4–42.2 1.8–39.2

DLL

DLL Frost Plot 40 24.2 37.3 loam silt loam 1.2–20.6 1.5–33.5

DLL Frost T1 0 20.2 19.0 sandy loam loam

DLL Frost T2 0 38.1 27.5 sandy loam loam

DLL Frost T3 0 35.4 36.3 loam loam

DLL Bear (IV) Plot 40 35.4 28.8 loam loam 1.7–30.3 1.1–25.9

DLL Bear (IV) T1 0 43.3 66.1 loam loam

DLL Bear (IV) T2 0 27.5 25.7 sandy loam loam

DLL Bear (IV) T3 0 69.2 28.7 loam sandy loam

TWDEF

TWDEF Plot 40 24.3 26.6 sandy clay loam sandy loam 1.3–20.7 1.0–24.0

TWDEF T1 0 43.9 44.3 loam loam

TWDEF T2 0 46.8 – loam loam

TWDEF T3 0 33.7 42.8 clay loam clay loam
Total data set 362 10.9–81.1 14.1–84.7 1.1–57.7 0.6–66.4
† CM, Cedar Mountain; FB, Franklin Basin; DLL, Deseret Land and Livestock; TWDEF, T.W. Daniel Experimental Forest.
‡ (IV), sites included in the independent validation set. All other sites were used for calibration–validation.
§ No conifer sample available, due to absence of pure conifer stands at CM1 and processing error of the samples at CM111and TWDEF.
¶ NA, texture data not available due to insufficient sample.
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change with depth (bulk density increases, SOC concentration 
and particulate organic matter content decrease), we considered 
the middle section to represent average properties of the entire 0- 
to 15-cm core (Román Dobarco and Van Miegroet, unpublished 
data, 2012). We refer to soils sampled under pure aspen or pure 
conifer canopies from paired plots or transects as end members.

Sample Preparation and Spectra Measurements
Soils were oven dried at 105°C, sieved through a 2-mm 

mesh, finely ground with mortar and pestle, and analyzed for to-
tal C, inorganic C, and total organic C (TOC) concentrations 
with a Skalar Primacs Analyzer (Skalar, Inc.). While oven dry-
ing may have induced some alterations (e.g., oxidation and loss 
of volatile organic C) in organic matter configuration, earlier 
laboratory comparisons between oven-dried and air-dried soils 
did not indicate changes in total C content (Román Dobarco 
and Van Miegroet, unpublished data, 2012). The texture of the 
original soil samples was determined using the pipette method.

Thirteen pairs of end members were used to generate 362 
artificial mixtures in the laboratory (Table 2) by mixing known 
amounts of aspen and conifer soils in a 0 to 100% gradient. A third 
soil component (TOC = 48.7 g kg−1 soil), hereafter called exter-
nal soil, from a garden in Neustadt, Germany, was added (0–85% 
w/w) to avoid autocorrelation typical of simple two-component 
mixtures (as per Gruselle and Bauhus, 2010). Mixtures were cre-
ated exclusively within paired plots or a transect to control for 
parent material and soil texture, although the texture differed 
somewhat between aspen and conifer soils in some pairs (Table 
2). Pure aspen (n = 29) and pure conifer (n = 24) soil samples 
were included in the data set for a total of 415 samples (Table 2; 
Fig. 2). The spectra of end members and artificial mixtures are 
referred to as original spectra (OS) hereafter. The relative SOC 
concentration (g C kg−1 soil) of each vegetation type (aspen or 
conifer) in the artificial mixtures was calculated as

Veg Veg
Veg 3

Veg1

Weight TOC
SOC

Weight ii=

×
=
∑

where SOCVeg is the relative SOC concentration of the vegeta-
tion type (aspen or conifer) for which the NIRS models were 
developed, WeightVeg is the weight of soil (g) of a given vegeta-
tion type, TOCVeg is the C concentration (g kg−1 soil) of the 
vegetation type in the source sample, and i = 1 to 3 for the three 
soils (aspen, conifer, and external soil) used in the mixtures.

Organic-free mineral matrix samples were obtained from an 
aliquot of the original soil samples using a modification of the 
NaOCl extraction protocol described by Kaiser et al. (2002). 
Briefly, NaOCl (6%) was added to the soil in a 50:1 (v/w) ratio, 
and the soil slurry was shaken at room temperature for a total 
30 h, replacing the NaOCl two times (after 12 and 24 h). The 
remaining mineral material was rinsed at least four times with 
deionized water (44:1 v/w ratio) and centrifuged at 18,000 rpm. 
The samples were dried at 40°C and ground with mortar and 

pestle (<1 mm) before spectral analysis. This extraction method 
effectively removes organic matter with minimal effects on the 
mineral structure, as discussed by Siregar et al. (2005). The spec-
tra of the remaining organic-free mineral material is referred to 
as the mineral matrix spectra (MM) hereafter.

Near-infrared reflectance measurements and multivariate 
statistics were performed at the Institute of Silviculture of the 
University of Freiburg (Freiburg, Germany). Spectra from arti-
ficial mixtures, end members, and the mineral matrix were ob-
tained with a Tensor 37 spectrometer (Bruker Optics GmbH). 
Samples were dried in the oven overnight at 40°C to eliminate 
any interference of water with the NIRS spectra. Absorbance 
was measured in 8 cm−1 intervals across the range 12,000 to 
3500 cm−1 (833–2857 nm). The spectral region 10,000 to 4000 
cm−1 was actually used by the chemometric software OPUS (see 
details below) for calibration–validation because the regions 

Fig. 2. Methodology followed for the development and validation 
of near-infrared reflectance spectroscopy (NIRS) prediction models 
(modified from Gruselle and Bauhus, 2010). Sample size of the 
truncated data set in italics (i.e., spectra with reference values 
between the 10th and 90th percentiles); RMSEP, root mean square 
error of prediction at validation; RPD, ratio of standard deviation 
of reference values to standard error of prediction. The dashed line 
indicates the ultimate goal of NIRS models development.
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outside this range have limited utility in the calibration due to 
spectral noise (Locher et al., 2005). Five to eight spectra per sam-
ple (32 scans per spectrum) were obtained and an average spec-
trum for each sample was calculated with the software OPUS 6.5 
(Bruker Optics GmbH), which is specific to the Tensor 37 spec-
trometer. Samples were shaken and well mixed between spectra 
acquisitions to ensure a mean spectrum representative of the 
sample variability (Gruselle and Bauhus, 2010).

The spectrum of the soil organic matter (OM) was obtained 
by subtracting the spectrum of the mineral matrix (MM) from 
that of its corresponding original sample (OS) using the OPUS 
software. For each pair of end members, an average mineral ma-
trix spectrum was calculated using OPUS, assuming small vari-
ability in the mineral matrix of the soil among end member pairs 
within a given site or transect, and then subtracted from their 
site-specific artificial mixtures. Spectral subtraction to obtain 
OM improved NIRS prediction models for total N and N min-
eralization of soil samples (Russell, 2003) and has also been per-
formed previously in Fourier-transform infrared spectroscopy 
(Ellerbrock and Kaiser, 2005).

Near-Infrared Reflectance Spectroscopy 
Models Development

Prediction models for aspen SOC and conifer SOC in the 
artificial mixtures were developed with partial least squares re-
gression (PLSR), the most widely used method in chemomet-
rics for multivariate calibration (Dunn et al., 2002; Locher et 
al., 2005; Cozzolino and Morón, 2006; Peltre et al., 2011). The 
methodology used to develop aspen SOC and conifer SOC pre-
diction models is shown in Fig. 2 and involves a calibration–vali-
dation (C-V) step, followed by an independent validation (IV) 
step. The division of the whole spectral data set (n = 415) into 
C-V and IV sets was done a priori based on a principal compo-
nents analysis (PCA) on the raw spectra, which allowed exami-
nation of qualitative differences among the sites (as in Cozzolino 
et al., 2009). This approach was taken to ensure (i) that the en-
vironmental variability of all sample locations throughout Utah 
was represented in the C-V set as well as in the IV set, and (ii) 
that the largest possible spectral variability was represented in 
the C-V set. Sites assigned to the C-V set were CM1, CM2, 
CM111, FB1, DLL Frost, and TWDEF (n = 265), while the 
IV set consisted of CM57, FB2, and DLL Bear (n = 150) (Table 
2). Screening of the C-V set showed that the concentrations of 
aspen SOC and conifer SOC were skewed, with more observa-
tions at low aspen or conifer SOC concentrations (aspen SOC 
skewness = 1.8, kurtosis = 3.4; conifer SOC skewness = 1.5, 
kurtosis = 2.0). Because few observations at higher concentra-
tion in the range will have high leverage during calibration, we 
considered two different data sets: the initial data set (n = 415) 
and a spectral subset (i.e., a truncated data set) with reference 
values between the 10th and 90th percentiles for each compo-
nent (aspen SOC and conifer SOC; n = 291), with the corre-
sponding C-V and IV sets containing 179 and 112 spectra, re-
spectively. The truncated spectral data set reduced skewness and 

was used to develop models for concentration ranges of 2.18 to 
36.82 g C kg−1 soil for aspen and 1.34 to 41.40 g C kg−1 soil for 
conifers. The Kendall rank correlation coefficient between aspen 
SOC and conifer SOC was r = −0.18 for the entire data set and 
r = −0.02 for the truncated data set used in C-V, supporting the 
assumption that both components were independent from one 
another in both data sets.

Different mathematical treatments, embedded in the 
OPUS software, were systematically applied in the C-V step for 
both the entire and the truncated data sets. These were applied to 
normalize the C-V spectra before model calibration. The math-
ematical treatments were: no spectral preprocessing, straight line 
subtraction (SLS), vector normalization (VN), first derivative 
(FD) with 13 smoothing points, FD + SLS, and FD + VN. The 
SLS treatment causes a tilt in the recorded spectrum (Tripathi 
and Mishra, 2009), while VN entails mean centering and vari-
ance scaling and removes the multiplicative interferences of 
scatter and particle size, while FD removes the background and 
increases the spectral resolution (Cen and He, 2007). The full-
range spectra within the C-V data set were divided at a 50:50 ra-
tio into spectra for calibration (n = 132) vs. validation (n = 133) 
using the PCA technique with the program QUANT embedded 
in OPUS 6.5. For the truncated data set, 70% of the spectra were 
used for calibration (n = 125) and 30% for validation (n = 54).

Models for aspen SOC and conifer SOC were calibrated 
with OM and OS separately using the optimization routine in 
the program QUANT for OPUS 6.5, which provided models 
developed in the spectral regions presented in Tables 3 and 4.

Criteria of good performance of the models at the valida-
tion stage were: highest coefficient of determination (R2), lowest 
root mean square error of prediction (RMSEP), highest ratio of 
standard deviation of reference values to standard error of pre-
diction (RPD), and low rank. The RPD classification proposed 
by Chang et al. (2001) is often used to assess the prediction abil-
ity of NIRS models for soil analysis: good models have RPD > 2, 
models with 1.4 < RPD < 2 could be improved with other cali-
bration techniques, and models with RPD < 1.4 are not reliable 
(Cozzolino and Morón, 2006). Between five and 10 best mod-
els per mathematical treatment and component were selected 
after validation. These models were then applied to the IV set 
(i.e., samples not included in model development), which was 
the final step in evaluating model performance and our ability to 
predict species-derived SOC.

Results and Discussion
At the C-V stage, the best aspen SOC model developed 

with OS for the initial data set had R2 = 62%, RMSEP = 
9.4 g C kg−1 soil, and RPDVAL = 1.6, while the best conifer 
SOC model had R2 = 54%, RMSEP = 10.8 g C kg−1 soil, and 
RPDVAL = 1.5 (Table 3). Models developed with OM for the 
initial data set performed worse than the OS models for both 
components (Table 3).

Models developed for the truncated data set with OS at the 
C-V stage yielded the best results, with R2 = 76%, RMSEP = 
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4.6 g C kg−1 soil, and RPDVAL = 2.1 for the best aspen SOC 
model and R2 = 74%, RMSEP = 5.1 g C kg−1 soil, and RPDVAL 
= 2.0 for the best conifer SOC model (Table 3). These models 
can thus be considered good for soil analysis, with an RPD above 
or near 2 (Chang et al., 2001; Cozzolino and Morón, 2006) and 
can be used to predict the concentration of both components in 
unknown soil samples from mixed aspen–conifer stands with 
similar history and physical characteristics. Contrary to our ex-
pectation, the best models for both components developed for 
the truncated data set with OM (i.e., with the mineral matrix 

subtracted) did not improve the prediction ability (R2 = 76%, 
RMSEP = 4.1 g C kg−1 soil, and RPDVAL = 2.0 for aspen SOC 
and R2 = 70%, RMSEP = 5.4 g C kg−1 soil, and RPDVAL = 1.8 
for conifer SOC; Table 3). They performed similarly to models 
developed for the truncated data set with OS at the C-V stage.

The best models developed with OS for the initial data set 
at the IV phase had R2 = 49%, RMSEP = 10.1 g C kg−1 soil, 
and RPDIV = 1.6 for aspen SOC and R2 = 33%, RMSEP = 
8.5 g C kg−1 soil, and RPDIV = 1.2 for conifer SOC (Table 4). 
The performance of OS models at IV was noticeably less than 

Table 3. Aspen  and conifer soil organic C (SOC) models developed in the calibration–validation phase with original spectra (OS) 
and organic matter spectra (OM).

Type of 
spectra

Data set Component
Concentration 

range
SDVAL†

Mathematical 
treatment‡

Range Rank R2
VAL§ RMSEPVAL¶ RPDVAL#

—— g C kg−1 soil —— cm−1 % g C kg−1 soil

OS initial aspen SOC 0–81.1 14.71 FD + SLS
7347.7–6676.5, 

4829–3992
10 62 9.4 1.6

OS truncated aspen SOC 2.18–36.82 8.40 FD + VN 5440–4246.6 8 76 4.6 2.1

OS initial conifer SOC 0–84.7 16.14 FD + VN 4601.5–3999.8 9 54 10.8 1.5

OS truncated conifer SOC 1.34–41.40 9.85 SLS 6101.8–4597.6 9 74 5.1 2.0

OM initial aspen SOC 0–81.1 14.71 NSP
8751.6–7498.1, 
6101.8–4597.6

8 55 9.9 1.5

OM truncated aspen SOC 2.18–36.82 8.40 FD + VN
7502–6800, 5450–

4246.6
8 76 4.1 2.0

OM initial conifer SOC 0–84.7 16.14 VN 5349.7–4597.6 9 43 13.1 1.3

OM truncated conifer SOC 1.34–41.40 9.85 SLS 5450–4597.6 8 70 5.4 1.8
† Standard deviation of validation set.
‡ NSP, no spectral preprocessing; SLS, straight line subtraction; FD, first derivative; VN, vector normalization.
§ Coefficient of determination at validation.
¶ Root mean square error of prediction at validation.
# Ratio of SDVAL to the standard error of prediction at validation.

Table 4. Statistics of model performance at the independent validation stage for aspen and conifer soil organic C (SOC) models 
developed in the calibration–validation stage with original spectra (OS) and organic matter spectra (OM).

Type of 
spectra

Data set Component
Concentration 

range
Mathematical 

treatment†
Range Rank SDIV‡ R2

IV§ RMSEPIV¶ SEPIV# RPDIV††

g C kg−1 soil cm−1 g C kg−1 soil %  ———mg C g−1 soil———

OS initial aspen SOC 0–81.1 SLS
6761.4–6244.6, 
5446.2– 4007.5

10 14.2 49 10.1 8.7 1.6

OS truncated aspen SOC 2.18–36.82 VN 6101.8–4597.6 9 7.9 27 6.7 6.6 1.2

OS initial conifer SOC 0–84.7 FD
5222.4–4987.2, 
4516.6– 4285.2, 
4134.8–4007.5

7 10.3 33 8.5 8.4 1.2

OS truncated conifer SOC 1.34–41.40 SLS 5349.7–4597.6 7 8.7 31 7.2 6.5 1.3

OM initial aspen SOC 0–81.1 SLS 6850.1–3999.8 8 14.2 44 10.5 10.4 1.4

OM truncated aspen SOC 2.18–36.82 FD + SLS
10001.3–7498.1, 
6101.8–5446.2, 
4601.5–4246.6

4 7.9 2 7.7 7.3 1.1

OM initial conifer SOC 0–84.7 FD + SLS
7085.4–6846.3, 
5403.7–4397

7 10.3 3 10.1 10.1 1.0

OM truncated conifer SOC 1.34–41.40 FD + SLS
7725.7–5446.2, 
4601.5–4246.6

5 8.7 9 8.3 6.9 1.3

† SLS, straight line subtraction; FD, first derivative; VN, vector normalization.
‡ Standard deviation of independent validation set.
§ Coefficient of determination at independent validation.
¶ Root mean square error of prediction at independent validation.
# Standard error of prediction at independent validation.
†† Ratio of SDIV to SEPIV.
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at C-V (Tables 3 and 4), with R2 = 49 vs. R2 = 62% for aspen 
SOC and R2 = 33 vs. R2 = 54% for conifer SOC. A RPDIV of 
1.6 indicated that the best aspen SOC model requires further 
improvement. The RPDIV of the best conifer SOC model was 
worse than at the C-V stage (RPDIV = 1.2 vs. RPDVAL = 1.5) 
(Tables 3 and 4) and should be considered as not reliable for soil 
analysis. The models developed with OM for the initial data set 
at the IV stage were all classified as unreliable for soil analysis, es-
pecially for conifer SOC (R2 = 3%, RMSEP = 10.1 g C kg−1 soil, 
and RPDIV = 1.0) (Table 4). Furthermore, we observed a higher 
deviation of predicted vs. measured values from the ideal 1:1 line 
in the OM models for both aspen and conifer components (Fig. 
3a vs. 3c and 4a vs. 4c, respectively), indicating less accuracy of 
predictions of OM models than the OS models. Moreover, pre-
dictions of these four models tended to underestimate the aspen 
SOC and conifer SOC in the higher range of concentrations. 
This may be due to the smaller sample size in the higher concen-
tration range.

For the best aspen SOC and conifer SOC models based 
on the truncated data set, OS and OM models showed a lack of 
prediction ability at the IV stage, as the RPD for these models 
were all £1.6 (Table 4). The best OS model for aspen SOC on 
the truncated data set at the IV stage had an R2 = 27%, RMSEP 
= 6.7 g C kg−1 soil, and RPDIV = 1.2 and the best OS model 
for conifer SOC had an R2 = 31%, RMSEP = 7.2 g C kg−1 soil, 
and RPDIV = 1.3 (Table 4). The best OM models developed 
on the truncated data set at the IV stage had significantly low-
er R2 values (R2 = 2% for aspen SOC and R2 = 9% for conifer 
SOC) than OS models but similar RPD and RMSEP (Table 4). 
Furthermore, the best OM models underestimated the concen-
trations of aspen SOC and conifer SOC at the higher end of the 
concentration ranges and overestimated the aspen SOC and co-
nifer SOC at the lower end of the ranges (Fig. 3d and 4d).

Of all the models developed in this study, the models de-
veloped with the truncated data set and OS offered the best re-
sults at the C-V stage. This may be due to a more homogeneous 

Fig. 3. Predicted vs. measured values of aspen soil organic C (SOC) for the independent validation set and the truncated data set, comprised of the 
10th to the 90th percentiles of original reference values. The dashed line is the regression line; the solid line is the 1:1 line.
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distribution of samples across the concentration range for which 
the calibrations were developed. A compact data set improved 
the fitting of the models in comparison to model calibration for 
the initial data set, which was affected by observations at the ex-
tremes of the concentration range (<2.18 g C kg−1 soil for aspen 
and <1.34 g C kg−1 soil for conifer; >36.82 g C kg−1 soil for 
aspen and >41.40 g C kg−1 soil for conifer). From a practical 
standpoint, our results indicate that the time-consuming organic 
matter removal from the soil samples before spectra acquisition 
is not necessary because it did not improve the prediction ability 
of our models.

For both components and spectral types, model perfor-
mance decreased between the C-V and the IV stages, suggesting 
that factors other than SOC concentration and species of origin 
interfered with our analysis. Gruselle and Bauhus (2010) devel-
oped models to predict the contribution of beech and spruce in 
the forest floor, using material in various stages of decomposi-
tion and from different sites across the Black Forest (Germany). 
They were able to achieve a high degree of accuracy for both spe-

cies at the IV stage (R2 of 91% for beech and 90% for spruce). 
Compared with prediction models for the forest floor, our OS 
models for the soil at the IV stage showed R2 between 33 and 
49%. We considered that differences in the composition of de-
tritus inputs and microbial communities, as well as variability in 
biotic and abiotic characteristics within and among our aspen 
and conifer ecosystems could have contributed to this lower 
model performance.

Sources of organic matter in the mineral soil consist of litter-
fall, dead roots, and rhizodeposits from trees and understory veg-
etation and their decomposition products. They all potentially 
influence soil NIR spectra through differences in organic matter 
chemistry, amount, and allocation within the soil profile. Lower 
R2 for SOC models than forest floor models most likely reflects 
the greater complexity emerging from interaction between soils 
and organic matter, as well as the presence of the mineral ma-
trix with its own spectral signal (Viscarra Rossel and Webster, 
2011). Also, we had greater success with aspen SOC models than 
with conifer SOC models. Nevertheless, differentiation of aspen 

Fig. 4. Predicted vs. measured values of conifer soil organic C (SOC) for the independent validation set and the truncated data set, comprised of 
the 10th to the 90th percentiles of original reference values. The dashed line is the regression line; the solid line is the 1:1 line.
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SOC vs. conifer SOC was possible due to initial differences in 
the amount and composition of litter, root, and understory in-
puts. Studies conducted in boreal forests have found that aspen 
and conifer species retain distinct chemical characteristics in the 
foliar litter after 6 yr of decomposition (Strukelj et al., 2012) and 
exhibited differences in fine root net primary productivity, root 
decomposition rates, and their relative contribution to total de-
tritus input (Finér et al., 1997; Steele et al., 1997). Furthermore, 
the sensitivity of NIRS may explain the lower performance of co-
nifer models than aspen models because the conifer soil samples 
were derived from stands representing multiple conifer species. 
Indeed, because NIRS is able to discriminate pine needles from 
different species (Espinoza et al., 2012), it is possible that hav-
ing multiple conifer species increased the SOC chemical (and 
spectral) heterogeneity within the conifer component, thereby 
confounding the calibration of the conifer SOC model across all 
Utah sites.

We observed a relative clustering of spectra by site, as well 
as high spread among the spectra of pure aspen soils in the scores 
plot (data not shown), which can be attributed to two proper-
ties of aspen. First, aspen is a species of high ecological plasticity, 
and in the interior western United States alone, 35 plant commu-
nity types have been described for pure aspen (Mueggler, 1988). 
Understory biomass and diversity is significantly higher under 
aspen stands than under adjacent conifer stands, possibly due to 
more favorable conditions of soil moisture, nutrients, and light 
in aspen stands (Mueggler, 1988; Stam et al., 2008). Hence, as-
pen soil NIR spectra are expected to be affected by the understo-
ry to a greater extent than conifer spectra. Second, it is plausible 
that aspen genetic diversity also contributed to greater spectral 
variability. Sexual reproduction in aspen is frequent in western 
U.S. landscapes (Mock et al., 2008; Long and Mock, 2012). Even 
within a single stand, clone diversity can be high (Hipkins and 
Kitzmiller, 2004; Mock et al., 2008; De Woody et al., 2009). The 
aspen genotype influences root growth (Fischer et al., 2006), fo-
liar and litter chemistry, soil C and N concentrations, microbial 
enzymatic activity (Madritch et al., 2009), and microbial com-
munity structure (Madritch and Lindroth, 2011), all of which 
may be reflected in soil spectral properties.

Differences in microbial community structure, composi-
tion, and activity between aspen and conifer stands and among 
conifer species may also have contributed to the differentiation 
of SOC between aspen and conifer soils with NIRS. While we 
have no direct measurements on microbial community composi-
tions for our sampling sites, soil fauna and microbial community 
structure have been shown to differ among aspen and conifer for-
ests in boreal (Laganière et al., 2009; Royer-Tardif et al., 2010) 
and temperate semiarid environments (Ayres et al., 2009). Thus, 
if microbial communities associated with different species pro-
duce distinct assemblages of organic compounds, their legacy on 
SOC chemistry could be identifiable through NIRS.

Our initial assumption of an additive relationship among 
OS, OM, and MM (i.e., OS = OM + MM) was not supported. 
Clustering of spectra by site (data not shown) further suggested 

that, apart from biotic factors, site-specific soil characteristics ex-
erted some influence on NIR spectral properties as well. Indeed, 
NIR spectra can reflect the influence of soil type (Bartholomeus 
et al., 2008; Viscarra Rossel and Webster, 2011), soil texture 
(Van Waes et al., 2005), mineralogy (Vendrame et al., 2012), and 
soil development (Knadel et al., 2013). This presence of a latent 
site imprint on our spectra, including those controlled for MM, 
may also suggest selective or differential preservation of certain 
organic compounds, causing an indirect influence of the mineral 
matrix on SOC composition (e.g., Kaiser and Guggenberger, 
2000). This is consistent with Schmidt et al. (2011), who pro-
posed that SOC persistence is an ecosystem property that emerg-
es from the interaction between the biological and physicochem-
ical features of a given site. Woldeselassie et al. (2012) found that 
aspen soils had a greater fraction of mineral-associated SOC 
than conifer soils and suggested leaching and adsorption of lit-
ter decomposition products to the mineral matrix as the main 
pathways. Our soils consisted mostly of loams, but there were 
slight differences in texture among the sites, which ranged from 
sandy loams to silty clay loams (Table 2). Uneven representation 
of textural classes in the C-V and IV sets (Table 2) may thus have 
contributed to the lower performance of the models at the IV 
stage. Although we do not have mineralogy data for our study 
areas, differences in this aspect may have further contributed to 
the lower accuracy we achieved in our SOC models compared 
with forest floor models.

Conclusions
The ecology of aspen and conifer forests in the interior 

western United States is closely linked to the disturbance regime, 
which has been intensely modified through land use changes 
since European settlement. Thus, the spectral properties of as-
pen and conifer soils do not solely reflect the influence of cur-
rent overstory and understory diversity, soil microbial commu-
nity, and soil texture and mineralogy but also carry with them 
the legacy of past land use. The complex interactions among site 
environmental conditions, forest dynamics, and historical land 
use all contribute to NIR spectral heterogeneity of soil samples, 
requiring a sufficiently populated spectral library to develop ro-
bust models that could be applied across montane forests in the 
western United States.

The good model performance (R2 ? 70%) of SOC models 
at C-V indicates that the contribution of vegetation to SOC can 
be predicted using the artificial mixtures method. However, to 
develop more powerful models at the IV stage (i.e., models with 
RPD > 2), further work with NIRS models applied to aspen and 
conifer forests should consider (i) application of other chemo-
metrics methods besides PLSR to OS, (ii) a more systematic test-
ing of SOC spectra across a geographically broad aspen–conifer 
soils database, and (iii) stratification of the spectra data sets 
based on prior land use history and soil physical characteristics. 
Acquiring detailed information on historical vegetation cover 
for stratification purposes is specially challenging in regions with 
relatively recent land use records, such as Utah. These ecosys-
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tems may experience further change in vegetation cover during 
the next decades due to land management and climate change 
that may alter SOC dynamics. Near-infrared reflectance spec-
troscopy may thus prove to be a useful tool in large-scale SOC 
accounting or the prediction of future SOC stock trajectories in 
these montane forests.
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