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Further toward a neoclassical theory of sustainable consumption: The 

Eco-Economy 

Harry D. Saunders1,2 

Abstract 

While not known as a factual matter, it is easy to speculate that somewhere in the universe, and quite 

likely in our own galaxy, there exists a planetary civilization that has achieved indefinite sustainability. 

By giving ourselves intellectual leave to contemplate this picture, we can more cleanly consider key 

questions:  How does its planetary eco-economy function, and how do its human economy and natural 

economy components work together?  Can this eco-economy function if its human component is a free-

market, private ownership economy, or is that impossible? 

A neoclassical framework that formally and rigorously encompasses both the human economy and the 

natural economy provides some answers. 

First, economic growth is not a necessary condition for functioning of a free-market, private ownership 

economy.  Further, it can in principle deliver a sustainable eco-economy that displays the following: 

indefinite sustainability of the planet’s natural capital; ongoing household satisfaction from 

consumption, leisure time, retirement savings, and directly from natural capital itself; persistent income 

equity between labor and capital; poverty elimination; and long-term intergenerational equity.   

Provided, that is – and this is shown to be a crucial proviso – the human economy can honor certain 

fundamental biophysical limits imposed by its planet’s natural economy. 

 

Keywords: Sustainable consumption; neoclassical theory; eco-economy; ecological economics; natural 

capital; zero growth; collapse 

1. Introduction 

The motivation for this article is to ask if a truly sustainable civilization on a spherical planet can have a 

human economy resembling our present one – in particular, whether its eco-economy can function 

indefinitely if embodying a human economy that is a free-market, private ownership-type economy.  Is 

the capitalist paradigm embedded in neoclassical economics even consistent with a sustainable 

civilization? In particular, is it sustainable when dependence of the human economy on the natural 

economy (which clearly must be in operation and functioning) is explicitly considered?  

                                                           
1 Corresponding author. 
2 Managing Director, Decision Processes Incorporated; Senior Fellow, The Breakthrough Institute; Advisor, 
Carnegie Energy Innovation, Carnegie Institution for Science, Department of Global Ecology, Stanford, CA. 



Page | 2 
 

A technical ancillary fortuitously arises from exploring this question.  A framework is required that may 

help advance a theoretical unification of ecological economics with neoclassical economics.  It is argued 

that a unification embodying both is needed to imagine what a sustainable eco-economy can look like, 

including on our own planet earth. 

Ecological economists insist that sustainability requires an eco-economy to be sustainable on a physical 

throughput basis. As Herman Daly describes the steady-state sustainability requirement, “…the entropic 

physical flow from nature’s sources through the economy and back to nature’s sinks, is to be non-

declining.” (Daly, 2007).  

In contrast, neoclassical economists typically exclude the natural capital side of this dynamic, or include 

it only weakly, or indirectly, or incompletely.  Yet neoclassical economics can provide a good physical 

picture of the human side of the full eco-economy – that portion complementary to natural capital in 

the physical flow cycle Daly describes.   The working dynamics of the human economy piece of the cycle 

are fairly well understood in neoclassical terms.  Here the natural economy is included. 

The theoretical development of what follows is quite mathematical, and its rough description is best 

first communicated via a visual description of its logical foundation (full mathematics in the Appendices).  

This visual description steals heavily from the “doughnut economy” visualization provided by Hayworth 

(2017). 

The theoretical framework is deeply grounded in the work of neoclassicists Robert Solow (Solow, 1956, 

1988), Kenneth Arrow and Gerard Debreu (Arrow and Debreu, 1954), Franco Modigliani and Richard 

Brumberg (Modigliani and Brumberg, 1954), Edmund Phelps (Phelps, 1961, 1965) Ronald Shephard 

(Shephard 1953, 1970), Friedrich Hayek (Hayek, 1945, 1960), and Joseph Schumpeter (Schumpeter, 

1947a,b).  And it is likewise heavily grounded in the foundational ecological economics work of Nicholas 

Georgescu-Roegen (Georgescu-Roegen, 1971), Herman Daly (Daly, 1973, 1978, 1980, 1996, 1997, 2000, 

2005, 2007, 2008), Robert Costanza (Costanza, 1980, 1984/1987, 2008), and Robert Ayres (Ayres, 1997, 

2005, 2009) and their colleagues. 

In fact it easily could be said that the framework presented here is little more than a routine assembly 

job of all these great thinker’s ideas, methods and mathematics.   

[Author Aside: The present article is the outgrowth of an earlier article in these pages (Saunders, 2014), 

with extensions made possible by two gratefully-received suggestions from Herman Daly to include the 

role of natural capital in directly producing human satisfaction, and to incorporate extensions that cast 

the human productive economy in a form consistent with the production structure developed by Nicolas 

Georgescu-Roegen (1971.)] 

To correctly include the natural economy means honoring Herman Daly’s Three Rules: 

1. Sustainable use of renewable resources means that the pace should not be faster than the rate 

at which they regenerate. 
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2. Sustainable use of non-renewable resources means that the pace should not be faster than the 

rate at which their renewable substitutes can be put in place. 

3. Sustainable rate of emission for pollution and wastes means that it should not be faster than the 

pace at which natural systems can absorb them, recycle them, or render them harmless. 

The dynamic elements we see here are resource use, regeneration, waste infliction, and natural capital 

absorption capacity. These elements are included in the neoclassical framework described here. 

The resulting theoretical framework purports to be complete, formal, closed, and rigorous.  But the 

generality it embodies obscures its functional workings.  To help remedy this, the framework is then 

instantiated in a series of interlocking functional forms that are standard yet specific choices used by 

neoclassicists and ecological economists.  These forms are not entirely arbitrary: they honor 

commonsense conditions these practitioners favor and have a long and pedigreed history in economics.  

The instantiation takes the form of an “emulation” model (distinct from a predictive, or simulation 

model).  This model is designed for exploration of how these standard functional forms interact with 

each other under different conditions – purely and parsimoniously interact, without obfuscation 

introduced by arbitrarily added or hidden mechanisms or modeling “tricks.”  The model is freely 

available and posted alongside this article. 

With this construct in hand, the emulation model allows a rich exploration of some basic ecological 

economics questions. 

The picture revealed is one of promise.  According to this framework, indefinite sustainability is possible 

under a broad set of conditions, provided population stabilizes and markets function well.  As with the 

previous paper’s model, we see with this model that it reveals forces pushing toward intergenerational 

equity, equity between of capital owners and the workers providing labor, and forces pushing to 

eliminate poverty.  Augmenting this, technology improvements in a steady-state zero-growth economy 

work to increase the amount of leisure time households can enjoy but without surrendering their pre-

technology (e.g., automation) levels of income, consumption and saving.  At the very same time, the 

productive human economy reduces its draw on natural capital, meaning the natural economy can 

expand as humans retreat and allow it to better heal itself from past assaults. 

However, this happy picture comes only within binding limits on how high the consumption can be, and 

how high the population can be for a given level of individual consumption, without causing catastrophic 

collapse of the natural and human economy (the eco-economy). 

Disclaimer: Knowledgeable readers will recognize strong similarities between the emulation model and 

the Integrated Assessment Models (IAMs) following in the famous DICE/RICE-tradition of modeling 

(Nordhaus, 1977a,b, 1992a,b, 2008, 2010, 2012), having many of the same features, components and 

interactive elements.  These IAMs are more detailed and richer across several dimensions, including 

more explicit links between energy use and climate, for instance.  But their purpose is different (though 

certain elements of the present framework may point to useful modifications of existing IAMs).  
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2. Methods - Formal Framework 

The framework is mathematical and may therefore be unnecessarily obscure for certain readers.  

Honoring the principles of neoclassical economics in the human economy, especially, involves a 

mathematical rigor that is elegant, but demanding. 

So it is useful to begin with a pictoral description of the framework, which then can inform evaluation of 

the mathematical description for those with the inclination.  The following sub-Section 2.1 does this.  

Those not so inclined can thereafter simply skip the mathematics of Section 2.2 and proceed directly to 

the Results Sections 4 and 5 where the device of positing different hypothetical planetary civilizations is 

used to explore eco-economy sustainability drivers quantitatively.  Mathematical masochists should 

read Section 2.2 and proceed for further detail to Appendices A and E.  

2.1 The Framework in Pictures 

It is easiest to describe the framework by appeal to a picture very much like the picture put forward by 

Raworth (Raworth, 2017)3.  We begin by imagining a world without a human economy or civilization, but 

one in which there is a functioning natural economy.  Such a world might look like this (Figure 1): 

 

Figure 1: An Eco-economy without a human economy 

What we see here is a world with a geo/bio/atmosphere, but no human activity.  The natural economy 

(green) has evolved to fill its natural capital capacity – a capacity determined by its luck of the draw in 

the cosmological lottery: its size and surface area; distance from its host star; volume of liquid water, 

                                                           
3 I hereby plainly acknowledge that Kate Raworth and her associates may view this arguably larcenous conscription 
of her conceptual framework as a poor, presumptuous, possibly deceptive, and dangerously misleading 
bastardization of the central thesis she offers.  Nonetheless, I offer my sincere gratitude for the digestible and 
powerful imagery she has provided the field. 

A Planet with no civilization

Geo/Bio/Atmo-
sphere
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Natural Capital Capacity
= f(multiple geophysical/
astronomical/astrophysical/cosmological 
conditions)
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Ncritical

(natural capital needed
to avoid catastrophic collapse)
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available chemical elements, etc.  In defiance of astronomical reality, the star in this world’s solar system 

is showing at the center of the image.   

The star is placed at the center to depict the fact that that the local star is the all-provider of the natural 

economy’s health and functioning.   All energy for biophysical growth and replenishment comes from 

this star.  On earth we see all energy for human use likewise sourced, be it fossil fuels (decayed bio-

organisms that long ago captured energy via photosynthesis), hydro power, wind power, solar power, 

biofuels or tidal power.  The only exceptions to this direct provision are geothermal and nuclear power, 

but these came from long-ago stellar processes fueling supernovas and possibly neutron star mergers or 

other cosmic cataclysms that made other stars the ancestors of our own sun and solar system.  Likewise, 

the geosphere itself and all its minerals is the progeny of long ago stars that gave birth to our solar 

system.  It is little wonder the ancients worshipped the sun, even if they knew nothing about her 

functioning or her ancient forebears. 

Also showing is a lower limit to the natural capital supply, below which it cannot function and will 

collapse (perhaps a limit that could be tested by a future civilization that reduces, by its too-great 

activity, the natural capital supply).  We can think of the “doughnut” between this critical level and the 

natural capital capacity level as the “safe zone” (to again steal a phrase from Raworth, 2017) within 

which natural capital supply must perpetually reside for healthy functioning of the natural economy. 

Next we introduce a human-like civilization.  The civilization supports itself by drawing on resources 

provided by natural capital.  It also inflicts waste on the biosphere.  The natural economy can respond, 

to some degree, by replenishing resources (think food, timber, biomaterials) and by absorbing waste 

(think natural filtering, the carbon cycle, and conversion of biological materials to fertilizing agents via 

decay). The picture is then this (Figure 2):  

 

Figure 2: An Eco-economy with a human economy 

There will be occasion to explore the conditions under which such interaction is sustainable in a later 

section, but we can see here the dynamic described by Daly as “…The limits to growth, in today’s usage, 

A Planet with a civilization

The Eco-Economy

Resource 
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Replenishment

Waste

Absorption
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refers to the limits of the ecosystem to absorb wastes and replenish raw materials in order to sustain 

the economy” (Daly, 2007).   

This is where the Georgescu-Roegen production theory comes into play on the human economy side, 

and consistency requires its inclusion in the framework (see Appendix F).  Note that the resource draws 

from natural capital are technically complementary to physical capital in the human economy rather 

than being substitutes for each other – both are needed to make the system work.4  In the words of 

Daly, “… manmade and natural capital are complements, not substitutes (except over a very small 

margin). When factors are complements then the one in short supply is limiting.” (Daly, 2007).  This 

physical way of looking at things is also embodied concretely in the “embedded energy” concept 

introduced by Costanza (Costanza, 1980), and the thermodynamic “exergy” formulation put forward by 

Ayres (Ayres, 1977) and Ayres and Warr (Ayres and Warr, 2005, 2009).   

Now we turn to the nature of the human economy itself. The human economy comprises two 

components: the activity of households and the activity of producers that supply them goods and 

services (Figure 3): 

 

Figure 3: The human economy 

Here we see several interactions.  First, households supply producers labor at the expense of leisure 

time.  They also supply producers with new capital via their savings (foregone consumption of goods and 

services that can be directed to the creation of new or replenishment physical capital).  Producers use 

these inputs from households (along with the resources extracted from the natural economy as in Figure 

2) to produce the goods and services consumed by households.  Households buy these from proceeds 

extracted from producers in the form of wages and investment returns, which set the household 

budgets.   

Note also that households are depicted as receiving benefits directly from the natural economy (think 

clean water and air, biodiversity, favorable climate conditions, majestic grandeur, esthetic gratification, 

                                                           
4 The framework developed here allows for a certain degree of substitutability between the two, but they are 
fundamentally complements. 
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etc.)5.  The case for this direct benefit is beautifully articulated by Emma Marris (Marris, 2017) who 

argues that households receive “intrinsic benefits” from the natural economy: “…nature is valuable 

because people value it for what it is, independently of any concrete economic or practical value it 

provides.”  Of course, the latter “practical” benefits (sometimes called “natural capital services”), must 

be and are comprehended in this framework as well, as illustrated in Figure 2.  Benefits to households 

are twofold: those related to the intrinsic value delivered them by the natural economy; and benefits 

that flow indirectly through the productive economy (resource draw for producers to create goods and 

services for households; replenishment and waste absorption services provided for the same end).  Both 

functions of natural capital need to be comprehended in any general framework of the eco-economy.  

A complete picture would take account of goods and services provided collectively by households for 

social benefit. (While not included in the framework presented here, such an extension would be 

relatively straightforward.) Social enterprises require physical quantities of goods and services from 

households: 

 

Figure 4: The social economy 

Here we see that households surrender claims on goods and services for the collective benefit of the 

whole. This is done either via taxes collected by governments for social services or via pure altruism, 

both of which deliver social benefits to households (and arguably, satisfaction to the households 

providing them). 

With these images in mind, the mathematical development following should appear more intuitive.  [But 

a humbly-offered reminder: The time-constrained reader (who isn’t?) may be best served by first skipping 

to the Results sections (Sections 4 and 5) to see what is being claimed there, returning to the following 

sections if these claims seem to make little sense or suggest hidden faults.] 

 

 

                                                           
5 Again, my thanks to Herman Daly for suggesting this feature. 
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2.2 The Framework in Mathematics 

For those readers of a neoclassical mathematics bent, a complete description of the theoretical 

framework mathematics is given in Appendix A.  But even so, rough verbal description of its main 

elements in terms of the above picture is perhaps a useful guide to those mathematics for those wishing 

to go one step deeper.   

Everything is locked together in the (simplest possible?) neoclassical framework.  All the quantity flows 

are endogenously determined, and consistent with neoclassical theory, including general equilibrium 

theory.  

It is important to recognize that it is, first and foremost, a model of physical quantities.  Importantly, 

too, this formulation escapes the obfuscation laid upon the physical mechanisms by financial markets.  

The existence of money in the economy, with various multiplier effects introduced by banking long with 

government monetary policy, obscures what is going on in physical reality.   Investment in physical 

capital can only be so much in an economy, and household savings (forgone physical consumption) 

drives that.  Financial markets cannot override the physical constraints imposed by the real physical 

economy, which is what is pictured here.6  Keeping things in physical terms (while honoring pricing 

mechanisms) allows a better picture of the human economy/natural economy interaction, which is at 

bottom a quantitative interaction.   

Human Economy 

It is best to begin with the human economy in Figure 3, and think of it as being a single-period picture 

for the time being.  Technically in this framework, households and producers are each aggregated.  This 

means one can think of the household component here treated either as a single, representative 

household or as an aggregate of all households.  Similarly, producers (arguably harder to envision as a 

single, representative producer) should be thought of as some global aggregate.7   

Households maximize their satisfaction, subject to their budget constraint, by choosing among: 

consumption of goods and services C ; savings for retirement S ; leisure time not surrendered to the 

workforce l L L   (where L is the amount of labor-hours surrendered to the workforce and L is the 

total hours available to the household); and direct enjoyment of the natural capital available N (Marris, 

2017).  This tradeoff is embodied in a utility function: 

  , , ,u u C S l N   (1) 

Savings S is the amount set aside for investment by households to be used for new physical capital; it 

can be thought of in quantitative terms as goods and services production, to which they have 

contributed labor and capital, but instead of being consumed by households that period are instead 

                                                           
6 Further detail is given in Appendix D: Financial Markets Mechanics and Zero-growth Dynamics in a Physical 
Economy. 
7 This is a technical limitation of the framework as clearly both households and producers are not so simply 
aggregated, a result well known in neoclassical economics.  See Section 6, Discussion - Cautions and Limitations. 
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used to create new capital goods used to replenish and build the productive physical economy.  (More 

detail on why this production dynamic matches desired household savings behavior for retirement 

funding is given in Appendix C.)   

The inclusion of leisure time, as the complement to labor supplied, and the direct household utility for 

natural capital are not much of an extension of common formulations, analytically.  The direct inclusion 

in the household utility function of natural capital was suggested by Herman Daly.8  Chan and Gillingham 

(Chan and Gillingham, 2015) have done a similar thing by broadening the utility function to a social 

utility function comprehending the dis-benefits from damages due to externalities. 

On the other side, the productive part of the economy takes labor and capital from households and uses 

these to create goods and services.  In neoclassical terms, this is represented as a production function – 

a function that, in keeping with the physical underpinnings of economic activity put forward by Daly and 

colleagues, takes physical input quantities and converts them into physical goods and services.  The 

production function is a physical representation of this process.  In simplified form, the production 

function is 

  ,Y f K L   (2) 

The physical production of goods and services in the overall economy is related to the total quantity of 

labor used, and the total supply of physical capital (plant, equipment, structures) employed to deliver it.  

To incorporate the physical role of natural capital supply and linkages, we can extend (2) slightly to 

account for the fact that some of the capital available and some associated labor will be directed to the 

extraction of natural resources while the rest will use these resources plus its own physical capital and 

labor to produce final goods and services: 

    , , ,X X R RY f X K L R K L      (3) 

This human economy can be thought of as comprising two sectors, R  is the resource extraction sector, 

and X is the rest of the productive economy, each using capital and labor supplied them.  Together, via 

the overall function f , they deliver final goods and services (including capital goods). The physical 

output is physically attached to the physical inputs. Much further detail is provided in Appendices A and 

E.9 

However, to enclose the picture and have it be internally consistent, neoclassical theory requires that 

costs and prices be comprehended as well as physical quantities, or the system will not function 

correctly.  

Fortunately economists in the personages of Ronald Shephard (Shephard, 1953,1970) and Erwin Diewert 

(Diewert, 1974) have helped us out there.  A beautiful theory called duality theory automatically locks 

                                                           
8 For which I am again extremely grateful. 
9 Appendix E: Functional Forms and Derivations for the Emulation Model, shows how this production function can 
be generalized to include technology gains. 
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prices and quantities together so we can know the system is correctly functioning in profit-maximizing 

mode, the effects of prices and quantities on each other are properly stated, and all markets clear at the 

calculated prices.  In this framework, duality enables us to endogenize prices – wages, capital returns, 

and the price of output – in the process allowing the household budget constraint to be endogenously 

determined as well.  This complicates the mathematics, but the power it delivers is worth the extra 

analytic effort. 

This theory states that every production function must have a corresponding dual form that delivers the 

unit cost of production and embodies the prices of the quantity factor inputs to production. For 

consistency, both functions must work together.  So associated with the production function quantity Y

is a unit cost function of the form:  

    ,K Lc Y c p p D   (4) 

Where D  is the so-called dual operator on Y , and Kp  and Lp  are the unit prices of capital (otherwise 

denoted as the rate of return on capital r ) and  the unit price of labor (otherwise denoted as the wage 

rate w ).10    

With duality functioning and households being owners of the means of production (via their savings), 

the general equilibrium principles put forward by Kenneth Arrow and Gerard Debreu (Arrow and 

Debreu, 1954) will hold.  By honoring these principles, the framework becomes a so-called Arrow-

Debreu private ownership, free market economy, one where markets clear at the calculated prices, 

virtually the definition of general equilibrium.  The system is thereby closed and complete (in classically-

stated terms for the human economy side – the natural economy has yet to be included here, but will be 

below).  The emulation model instantiation of this framework validates that this is what happens in an 

economy like this. So this is how the cycle from households to producers to goods and services supplied 

back to households showing in Figure 3 works. 

Importantly, in this picture households drive the show.  The choices made by households determine 

everything the productive economy does – the labor and capital investment deployed, and the amounts 

of each in service; the amount of consumption goods and services called for from the productive 

economy.  The productive side in turn constrains the overall levels of household consumption and 

savings by way of the budget delivered the household from wages earned and investment returns.  The 

consumption/savings tradeoff dynamic is found to emulate the predictions of Modigliani (Modigliani 

and Brumberg, 1954) who discovered the dynamic.11   As with the general equilibrium validation, 

consumption behaviors predicted by Modigliani are borne out by the emulation model, and households 

run the show.  

                                                           
10 Appendix E: Functional Forms and Derivations for the Emulation Model shows how this cost function can be 
generalized to include production-side technology gains. 
11 See Appendix C.  How can capital formation occur in a zero-growth economy where net capital returns are zero? 
[And a CORRIGENDUM] 
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Household choices also determine the level of wealth generated by the productive economy. By 

choosing to supply less labor for instance, households would lower their ability to consume, as the 

household budget would now have less in the way of wage income.  Producers would respond to the 

consumption reduction by producing fewer goods and services to match demand, and would anyway 

have fewer labor hours to produce them. A similar story applies to household reductions in savings and 

resulting investment income.  As another example, if households place a higher value on natural capital, 

this would change their choices among consumption, savings, and leisure time and the output produced 

by the productive economy. The framework accommodates these features of household behavior and 

all such interactions that result.  

As for time dynamics, the work of Solow and the neoclassical growth economists is here slightly 

modified to account for the framework being able to generate savings endogenously.  But it turns out 

this generates behaviors identical to the ones familiar to neoclassical growth economists.  

Reassuringly, Edmund Phelps’ “Golden Rule” behavior (Phelps, 1961, 1965), found to operate in the 

simpler framework described in a previous paper (Saunders, 2014), continues to hold even when the 

natural economy is included in the picture, which we turn to doing next. 

Appendix B gives a verbal description at a slightly deeper level of formal reasoning of why this all works. 

Natural Economy 

For the natural economy part of the framework, the linkages showing in Figure 3 are those Georgescu-

Roegen (1971) showed to be missing in standard neoclassical theory – in particular how the resource 

draw and waste interactions between the human/natural economy should be considered in manmade 

capital production function terms, and the proper accounting distinctions betwen stocks (Georgescu-

Roegen calls them “funds”) and flows.  Appendix F lays out a detailed picture of how the framework 

relies mathematically on these Georgescu-Roegen concepts. This sets up the interactions coming from 

the human economy side (resource draw, waste production). 

On the natural economy side, it turns out neoclassical economics methods can be usefully applied.12  

The natural economy can be considered a “producer” in the classical sense.  And it happens duality 

principles likewise can be applied.  The natural capital production function is simple in principle and has 

the advantage of being theoretically correct by virtue of the fact it is a physical identity (leaving to the 

side for the moment that its elements can experience complex dynamics).  The identity is this: 

    1t t t t t tN N R A W    ¡    (5) 

This identity states that the current supply of natural capital tN  is what it was last period plus changes 

coming from two eco-economy dynamics:  first, it is augmented by the difference between its natural 

replenishment capacity (biospheric reproduction and growth) and resources drawn from it – t¡ and tR , 

                                                           
12 Much more detail is provided in the mathematical expositions in Appendix A and Appendix E. 
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respectively; second, it is diminished by waste inflicted on it by the human economy, moderated by 

natural capital’s ability to absorb it – tW  and tA , respectively (with restrictions requiring absorption to 

be no greater than waste inflicted, and absorption capacity itself to be limited by the prevailing natural 

capital level). 

In the absence of a civilization, a planet’s natural capital supply will be determined by a variety of factors 

including luck of the draw in astrophysical terms (mineral composition, water supply, size, distance from 

the host star, etc.), the geological evolution of the planet, the evolution and constitution of its 

atmosphere, and the degree to which it can evolve and sustain living organisms.  It will change over 

time, but at any one time natural capital supply is relatively fixed.  When a civilization is introduced, that 

civilization will extract mineral and biological resources and generate waste.  Thus we see in identity (5) 

the terms tR  and tW  as negative detractors from natural capital supply operating in each time period t .  

The time dynamic is simple: natural capital supply at time t  is its supply in the previous period, plus all 

the current changes arising from the human economy-natural economy interactions.  

This production function (5) has a dual unit cost function.  It turns out to be a very simple one, where 

the unit cost is uniform and fixed across the entire domain of all production function components.  

Furthermore, the elements t¡ tR , tA  and tW  carry identical dual prices across the domain and deliver 

a unit cost function value that is unity everywhere.13 If we call this value Nc , we have 1Nc 

everywhere. Technically, it would be tempting to use this fixed value as the mechanism to “charge” the 

human economy for each unit of natural capital services. 

But for the natural economy, there is need to account for the problem of scarcity.  First, there is the 

limited nature of non-renewable resources.  But even renewable resources can become too heavily 

exploited if replenishment is not sufficient to offset resource draw and/or waste absorption is 

insufficient to offset waste inflicted.  Either way, if the supply of natural capital falls too low, nature 

becomes stingier in supplying needed resource services to the productive economy.  The unit cost 

extracted from the natural capital production function above represents a price “charged” to the human 

economy that is therefore too low.  Another neoclassical economist bails us out here.  We can 

characterize this behavior by appeal to the signature work of David Ricardo (Ricardo, 1817) who 

formulated the neoclassical theory we know today as “Ricardian rent,” or “scarcity rent.”  While Ricardo 

applied this concept to land and land ownership (land itself clearly being a defining component of 

natural capital), it is easily extended to natural capital as a whole. 

In terms of a general framework, this relationship describing what the natural economy “charges” the 

human economy for its services is as follows: 

  N Np c g N    (6) 

                                                           
13 Further detail in Appendix A. 
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where the function g  (“Ricardian rent component”) increases in value as N  declines: when the 

prevailing supply of natural capital is large (considered relative to its critical level criticalN ), the “rent” 

charged by natural capital is low; when the supply is low, the rent is high.   

While this is a highly general formulation, its nature can be intuitively illustrated by appealing to the 

particular functional form employed by the emulation model presented later: 

 

Figure 5: The “push back” from the Natural Economy 

In the image of Figure 5, natural capital “charges” the productive economy a “price,” showing as Np . If 

the supply of natural capital has been reduced by resource needs or waste disposal to levels 

approaching some critical level ( criticalN ), the natural economy approaches catastrophic collapse and 

charges an asymptotically-increasing price.  In this way, the natural economy “pushes back” (toward the 

right) against over-exploitation (pushing to the left).  

In a general framework, the component drivers of natural capital dynamics showing in (5) will need to 

be specified as well.  Consider these one at a time: 

Resource draw in each period, tR , is easily derived from (3) when profit-maximizing conditions are 

applied. Likewise, waste inflicted in each period, tW , is clearly related to resource draw (and can be no 

greater than this), so in general terms: 

  t tW W R   (7) 

Natural replenishment of natural capital in each period, t¡ , is clearly related to the quantity of natural 

capital in place (e.g., biological organisms boasting more progenitors can generate more progeny): 

  t tN¡ ¡   (8) 

Natural capital absorptive capacity is likewise dependent on the prevailing supply of natural capital to 

absorb waste (e.g., CO2 absorption by the biosphere via the carbon cycle, recycling of animal waste, 

Human Economy
demands

Natural Economy
Supply
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biodegradability of human economy materials disposed, dilution/natural processing of pollution to non-

biotoxic levels, etc.).  So this relationship becomes, generally stated: 

  t tA A N   (9) 

Notwithstanding this simple-appearing set of relationships, they may mask critical underlying dynamics 

in the evolution of the eco-economy.  The connection between waste and absorption is complex, as it 

can involve complex atmospheric and biospheric chemistry, to mention only one consideration. 

One might worry that past waste has to be taken account of whenever it has exceeded natural capital 

absorption capacity (think CO2 emissions) historically. The absorptive capacity of the planet’s natural 

capital has to deal with cumulative unabsorbed waste it has not yet dealt with, not just what is inflicted 

on it in the current period.  

Fortunately from an analytic perspective, the natural capital supply function expressed in (5) is iterative.  

This means the evolution of natural capital in this framework inherently accounts for all past 

diminishments of its supply due to waste exceeding natural capital’s absorptive capacity. 

This completes the theoretical framework. Further detail appears in Appendices A and E. 

3. Methods - The Emulation Model 

The emulation model is not a model in the usual sense of the word.  It is coded in Excel™, yes, but it is a 

pure, direct instantiation of the framework relationships in the form of specific but standard neoclassical 

functional forms and relationships, with no hidden modeling tricks or sleight of hand.  While this makes 

the emulation model less general than the framework itself, the functional forms used have a long 

pedigree in economics and themselves are fairly general.   

The model can be interrogated by asking how changes in input conditions affect output conditions of 

interest when confined to strictly honoring the principles and equations of neoclassical and ecological 

economics. It is a learning tool as much as anything else.  It is used for “expeditionary exploration,” to 

conscript Solow’s elegant term to highlight its limits. 

It is dubbed an emulation model to distinguish it from models intended to simulate and predict future 

conditions.  It is not a forecast model, nor does it simulate futures in the sense Monte Carlo models do.14  

It is not an econometric model.  It is rather intended as an exploration tool, interactive and amenable to 

tinkering with different parametric and initial conditions assumptions to see the effects (as in, “Why did 

it do that when I did this?”). 

The framework is the anatomy (or “base code,” if you like); the emulation model aims at understanding 

the physiology, how the eco-economy system operates over time.  The framework is as parsimonious as 

                                                           
14 In principle, the model could be used to paint a Monte Carlo picture, but this would require knowing the proper 
ranges to use for several input variables, and their uncertainty distributions.  Empirical data to inform key input 
choices appear scarce to non-existent at the present time.  
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appears possible. The emulation model reflects this parsimony, but in a way that is restrictive owing to 

specific functional forms being chosen.  Other more general functional forms could be used, but at least 

those used here have deep familiarity for neoclassical economists. 

[Technical aside: Modeling of this type is an excellent way to validate the mathematics and its 

correctness.  Excel™ is miserly in its tolerance for sloppy reasoning.  Using the model to check the math 

allows benefits to flow both ways: the math is sometimes improved (made correct) by the discipline 

forced on clear reasoning by the modeling process (e.g., exposing erroneous thinking, or errors in the 

mathematical derivations); going the other way, the task of proper mathematical implementation often 

improves the model instantiation itself – results in a better, and more usable model.  Along the way, 

such back-and-forth uncovers new understanding about how the modeled eco-economic system itself 

must really work, and why.] 

I think of the emulation model as a tool to understand how mechanically the system works. What affects 

what, and how, a way to explore relationships and how they work, and specifically what conditions are 

needed to avoid collapse of an eco-economy.  

The Excel model itself is posted alongside this article for users to play with, is user-friendly, interactive, 

and includes a User Guide.  This model is freely available for anyone to use or improve upon (open 

source collaboration protocol).  It can also be used to audit the proper implementation of the equations 

described herein; or to replicate the results showing in later sections of this article.     

The specific functional forms used for the emulation model are given in Appendix E, along with 

associated mathematical derivations. 

4. Results – A Sustainable Civilization 

To reinforce the point that the emulation model is not intended as a forecast model, consider a 

hypothetical planet; call it “Planet A.” 

The civilization on Planet A has evolved a steady-state zero-growth human economy.  The natural 

economy, which supports this human economy, has likewise reached a steady state where it indefinitely 

flourishes.  The human economy is a private ownership free market economy. The atmosphere and 

biosphere have stabilized in an aggregate sense, without discernible negative trends in play.  Exhaustible 

resource use has gone away.  As to how this civilization has achieved all this is left to the reader’s 

speculation, but this is the picture on Planet A.   

Is such a state of affairs technically feasible?  Can such an economy, eco-economy, exist, even given 

these heroic assumptions? 

Conditions that appear to be necessary for feasibility are two: one, the population of the planet has to 

have stabilized in a non-growth mode (some observers say this may come within a few decades on Earth 

(Robbins, 2016) ); and two, that overall physical consumption of goods and services has likewise 

stabilized on a zero-growth trajectory (though its composition can and no doubt will be changing).  This 

means households on Planet A have realized a “satisficing” level of consumption (Simon, 1956) – 
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perhaps something similar to what is seen to be beginning to happen in the Nordic countries on our 

planet. 

With these two conditions the model shows surprisingly well-behaved and sustainable operation of the 

human economy (Figure 6). 15   

 

Figure 6: The Eco-economy in Steady-state 

This civilization has achieved indefinite sustainability, or at least the preconditions of indefinite 

sustainability.  It appears there is nothing in neoclassical economics that prevents or stands in the way of 

such state of affairs. The trajectories in Figure 6 show the components of household satisfaction (utility 

function) over time.  But note that also implicitly projected are trajectories of physical labor supply 

(complement of leisure time) and physical capital invested in the productive capacity of the human 

economy (real savings, or foregone consumption of goods and services instead used to produce new  

physical capital, or refurbish old).  The physical natural capital is also projected, as this is an element of 

household utility, but would be subject to waste inflicted and resource draw by the human economy.  

(But on Planet A, waste inflicted is below absorption capacity, and only renewable resources are used). 

In this world, we see a human economy that is behaving in pure neoclassical free market fashion and 

has achieved fixed and steady level of prosperity, yet leaving the natural economy indefinitely intact.  

However, for this to happen, another condition we must be able to observe as satisfied on Planet A is 

that the prevailing level of natural capital is above some critical level, below which it would experience 

catastrophic collapse.  But assume for the moment this, and the other conditions, are seen to prevail.  

Under these conditions everything works:  household behavior keeps everything in balance – the proper 

supply of labor is delivered to the productive economy, as is new and replenishment capital supply – just 

enough to supply the desired level of goods and services to households.  But households, and household 

choices, ultimately run the show and shape the productive capacity of the human economy.  Utility 

households place directly on natural capital is part of this.   

                                                           
15 Figures throughout show activity levels normalized to a proportional “activity level” index. 
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As seen in Figure 6, leisure time, natural capital, real consumption and real savings all remain steady.  

While such results were previously reported for the human economy considered (almost) alone16, here 

we see it holding with a more explicit inclusion of the natural economy.  Provided, critically, the natural 

economy collapse avoidance conditions hold. 

This zero-growth situation is stable.  Forces at work in the neoclassical economy ensure either shortages 

or surpluses of capital or labor supply experience dynamic corrective forces. 17 A picture somewhat like 

this was foreseen by William Arthur Lewis (1954), where capital and labor in the course of economic 

development eventually come into balance quantitatively as labor surplus disappears, wages rise, capital 

shortage disappears, and capital “rent” extraction diminishes while labor negotiating power 

strengthens. Some economists18 refer to these developments as the “Lewis turning point.”  Long run, 

behaviors under shortages and surpluses of either production input drive the system to maintain fair 

balance between the two. 

But the technical reasons for this sustainability situation being real are enlightening.  General 

equilibrium theory principles guarantee that this state of affairs will necessarily obtain.  At root, the 

result arises from the fact that, in this framework, all the necessary conditions of general equilibrium 

theory are met by the emulation model.  Primary among these are that the price of output is calculated 

(endogenously via duality theory), not assumed as an input value; that household utilities satisfy 

commonsense conditions; and that producer production possibilities (embodied in any production 

function such as that in the emulation model) are non-increasing returns to scale.19  Markets must clear 

at the endogenously-calculated prices.  All this occurs in the model.  In a beautiful and amazing proof 

that won Gerard Debreu a Nobel Prize20 this is precisely what is to be expected theoretically.  [See later 

section 6: “Discussion – Cautions and Limitations” for a more explicit treatment of the required 

assumptions for this central result.] 

An interesting outcome of this dynamic is that new capital supply and labor supply (both provided 

ultimately by households) come into steady-state balance at a point where there is a fair and equitable 

distribution of income between capital and labor, just as the “Lewis Model” predicted.  Each gets its due 

and no more. That is, labor receives real wages that match its productivity for the eco-economy as a 

whole, and capital the same in the returns it receives.21   

                                                           
16 Saunders, 2014. 
17 The emulation model, when initiated in a condition of capital shortage and labor surplus, exhibits this 
“development” dynamic; and capital-labor perturbations of steady state show the system is stable in the dynamic 
systems sense – forces act to return it to steady-state if one or the other supply is in surplus. 
18 Minami and Ma, 2010; Zhang et al., 2011. 
19 Most prevailing integrated assessment models use a CES production function, which satisfies this condition. 
20 Developed in concert with Kenneth Arrow in Debreu, 1952, 1959, Arrow and Hahn, 1971. [see Luenberger 1995 
for cites.) 
21 Saunders, 2014.   
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On the way to zero growth, capital, if it is in short supply relative to labor, receives added economic rent 

versus when they come into balance.  This r g  “Piketty condition” draws in needed capital during the 

time before they come into balance.  In a zero growth situation, r g falls to zero, or nearly so.22 

Even more interesting is the discovery in this model that such an economy automatically delivers what 

Phelps calls “golden rule” behavior (Phelps, 1961,1965). That is, household savings in the current 

generation are at the level such that subsequent generations are endowed the same productive 

economy capacity and natural capital as the current generation enjoys.  Phelps dubbed this type of 

intergenerational equity “golden rule” equity as it honors the directive, “Do unto others [i.e., future 

generations] what you would have them do unto you.”  Each generation inherits the capability to 

recreate the prosperity and natural economy of the generation that preceded it. 

As we will see shortly, the introduction of technology advancements only improves this story. 

Collapse Conditions 

This is the picture of Planet A if its human economy is able to sustain the natural capital level in the “safe 

zone,” residing above the critical level so as to avoid eco-economy collapse.  But such catastrophic 

collapse can occur in this framework in zero growth conditions when household consumption of goods 

and services exceeds the capacity of the productive economy to deliver it without either excessive 

draws on resources from the natural economy or waste inflicted on it in excess of its ability to absorb it. 

Collapse conditions are also dependent on population levels.  Irrespective of the level of a planet’s 

population relative to its natural capital supply, natural drivers of the household consumption of goods 

and services operate to determine natural capital services needed.  A larger population will drive the 

productive economy to employ all available labor and produce with it goods and services asked for by 

households so employed, thus raising overall the household budget from new wages. More households 

also mean more savings, to attach labor supplied to the capital needed for production.  But this also 

means a greater draw on natural capital is needed, whether in the form of more raw resources or 

greater waste demanding absorption by natural capital. 

Consider the first collapse dynamic.  Here we have a situation where the productive economy has 

achieved waste production that is below what natural capital can absorb, and resource draw is such that  

natural capital replenishes it, but only up to the point population exceeds a certain level.  Figure 7 shows 

that population on Planet A cannot exceed a certain level, waste management and resource draw 

success notwithstanding, before there is catastrophic collapse of the eco-economy. 

                                                           
22 See Appendix C. “How can capital formation occur in a zero-growth economy where capital returns are zero? 
[And a CORRIGENDUM],” for an explanation of how capital formation can still occur when real returns to capital 
hover near zero, a concern first put forth by Daly (Daly, 2005,2008). 
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Figure 7: When Population Exceeds Nature’s Carrying Capacity 

What happens here is that once population gets above a certain threshold, the human economy 

automatically calls for too much consumption with attendant loss in the natural capital supply arising 

from resource extraction and waste.  Note that collapse occurs even when the level of natural capital is 

well above the critical level – collapse occurs within about sixty periods in the emulation model, and 

then occurs swiftly.  No countervailing forces are sufficient to prevent it if the human economy behaves 

in neoclassical free-market fashion. 

A similar thing happens when population is fixed, but waste produced exceeds absorptive capacity on an 

ongoing basis (think greenhouse gas emissions, ocean acidification increases).  The relationship between 

the two is shown in Figure 8. 

 

Figure 8: Sustainability Frontier between Ongoing Waste and Absorption 

Here we see the quantitatively determined limit of ongoing waste produced by the human economy for  

mapped against various levels of the natural economy’s ability to absorb it.  (Note that the natural 

capital time dynamic accounts for cumulative excess waste).  Waste absorption capability must exceed 

waste production to ensure indefinite sustainability, showing as the region in the lower-right of Figure 8.  

(Recall that the numerical values are merely indices that relate to a value of natural capital normalized 
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to unity with natural capital capacity arbitrarily chosen to carry a value of 1.50, and its critical value 

chosen to carry a value of 0.10.23,24) 

If the eco-economy begins in a state wherein there is a legacy waste present (think cumulating 

greenhouse gases), we again see a collapse condition when its magnitude is too high (Figure 9). 

 

Figure 9: The Limit of Sustainability when Legacy Waste is too High 

 

This shows how there can be a “tipping point” of legacy waste beyond which natural eco-economy 

dynamics cannot recover.  What is happening here is the following:  Any quantity of legacy waste 

reduces natural capital available. Natural capital responds by increasing the Ricardian “rent” it charges 

the human economy.  This reduces production and consumption, having the effect of reducing resource 

draw and waste inflicted, thus allowing natural capital to recover under certain conditions.  If legacy 

waste is below a certain threshold, natural capital replenishment and waste absorption capacity then 

become sufficient to “re-grow” natural capital to its steady-state condition.  But above this particular 

threshold of legacy waste, the eco-economic forces in play are insufficient to produce recovery and the 

system collapses.   

[Cautionary note: this is what the emulation model delivers under essentially arbitrary quantitative 

values chosen for various input parameters.  But the intent is to show that the framework comprehends, 

and the emulation model illustrates, important sustainability dynamics.] 

Finally, and importantly, we’d like to understand how the value households place directly on natural 

capital affects sustainability. Can a larger population be sustained on Planet A if its households place 

greater value on the benefits they receive directly from natural capital?  Figure 10 illustrates.   

                                                           
23 These assumptions can be changed in the emulation model. 
24 Likewise, various human economy indices are normalized to unity in the reference case (see Figure 6): total 
capital in place, total labor supply, value-added output, consumption, and unit cost (price of output).   
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Figure 10: How Changing Household Preferences affect Natural Capital and Maximum Population 

If Planet A households place higher value on natural capital than assumed in the reference case, the 

resulting combination of natural capital level and maximum sustainable population changes, in a way 

dependent on which particular household value is reduced to accommodate the higher natural capital 

value.  For instance, if household value placed on natural capital increases at the expense of value on 

consumption, there is a slight increase in the maximum sustainable population (green square).  Not 

surprisingly, the natural capital level increases as well for such a population (green square).  The 

population can be slightly higher because per capita consumption declines.  With lower consumption 

per capita comes less resource draw per capita, meaning a somewhat larger population is sustainable at 

a given level of resource draw.  The result is a slightly higher maximum population alongside a larger 

magnitude of natural capital.  

If the natural capital value increase comes at the expense of value placed on leisure time, the maximum 

sustainable population goes down (brown square).  More labor enters the human economy’s workforce, 

generating more household income and greater per capita consumption.  The natural economy can 

support fewer people at the resulting level of resource draw/waste disposal. 

If the natural capital value increase comes at the expense of savings, sustainable population goes up.  

With fewer savings entering the productive economy, physical capital supply will be lower and its 

capacity to produce consumption goods and services goes down (blue square).  As a result, consumption 

per capita goes down and the natural economy can sustain a higher population. 

This is the picture if Planet A is devoid of technology improvements as time progresses.  But the picture 

changes if the Planet A civilization does improve its technology.  In fact, relaxing this condition only 

brings good news, a discussion we turn to next.   
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Technology Gains 

In comparison to the previously-reported emulation model25, technology gains behave the same way 

even when the natural economy is appended to the structure.  

When we look more closely at Planet A, we see that technology improvements can come in a few 

flavors.  

First, technology improvement can come in the form of increased labor productivity (e.g., automation). 

It can also come in the form of increased capital productivity (also automation, engineering 

improvements).  Further, technology gains can come in the form of increased resource use efficiency.   

To illustrate, consider increased labor productivity arising from automation.  Figure 11 shows what 

happens when households realize satisficing consumption levels, but automation (in the form of 

ongoing productive efficiency gains per unit labor) is extant. 

 

 

Figure 11: Automation Increases in a Steady-state Consumption Condition 

Two things stand out here: First, even while sustaining a fixed level of household consumption, the 

leisure time of these households increases; and second, the supply of natural capital expands at the 

same time.  Note that this economy still meets the requirement that everything works, with households 

supplying the exact amount of labor and capital needed to producers, even with their technology gains, 

and producers supplying the exact quantity of consumption goods and services to households at the 

same time.  What is happening is that technology gains drive down the price (unit cost) of goods and 

services, and thus increase real wages, in a manner that exactly offsets the decline in labor supplied, 

thereby preserving household budgets while holding consumption steady.  Likewise, their household 

budget continues to support their savings for retirement at its prevailing level, delivering required 

capital to the productive economy in the process.   

                                                           
25 Saunders, 2014. 
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Natural capital grows because with more leisure time and less labor supplied to the productive economy 

(and less needed to provide the same quantity of goods and services owing to the technology 

improvement), the productive economy likewise needs to extract less resources.  This eases the draw 

and waste inflicted on natural capital and it can grow, even while it extracts less and less “rent” from the 

human economy, which moderates its growth rate and the resource draw decline. 

I was initially astonished to see this result appear in the emulation model, with everything automatically 

fitting together so perfectly to deliver this result, even with the natural economy considered – not a 

given that this system of equations would be well-behaved.  But there can be no doubt it paints an 

appealing picture of what life could be like on Planet A if they have found ways to productively displace 

labor needed while paying workers the same overall wages for less hours worked.  And all while growing 

natural capital supply.26 

Technology improvements obviously matter to sustainability prospects. 

5. Results – Different Sustainable (and Unsustainable) Civilizations 

We would like to understand how feasibility of sustainability is affected by natural capital endowment 

and its eco-economy carrying capacity.  For this, we imagine that Planet A has neighboring civilizations 

differently endowed.  Let us say that astronomic/geobiophysical conditions for nearby Planet B have 

bestowed on it the same overall magnitude of natural capital as Planet A, but its eco-economic carrying 

capacity is nonetheless lower; for instance, Planet B has larger surface area than Planet A, but is further 

from its host star than Planet A.  It has a larger biosphere, but it is more fragile owing to dimmer 

insolation.  Planet B has the same capacityN as Planet A, but also a higher criticalN . (Of course this device is 

also a way of exploring how uncertainty about these magnitudes should be treated on any planet, 

including Earth.) 

In fact, it is useful to introduce another Planet C, which is large but whose biosphere is even more 

fragile, having a higher level of criticalN  but the same capacityN . What level of sustainable consumption is 

feasible on each of these planets? 

Figure 12 illustrates: 

                                                           
26 Technical note: The framework accounts for so-called resource “rebound” effects from technology gains, as 
described by Ayres and Warr (2009), Saunders (1992, 2008, 2014,2015,2017), and others.  The results reported 
here apply even with rebound considered.  (See Appendix G). 
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Figure 12: Sustainable Consumption under Different Conditions of Biosphere Fragility 

Here we see that Planet B, with a higher threshold of natural capital required to sustain consumption 

and avoid collapse (higher criticalN ), must have an overall level of consumption lower than Planet A.  

Planet C, like Planet B, has the same level of natural capital ( capacityN ) as Planet A, but has an even 

higher level of natural capital needed for the eco-economy to be sustained without collapse ( criticalN ).  

Again, Planet C’s level of consumption must be lower than Planet A to keep it in the “safe” zone above 

the critical level.  All of which simply accords with common sense, but now can be validated within a 

formal neoclassical structure. 

Naturally, a larger natural capital endowment means a higher level of feasible sustainable consumption, 

all else equal.  Suppose Planet D resides in a system where its sun is identical to Planet A, it is the same 

distance from its sun, but it is much larger so its biosphere/geosphere is also larger.  Figure 13 

illustrates: 

 

Figure 13: Sustainable Consumption when the Biosphere is Larger 

As fits with intuition, a planet with a higher endowment of natural capital (Planet D) can support a 

human economy with larger overall maximum consumption.  Said differently, the natural capital 

endowment constrains the overall consumption that is sustainable. 
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To put a finer point on it, Figure 13 compares two planets with identical populations, so these are both 

the maximum sustainable consumption levels and maximum consumption per person.  Accordingly, it is 

interesting to see how different population levels play into this picture.  Consider now a new planet, 

Planet E, having the same natural capital endowment and carrying capacity as Planet A ( capacityN  and 

criticalN  are the same on both planets).  What happens if Planet E population grows beyond that of 

Planet A before stabilizing at a fixed level?  Figure 14 illustrates. 

 

Figure 14: Similar Planets with Different Populations 

Planet E can sustain a higher level of population than Planet A, but the civilization of Planet E is right at 

the precipice of their planet’s carrying capacity.  Going above this level of population results in 

catastrophic collapse of the eco-economy. (Note that although overall consumption is higher on Planet 

E, its per capita consumption is lower.)  In the emulation model this collapse happens rapidly (a handful 

of “years”).  Clearly, if the theory is correct, there is a tight link between the sustainable human 

economy’s population and the natural economy, when looked at through the lens of a free-market 

neoclassical human economy determining the overall consumption level.  This accords with common 

sense.  Natural economy carrying capacity and maximum sustainable population are tightly linked 

because physical consumption level in the human economy (with associated resource draw and waste 

infliction) is the intermediating determinant of this linkage to the natural economy. 

This depiction of the eco-economy dynamics as being on different planets is, of course, fanciful.  But this 

device perhaps adds a degree of clarity to understanding the conditions that could feasibly obtain on 

our home planet. 

6. Discussion – Cautions and Limitations 

It is critical to remember that this is an idealized depiction.  Readers should bear in mind that it makes 

certain neoclassical assumptions – assumptions that could be, and sometimes are, contested.  A more 

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.50 1.00 1.50 2.00

Su
st

ai
n

ab
le

 C
o

n
su

m
p

ti
o

n

Global Population

Sustainable Consumption vs. 
Population

Planet A

Planet E



Page | 26 
 

complete list of these appears in Saunders (Saunders, 2014), but here are a few of the more important 

of these assumptions in the context of the present eco-economy framework: 

1. Competition among producers is robust, and the system therefore mitigates against excess 

monopolistic rent-taking by capital owners. 

2. There is no government – the system operates without centralized macroeconomic control… 

a. … with no taxes and no government spending. 

b. (But the free and fair competition assumption above is arguably consistent with 

jurisdictional enforcement upon producers by central authorities.) 

c. (Government, taxation, and social enterprises can in principle be incorporated by 

introducing the social economy as described in Section 2.1 above.) 

3. The economy is closed.  (Of course, viewed as being the entire global economy, it is closed by 

definition.) 

4. The above two assumptions mean the traditional macroeconomic accounting identity, instead of 

being  Y C I G X M      is instead treated as Y C I  . 

5. Aggregation: Each of households and producers is considered as an aggregated whole 

(alternatively, representative exemplars). Microeconomists have discovered challenging 

theoretical and technical problems with aggregating both production functions and utility 

functions.   

6. Aggregation: Natural capital is treated as a single, aggregate whole. Of course, it is actually a 

multi-component system the human economy draws on in a multiplicity of ways.  

7. Capital fungibility: A more complete emulation would accommodate the fact that physical 

capital should be vintaged.  That is, as currently formulated, the emulation model considers all 

capital in place in the economy to be fungible – meaning it is flexible enough to adjust its factor 

use proportions to match the prevailing market conditions in each period for profit-

maximization. An improved emulation model would adopt something resembling a “putty-clay” 

model (Johansen, 1959, Solow, 1960, Phelps, 1964).    

8. Returns to scale: Adherence to general equilibrium principles requires that the production 

function be non-increasing returns to scale (the CRS assumption used in common practice is 

fine; decreasing returns to scale is also allowed and consistent27).   

9. Emulation model: While the framework is general, the emulation model selects particular 

functional forms for the framework to deliver the reported results and figures. 

7. Discussion – Advantages of the Framework and Emulation Model 

A few new analytic enhancements are featured here not seen elsewhere:  

1. Everything is locked together in the (simplest possible?) neoclassical framework.  All the 

quantity flows are endogenously determined, and are consistent with neoclassical theory, 

including most unforgivingly, general equilibrium theory: 

a. Households are locked to the productive economy 

                                                           
27 See Luenberger, 1995, pages 224-225, Condition 7. 
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b. The productive economy is locked to the natural economy 

c. Households are locked directly to the natural economy, as well as indirectly 

2. Leisure time and direct benefits from natural capital are included in the household utility 

function and resulting decision-making. 

3. The supply of labor and capital supplied to the productive economy are determined 

endogenously.  This occurs via the explicit link to household preferences and the budget 

available to households.   

4. Household savings is determined endogenously. 

5. Endogenization of the budget constraint is automatic by the strict linkages between prices and 

physical quantities enabled by incorporating duality methods (wages, capital returns, price of 

output consumed).  Households optimize their utility given this budget constraint, delivering 

savings (capital) and forgone leisure (labor) to the productive economy.   

6. Factor prices and dually-linked factor quantities are determined endogenously. 

a. The framework (and emulation model) endogenizes factor prices and the price of 

output, which assures markets will clear at the calculated prices, and so-called first-

order conditions on factor use are correctly represented and accounted for.  This may 

represent an enhancement that prevailing Integrated Assessment Models (IAMs) could 

take advantage of. 

7. The framework (and emulation model) is extremely parsimonious of needed assumptions, both 

on the human economy side and on the natural economy side. 

8. Conclusions 

Indefinite sustainability for a planetary eco-economy appears possible when it harbors a neoclassical, 

free market, private ownership human economy, provided it operates within the “safe zone” accorded it 

by the natural economy. 

The natural economy does, however, impose hard, defining limits.  Catastrophic collapse of the eco-

economy can result if the civilization’s population delivers demand for goods and services consumption 

that is too large for the planet’s natural carrying capacity to support it.  If human consumption requires 

resource extraction beyond the natural economy’s capacity to replenish it, and/or generates waste in 

excess of its capacity to absorb it, natural capital falls below a critical level where its functioning cannot 

be sustained. 

These are arguably not startling conclusions.  But they are here offered as being based on deep and 

formal neoclassical and ecological economics theoretical foundations.  And informed by an emulation 

model that strictly and rigorously adheres to these. 
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A. Appendices for “Further toward a neoclassical theory of sustainable 

consumption: The Eco-Economy,” Harry D. Saunders 
Appendix A: Theoretical Framework in Detail 

The formal theoretical development of the neoclassical eco-economy is best described with reference to 

the components and interactions showing in Figure A1. 

 

Figure A1.  The Eco-Economy 

Each of these elements and interactions is described in the following sections. 

Households 

The Household sector is described by the following utility function, reflecting household preferences 

(expressed in physical quantity terms): 

  , , ,u u C S l N   (B.1) 

Households make tradeoffs among consumption of goods and services available from producers ( C ), 

savings to be set aside for future use ( S ), leisure time ( l ), and their desire for some level of natural 

capital from which they draw corresponding direct benefits.  The overall levels of these are limited by a 

household budget constraint (defined below). 
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By these choices, households determine the levels of production factors (capital and labor) available to 

producers to produce these goods and services.  Labor supplied to producers ( L ) is the complement of 

leisure time they choose relative to the total hours available to the household ( L ) so that 

 L L l    (B.2) 

Capital supplied to producers comes from household savings ( S ), which provides investment ( I ) to 

replenish capital stock that has deteriorated (depreciated) out of the system, and/or to add new capital, 

according to the neoclassical identity 

 I S   (B.3) 

The picture is this: by not consuming all the output created by the productive economy in any one 

period, households allow some of that production to be directed instead to the creation of capital goods 

– goods that replace, refresh, or grow the capital stock in place in that period. 

Note that all these components of utility are treated as physical quantities. Prices are introduced later. 

Producers 

Producers in turn take that new capital together with the capital remaining in place (to create total 

capital in place in the current period, K ), and combining this with the labor households supply ( L ), 

create the goods and services provided back to households.   

This process is captured by means of the following production function: 

  ,Y f K L   (B.4) 

The productive sector takes capital and labor inputs to produce final output (Y ) of goods and services, 

some of which goes to the production of capital goods, with the rest going to the production of 

consumption goods and services.  Again, all these are physical quantities. 

National accounting practices track this functioning in currency-based terms, not physical terms.    The 

present framework accounts for this by introducing prices based on duality considerations.  In particular, 

the price/cost of output c  falls out of the analysis (described and derived below).  When combined with 

the quantityY , the product cY  is equivalent to the “nominal GDP,” while Y is equivalent to the “real” 

GDP.28   

                                                           
28 Cautionary note: It is tempting to think of c  as the standard “GDP deflator,” but this is not exactly right.  In the 

present framework, c can be altered by shifts in the capital/labor inputs, and importantly, by technology gains in 

the system that reduce the actual  (unit) cost of producing output, making consumption more affordable for 
households. In contrast, in the world contemplated by national accounting, overall price levels of inputs and 
outputs can be affected by monetary policy: As a gedanken experiment, consider what happens if money supply 
were suddenly doubled – all prices of inputs and output will double (and the GDP deflator would double), but 
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The structure thus embodies the macroeconomic national accounting equation Y C I  , here 

expressed in physical terms;29 when dually-derived prices are invoked, the standard currency-based 

equation is also honored. 

Note also that Y is different from the gross output of the economy.  Of course, the productive economy, 

in addition to final goods and services,  also produces intermediate goods and services, supplied to other 

producers (and use capital, labor, and natural resources to do it – all of which inputs are embodied in 

the equation for Y (B.4) ); the intermediate goods and services output are recognized in national 

accounts (in “gross output”) but excluded from the GDP accounting measure as not being “value-

adding” in the GDP sense.   

A good way to visualize how all this works, including intermediates production, is to look at an Input-

Output (I-O) formulation such as given in the amazingly clear description provided by Sue Wing (2009, 

especially Figure 14.2) .  There it is seen that GDP is both value-added production (excluding 

intermediates production), and household earnings from their labor and their capital invested.  This is 

what is captured here as the value cY expressed in currency terms.  So Y is best thought of as GDP, 

though expressed in physical terms instead of monetary terms.   

But to accommodate the fact that producers draw on raw resources ( R ) extracted from natural capital 

to deliver such production, a more specific functional form is needed: 

    , , ,X X R RY f X K L R K L      (B.5) 

where RK  and RL  are those portions of capital and labor, respectively, devoted to the extraction of 

raw resources (think raw foodstuffs, minerals, timber, primary energy resources, water, etc.), while XK  

and XL  are those supplied to the production of intermediate and final goods and services, using these 

raw resources.  The individual sectors X  and R can be thought of in this way: R is the sector supplying 

raw resources to the productive economy (those drawn from natural capital); X is the remainder of the 

productive economy that draws on these resources to produce intermediate and final goods and 

services (designated “X” to indicate it is actually a crisscross physical flow of products as depicted in I-O 

models); this combined process generates real final output (“real GDP”) Y , which reflects the totality of 

economic activity required to produce these goods and services, whether they be used for resource 

extraction, creating new physical capital, or used to provide final goods and services to households. 

This does not yet comprehend the role of technology improvements in the production process.  

Technology gains can enter the production process in several ways.  First, improvements can occur in 

the effectiveness of capital deployed to the resources sector and also the effectiveness of labor thereto 

                                                                                                                                                                                           
producer profit-maximizing decisions about physical quantities employed/produced (and technology choice) will 
be unchanged. 
29 Note that the standard national accounting identity is actually  Y C I G X M     .  But here, exports 

X  and imports M  are excluded as a planet-wide economy is by definition closed.  Also, in the present 

framework, government expenditures G  (and taxation) are ignored. 
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deployed, requiring less capital and labor to deliver raw resources to the productive economy.   

Parameters we can designate 
KR  and 

LR  must be introduced to reflect these gains to resource 

recovery.  Likewise, capital and labor deployed to the intermediates sector can become more effective; 

we designate the corresponding efficiency gains 
KX  and 

LX , respectively.  On top of this, the 

intermediates sector can become more efficient in employing these raw resources (using fewer 

resources to produce the same goods and services), a gain contemplated in the parameter XR .  Finally, 

this latter parameter must be understood to account for the important distinction, for energy resources, 

between raw energy and exergy (Ayers, 1997; Ayers and Warr, 2005,2009) – where exergy is the useful 

work that can be extracted from a unit of raw energy resources.  Exergy is what enables production, not 

raw energy, requiring a technology parameter we may call 1E  .  If E  is the raw energy resource 

extracted and provided to the economy, the productive energy (exergy) actually supplied to producers 

and production will be E E .     Accordingly, to generalize to raw resource use as a whole, the parameter

 XR XR E   , and the generalized production function becomes 

      , , , , , , , ,
K L K LX X R R X X R R XR EY f X K L R K L            (B.6) 

Prices and the Household Budget 

Thus far, the development has been nearly silent on the role of prices.  All variables in (B.1) through 

(B.6) are specified in physical quantity terms. To close this system, prices are needed to assure that 

solutions to (B.6) honor profit-maximizing conditions, and to specify/determine the household budget 

constraint, which itself must be honored.  This requires knowing the price of output, derivable as the 

unit cost function c   dual to the production function (B.6). 

  c YD   (B.7) 

Where D  is the dual operator on Y 30.   If r  is the (nominal) cost of capital and w is the (nominal) cost 

of labor, the profit-maximizing (first-order) conditions for producers are31 

 
X R

X R

Y Y r

K K c

Y Y w

L L c

 
 

 

 
 

 

  (B.8) 

                                                           
30 Such a dual exists in principle for every production function, though some are hard to derive analytically. 
31 Note that “profit” in this traditional economics sense is different from what firms typically call “profit.”  First, 
“profit” for firms is an accrual measure (not an arguably more accurate cash flow measure upon which they 
actually make investment decisions); second, “profit” for firms reflects returns to capital whereas economists treat 
profit as revenues less payments to all factors of production, including payments to capital.   
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This illustrates the need to have the cost function variable c  available if profit-maximizing conditions 

are to be honored.  So-called first-order conditions will not be honored if (potentially changing) c   is not 

used to “deflate” nominal prices.  The profit-maximizing employment of inputs K  and L  will be mis-

specified.  As K  and L are in physical units, their physical quantities will be mis-specified, which are 

needed to link to the natural economy.  Another way to look at this is that factor prices must be 

expressed in “real” terms, to deliver the real physical quantities needed, and which must properly result 

from the optimization.  

 While it is technically possible to distinguish conditions (B.8) as different between the two sectors X

and R , a useful simplification is to assume labor and capital can move freely between the two sectors.  

That is, the assumption is that financial markets act to ensure equalization of capital return rates 

between them; and labor is mobile between the sectors and responsive to wage rate differentials. 

Whether or not this simplification is applied, invoking conditions similar to the form (B.8) assures that 

prices and physical quantities are always locked together when prices and/or quantities change, and are 

correctly specified in relation to each other for profit maximization and utility maximization.   

The dual cost form of (B.6) is needed also for determining the overall household budget, which regulates 

the overall level of consumption and savings possible, and thus in turn the overall level of economic 

activity. 

Households supply producers with capital and labor.  The returns received from these determine the 

household income budget (returns on savings plus wage earnings).  The first of these, capital, is provided 

via household savings, but this determines only part of the capital supply available to producers – 

current investment.  Capital already in place is available to producers as well ( 1tK  ).  But this capital can 

be thought of as the capital already owned by households owing to past savings. Total capital in place 

tK is household total capital assets owned in the current period (and generating current returns).  

A further consideration is that some of the capital in place physically deteriorates (depreciates) out of 

the system in each time period.  To account for this, the framework adopts the neoclassical growth 

capital accumulation model: 

   11t t tK K I      (B.9) 

where tK  is the capital in place in period t ,   is the physical depreciation rate of capital, and t tI S  is 

investment (equals household savings – equals forgone consumption) in period t . 

In the present context, capital is split between two sectors, so 
t t

t X RK K K   and there are (in 

principle) two depreciation rates, X  and R .  But investment is automatically dispersed across the two 

sectors to equilibrate returns (method described in Saunders, 2014, Appendix B). 



Page | A-6 
 

So the household returns on their capital holdings in time period t  is  t t

t X RrK r K K  32.  For 

household labor, returns are from wages earned in that period, and so the income households realize is 
t t

t X RwL wL wL  .  This sets the household budget: 

 t t tB rK wL    (B.10) 

From this, together with their utility function, households determine their disposition of income 

between consumption and savings (and in doing so the amount of labor and savings they surrender to 

producers for current use). 

The values of the prices r  and w  are determined within the framework, with no need to assume 

arbitrary values.  So likewise are the quantities , , ,X R X RK K L L  and Y .  The power of duality theory is 

that it allows us to determine both sides of the economic picture at once (physical quantities and prices 

together). 

The Human Economy 

This general framework is agnostic as to the functional forms of u , f  and c , and is agnostic as to the 

values of the   parameters over time.   The functional form of the capital accumulation dynamic (B.9) is 

specified but the depreciation parameters are not pre-specified, and the functional specification is the 

standard neoclassical one. 

With this, the system is highly general and is (nearly) fully closed, with capital supply and labor supply 

determined without need for arbitrary factor supply functions.  Calculated prices are those that clear all 

markets at the calculated quantities – a requirement of general equilibrium theory.  Households own 

the means of production and choose how much to consume, save, and work, reflective of the private 

ownership “Arrow-Debreu” economy underlying general equilibrium theory.33  Capital formation 

dynamics are likewise internal to the framework, and follow standard neoclassical growth theory.34 

The Natural Economy 

But the system is not yet fully closed.  This system resides within a larger system, and on which it draws 

– natural capital, to coin the terminology of ecological economists.  Crucial to the specification of a full 

eco-economy is the inclusion of the foundational source that fuels and sustains its activity. The above 

system is still undetermined mathematically inasmuch as the N component of the household utility 

function (B.1) is so far unaccounted for; but according to this formulation, households place direct value 

on the planet’s supply of natural capital (e.g, clean water and air, biodiversity, favorable climate 

conditions, majestic grandeur, etc. See Marris, 2017).  

                                                           
32 Note that, since tK already accounts for capital depreciation each period, households receive capital returns r  

on that (remaining) invested capital.  
33 Arrow and Debreu, 1954. 
34 Solow, 1956.  (Though here the “savings rate” is endogenized.) 
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Also so far unaccounted for is the draw on natural capital to enable productive economic activity in the 

human economy as contemplated in the raw resource term R of (B.6).   

To correct this, and to fully close the system, requires specification of the functioning of the natural 

economy.  Here, the natural economy is assumed to follow a neoclassical principle that it seeks to 

maximize, not profit, but natural capital itself.  This allows us to characterize natural capital by means of 

a neoclassical-style production function of the following form: 

  , , ,N N R A W ¡   (B.11) 

where N  is the prevailing stock of natural capital; ¡  is the replenishment provided by the natural 

capital  stock (including agricultural land, water, energy, timber, etc.) ; R  is the current natural resource 

draw by the productive economy (including food, water, energy, minerals, timber, etc.); A  is the waste 

absorbed by prevailing natural capital stock in a given period; and W  is the waste delivered to natural 

capital by the productive economy (and by households directly).  In any one period, waste absorption by 

natural capital cannot be greater than the waste delivered, so A W . Nor can absorption be greater 

than natural capital’s capacity to absorb, so capacityA A  . 

Each of these factors of production in turn may be complex functions of natural capital stock, of human 

economic activity, and of time.  For instance, absorptive capacity may diminish over time owing to waste 

accumulation that has not been absorbed in previous periods; waste generated will be related to the 

overall production and consumption of goods and services in the human economy, Y , and the resource 

draw required to produce these; natural replenishment is no doubt a function of the magnitude of 

extant natural capital; and some resources may be exhaustible, meaning they are only available for a 

limited time. 

Acknowledging all this, we can still formulate a natural capital production function whose validity 

depends on the fact that it is in fact an identity.  With the appropriate time dynamic introduced this is: 

    1t t t t t tN N R A W    ¡   (B.12) 

In each time period, natural capital is augmented by natural replenishment, but reduced by the human 

economy’s draw on its raw resources.  It is further reduced by the difference between waste products 

generated by the human economy and natural capital’s ability to absorb these without degradation.  

Note that natural capital at time t has already been diminished by any surplus of waste over absorption 

that occurred in previous periods, thus accounting for its accumulation, if any, over time.  

But this is only the quantity side of the natural economy.  As with the production function specifying the 

human economy (B.6), the natural capital production function has a dual cost function, incorporating 

prices for each of the elements of (5) and delivering a unit cost function Nc .  But as shown below, this 

cost function is simple and the prices are likewise simple, owing to (5) being a linear function. 
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Formally, natural capital’s “profit maximizing” strategy takes the following form (time indices 

suppressed): 

  
, , ,
max

N R A W
R A W

c N p p R p A p W    ¡
¡

¡   (B.13) 

Solution of this problem shows that Nc  is a fixed scalar constant across the entire domain of

 , , ,R A W¡ .  Also, all prices are likewise fixed across this domain and equal Nc .35   

This means we can normalize Nc  to any value we wish.  Choosing 1Nc   means 

1R A Wp p p p   ¡  everywhere. 

Scarcity and Ricardian Rent 

In principle, we could think of applying this derived price of raw resources R Np c  to characterize the 

cost of their use in (B.6).  However, doing so would ignore the neoclassical principle of Ricardian rent.  

Ricardian rent arises when an economic agent owns and controls an element of production that is 

inherently scarce.  As demand for it rises, the agent is able to extract a price for that element that 

exceeds its inherent value to create physical economic activity (e.g., land), a price premium known to 

economists as “rent.”   As the supply of natural capital is fundamentally confined by the fact that it 

occupies a spherical planet, it clearly has the wherewithal to extract rent from the human economy. 

Attendant to this is a notion favored by a number of ecological economists that natural capital may have 

a lower limit, below which it could experience catastrophic collapse.  All of which points to the need to 

incorporate a “natural capital supply curve” showing how the effective price of natural capital delivered 

to the human economy changes with the quantity of natural capital supplied.  The underlying notion is 

that natural capital charges us rent for her land, raw resources, and waste absorption services.  She 

replenishes elements of herself seasonally, but becomes stingier the lower is her natural capital stock. 

If we denote the lower limit of natural capital that avoids catastrophic collapse as criticalN , the natural 

capital supply curve takes the form: 

 

 , , , , ,N N current critical

current critical

p p N N R A W

subject to

N N





¡

  (B.14) 

 As from above we know that R Np p , we can say that 

                                                           
35 The function N is a hyperplane across all four dimensions and the slopes of this hyperplane are likewise fixed 

across the entire domain, meaning their marginal productivities are constant.  The slopes are all (positive or 

negative) unity and the dual cost function is Leontief-like and delivers a value of positive unity for Nc  (proofs 

available from the author). 
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 , , , , ,R R current critical

current critical

p p N N R A W

subject to

N N





¡

  (B.15) 

This price can be used to penalize the resources sector of (B.6) to reflect the fact that as N  declines, 

more capital and labor must be devoted to the resources sector ( ,R RK L ) to deliver the same amount of 

raw resources to the productive human economy.  Accordingly, we can revise the production function of 

(B.6) by including Rp  as follows: 

         , , , , , , , ,
K L K LX X R R R R X X R R XR EY f X K L R K p L p            (B.16) 

As before, the exact functional forms of  R RK p and  R RL p  are left unspecified in the general 

framework (but specified for the emulation model in Appendix E).  But it is at least clear that higher 

values of Rp  will correspond to lowering the effectiveness of RK  and RL ; and the reverse.   

The upshot is that households in this framework experience the effects of limitations on natural capital 

in two ways: first, in the direct value of natural capital to their household satisfaction by way of their 

utility function; and second in the loss of productive capacity to deliver goods and services they value by 

way of the rent charged by natural capital with in the form of lower effectiveness of (and returns from) 

the capital and labor households supply, with resulting limitations on their household budget available 

for consumption, savings and leisure time.  Said another way, natural capital limitations place limitations 

on household budgets indirectly. 

But with this, the resulting claim is we have a complete, closed, neoclassical framework for the entire 

eco-economy, independent of arbitrary assumptions related to functional forms, parameter values, or 

obscurely-hidden suppositions.  But it is absent a detailed representation on the natural economy side – 

unlike what is found in many IAM and climate models (e.g., Nordhaus, 1977a,b, 1992a,b, 2008, 2010, 

2012; IPCC,2007; others evaluated in Saunders,2015), which elegantly depict many of the more complex 

interactions among the components of N showing in the identity (5), and certainly better depict reality 

than the simple functional forms for these components employed in the emulation model, showing 

below in equations (E.15) of Appendix E. 

Appendix B: Why it all Works: General Equilibrium Foundations of the Framework (and Emulation 

Model) 

B.1. Why it All Works 

The good behavior of the emulation model reveals itself by delivering long-term Phelps-style “golden 

rule” conditions under a broad range of initial conditions and parameter values.  The time dynamics 

more generally also move the system in explainable ways. 
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The good behavior of the emulation model (and framework generally, it could be said, with some 

exceptions regarding forbidden functional forms) arises from what turns out to be its grounding in 

general equilibrium theory; and observed behaviors can be formally described in these terms.   

The Fundamental Existence Theorem for general equilibrium lays out what must be assumed for general 

equilibrium to occur in the system (Arrow and Debreu, 1954; Luenberger, 1995).   

For the Fundamental Existence Theorem to hold, real (output price-deflated) prices must be used in 

determining household and producer choices.   

The dual unit cost function of the production function used delivers unit cost, which is also the price of 

output (price of goods and services delivered to households and used for capital formation). While it 

may seem counterintuitive that the price paid to producers is equal the cost of production, the apparent 

“zero profit” this implies is only zero profit in the sense of use how neoclassical economists use the 

term, not what producers would consider zero profit.   Neoclassical economists subtract off returns to 

capital as part of the profit maximization process.  To most business ears, “profit” would be precisely 

that very component economists subtract that is returned to capital owners – revenue generated less 

the costs of production inputs required to generate it, or profits returned to capital owners. 

Prices are also needed to establish the household budget constraint.  Workers and capital owners are 

compensated in nominal dollars, but those nominal dollars go further when the output price drops.  As 

this could induce a change in the physical consumption level, the utility function (mediated by equations 

(B.8) and (B.10)) will govern the exact household consumption level choice when the budget constraint 

is loosened.  But this will in turn be governed by household responses to what they see as “real” prices, 

once specified in output price-deflated terms, this being what matters to them in making their 

consumption choices.   

Another way to look at it is through the eyes of Slutzky (Slutzky, 1915): household consumption 

decisions are determined not just by relative price effects but income effects as well.  These in turn 

depend on the value of c , the nominal price of goods and services.  Consider the case where, say, c is 

going down due to technology gains.  In this case households can buy more physical goods and services 

with lower outflow of (nominal) earnings when their (nominal) price goes down. This increases the 

household’s effective income. 

Similarly, producers must ensure their factor-use decisions are profit maximizing.  This means they must 

match physical quantities used and produced to both factor prices and the price of output.  To do this, 

they need to match physical quantities to real prices, and to undertake this profit maximization they 

need to know at what price they will be able to sell their output to household consumers, namely c  (all 

of which  illustrated in equations (B.8)). 

Technical theoretical point: Note that good system behavior ensues in the later-described emulation 

model even when households are assumed to reach a “satisficing” level of consumption.  At first glance, 

this may seem to violate one of the assumptions of the Arrow-Debreu Fundamental Existence Theorem.  

In particular, the Arrow-Debreu statement of the theorem has a condition commonly understood as, 
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“There is no satiation bundle in any consumer’s consumption set.”36 This seems to rule out what we are 

proposing here, namely that individual households can have a point beyond which they are satisfied 

with having no additional consumption in any time period, given their budget.   

However, further examination of this existence condition shows that “satiation” as applied to the 

emulation model implementation means something different from what is meant by the Arrow-Debreu 

condition.  The utility function employed here to represent households is a standard Cobb-Douglas 

function, which inherently has no saturation point: increases in any element of the function increase 

utility without limit.  However, as Arrow-Debreu point out, this does not mean utility is not constrained 

in normal circumstances – the household budget puts a cap on the “amount” of utility that can be 

realized at any one time.  In the implementation here, household budget is determined endogenously, 

and so constrains overall consumption level.   

To emulate scenarios where overall household consumption is fixed at some zero-growth level (given 

fixed population), but when technology gains are present, adjustments to the component utility 

function value attribute elasticities are needed to keep consumption stable.  But what is interesting is 

that this is accompanied by overall utility going up – the technology gains drive increases in leisure time 

while preserving (or increasing, in the case of labor technology gains) the supply of natural capital.  In 

the emulation model, overall consumption can be set at any level, and while that level may well be 

unpredictable, households in future might choose to take their newly-increased utility in the form of 

more leisure time or natural capital expansion, at the expense of increased consumption of goods and 

services (a trend already visible in certain Scandinavian countries today).   

At bottom then, the framework and emulation model structure are – neither one – inconsistent with the 

Arrow-Debreu satiation condition.  And it is very likely that overall conformity with the Arrow-Debreu 

theorem explains the emulation model being so well-behaved under a variety of sensitivity tests, thus 

perhaps even helping to endorse the theorem’s already broad reach. 

B.2. Why does intergenerational equity fall out automatically? 

In a steady-state zero-growth human economy that honors the constraints imposed by the natural 

economy, future generations are endowed with the productive capacity and natural capital of each 

previous generation.  Forces in the eco-economy push in this direction with a private-ownership, free 

market economy.  The system automatically goes to a Phelps “Golden Rule” condition, moving 

thereafter along a so-called golden rule pathway that maximizes household utility in each generation.  

The equations of neoclassical economics guide it this way.  Profit-maximization by producers and utility 

maximization for households (including natural capital utility) are the driving forces of its evolution.  The 

introduction of technological improvements only serves the golden rule more forcefully: each 

generation endows the next with the technology they have developed, which has served to increase 

household utility in the current generation, even without growth of the productive economy (a kind of 

                                                           
36 Condition III.b. page 269 of Arrow and Debreu, 1954.  Luenberger uses the language quoted (purloined) here to 
describe this non-satiation condition (Luenberger, 1995, page 224, condition #2). 
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“green growth”).  Subsequent generations may improve on that, increasing leisure time and reducing 

assaults on natural capital along the way. 

Each generation, in effect, values the welfare of the next as their own.  This could be considered to 

imply a zero social discount rate, though what Phelps calls the “social return” (real returns to capital less 

depreciation) can be non-zero along the way to a golden-rule pathway. 

So why does the system automatically seek out and find a golden-rule pathway?  The truthful answer is I 

was personally surprised to see the emulation model deliver this result, and more surprised to see it be 

delivered when natural capital is explicitly incorporated in the framework.  The weak analytic answer is 

that the mathematics dictates that this be so; the true answer may lie far deeper than this, and is left for 

future eco-economists to unravel. 

B.3. Why does income inequality between labor and capital disappear automatically? 

Thomas Piketty (Piketty, 2013) has presented evidence that, in today’s world, capital owners are 

extracting returns in excess of what would be optimal for households as a whole, relying on concepts 

developed by Solow (Solow, 1956, 1988) and Phelps (Phelps, 1961, 1965). In particular, the argument is 

that for a socially fair distribution of economic benefits to labor and capital, the condition r g must 

obtain, while Piketty claims currently r g by a substantial margin.   

It is quite easy to argue that this observed reality arises whenever there is insufficient capital in place to 

accommodate the willing labor supply available.  An interesting thing happens when the emulation 

model is queried on this topic.  That is, the emulation model allows the user to reduce the initial supply 

of capital and let the system adjust.  When this is done, the system delivers the Piketty observation of 

r g  – for a time.  But the system acts to draw in more capital via the promise of increased returns – 

and substitutes toward more labor demanded given the disadvantaged prevailing wage rate owing to 

the labor surplus.  Capital owners in the near term extract more “Ricardian rent,” owing to capital 

scarcity, and this flows through as excess returns.  Labor suffers a wage disadvantage for a time, owing 

to its being in surplus, but demand for labor grows until balance is eventually re-achieved and capitalist 

rent-taking returns to zero.   

An important feature of this dynamic is that, at any one time, each factor of production (capital, labor) is 

returned its “marginal productivity” – that is, the contribution to economic output (eco-economy 

output, more exactly) each additional unit of each input delivers.  It thus can be argued to be “fair” in 

this sense, in returning each factor its contribution to the productive process. 

This labor disadvantage prevails only for a time.  Eventually, the system draws in sufficient capital from 

households that labor becomes the increasingly scarce input resource.  As these two claims on the fruits 

of production come into balance (and remember this is a balance ultimately chosen by households in 

their savings/leisure time tradeoff), the marginal productivities of each factor input come into balance. 

Full (willing) employment matches household decisions on savings and consumption. 
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Eventually, the system approaches a zero-growth golden-rule pathway/trajectory and the human 

economy is characterized by r g ; and each of capital and labor receive their due in accordance with 

what each contributes to household economic welfare (including value placed on natural capital).  

In steady state, if one of the production inputs of capital and labor should fall short for a time, free-

market forces arise to correct the imbalance.  Technically speaking, this makes the optimal solution to 

this dynamic system a stable solution. 

This speaks only to income inequality between capital owners and labor.  It does not address the 

distribution of income across households that supply different quantities or “qualities” of labor.  This is a 

more complex question.  But an observation that can be drawn from this analysis is that in a condition 

where labor is fully employed, each household will both decide how much labor it wishes to supply, and 

will bid for employment at a wage rate that matches its marginal productivity to the economy and to the 

household.  It is easy to speculate that the system will seek to converge to a condition where labor in 

each household will see its income apportionment to be fair given the leisure/consumption/savings 

choices it makes, and the value it can rightfully deliver to/extract from the productive economy.  No 

proof of this claim is offered here, but the mathematics seems to indicate this is a formational element 

of the optimal, while feasible, condition the eco-economy seeks to deliver in the large. 

Appendix C. How can Capital Formation Occur in a Zero-growth Economy where Net Capital Returns 

are Zero? [And a CORRIGENDUM] 

C.1. Corrigendum 

In the Ecological Economics article preceding this one (Saunders, 2014), I claimed to have addressed 

Herman Daly’s worry (Daly, 2005,2008) that in a zero-growth economy real returns to capital would go 

to zero, with the incentives for capital formation disappearing. 

I not only did not actually address it, but the argument I gave there was wrong.  My observation that the 

marginal productivity of capital would always be positive, while actually true, does not mean net returns 

to capital will be positive.  Specifically, for theoretical consistency, a correction must be made to 

subtract depreciation (degradation of physical capital) from marginal productivity.  When this is done, 

the zero growth economy shows real net return to capital goes to zero, just as Daly predicted.  This 

obviously creates a serious challenge for explaining how such an economy could go on indefinitely, with 

household savings going to producers only being sufficient to offset deteriorating/depreciating assets in 

terms of net value creation – zero returns for producers, and zero resulting returns delivered to 

households.  What happened to the incentives for households to save, and producers to produce, if both 

returns are always zero?  

C.2. Physical economy mechanics and zero-growth dynamics 

Herbert Simon (Simon, 1956) provided a partial answer to this conundrum with his concept of 

“satisficing” behavior.  He applied this concept to both consumers (individuals, households) and 

producers. Economic agents act, he said, to make the tradeoff between the cost of effort applied and 
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the value of gains realized from that effort reach an equilibrium – for instance, household consumption 

vs. leisure time may favor increased leisure time over potential new wages earned from further labor 

supplied to producers and savings they accrue for retirement.  In Simon’s picture, households have 

“satisficed” their consumption needs and, importantly, their savings needs. 

This leads us part way.  But to complete the theoretical picture we need to call on the insights of other 

luminaries.  This requires separating the household side from the producer side. 

Households 

Here we call on the work of Franco Modigliani and associates (Modigliani and Brumberg, 1954). The 

Modigliani picture of household savings/consumption decisions rests on the idea that households want 

to save for retirement.  This will hold true even in a zero-growth economy. 

The consequences of this are best illustrated by appeal to another emulation model appended to this 

article (Household Capital Accumulation model 3-11-18.xlxs).   

Figure C.1 shows what savings dynamics look like for a “representative” household over its “lifespan” in 

a zero-growth economy (assuming no technology gains).   

 

Figure C.1.  Capital Accumulation/Savings Dynamics for a Representative Household   

Here we see a simplified picture, where the “pre-employment cohort” associated with the household 

(i.e., children) saves nothing during their first 20 years; also the “retired cohort” saves nothing after age 

65.  While the “pre-employment cohort” shows as also consuming nothing, the presumption is that the 

“working-age cohort” supports them during their pre-employment years.  In the “retired cohort,” 

households no longer contain any pre-employment individuals, and instead of working rely on drawing 

down their savings to support their consumption.  
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Several interesting dynamics become visible here, but first consider what happens when households at 

different stages of their lifecycle are aggregated together.  Figure C.2 illustrates. 

 

Figure C.2.  Capital Accumulation/Consumption Dynamics for Aggregated Households   

Here, we assume a “seed” household generation that is followed in each subsequent period by new 

generations that augment it.  Over time, as new generations are added and others die out, we see that 

the household aggregate of consumption and capital supplied producers from savings approaches a 

fixed limit and remains steady thereafter.  This household savings dynamic creates a zero-growth 

steady-state economy that sustains itself. 

The underlying dynamics involved is best understood by reverting to the “representative” household of 

Figure C.1.  During their working-age careers, households set aside a fixed portion of their budget for 

savings.  In a zero-growth economy, they must reinvest their capital returns (“unearned income”) to 

offset depreciation of the physical assets they have invested in and to maintain these.  Failing to do so 

means the value they lay claim to from these assets diminishes – new and replenishment investment 

from other sources will dilute the value of their holdings.  But doing so generates zero return from these 

reinvestment investments ( 0r d  ).   

But their savings also come from another source: savings extracted from their “earned income” in 

excess of the amount needed to offset depreciation (by such savings behavior households forgo some 

additional consumption of goods and services in principle available from their “earned income” stream).  

Remember that forgone consumption is what allows producers to produce capital goods instead of 

consumption goods, so these household savings generate investment capital for the productive 

economy in this way.  As depicted in Figure C.1, household ownership claims to capital increase during 

the working-age period where savings exceeds reinvestment-level savings. Consumption also goes up. 

By age 65, household claims on capital are equal the cumulative savings they have set aside from earned 

income – they “get back” exactly what they’ve put in to the system (i.e., again, zero return).  In contrast, 



Page | A-16 
 

savings derived from unearned income does not return those savings to households, except inasmuch as 

they technically pass to the household budget each period as ownership claims destined for 

reinvestment.   

But by this retirement mechanism, households still have incentive to save and invest even a zero-growth 

economy.  And in total, upon retirement, household capital ownership claims exactly match the physical 

capital they have funded that is still operational. 

The emulation model shows the numbers exactly match. The capital value claimed by the household at 

age 65 is identical to the capital assets physically in place and operating in the productive economy (or 

more accurately, the individual household’s share of such in aggregate household capital ownership). 

These two numbers are exactly equal the sum total of savings contributed from earned income. 

Consumption of the working-age cohort rises because over time unearned investment income grows as 

the household accumulates more capital assets, meaning less earned income is needed to fund the 

household’s chosen savings level (from their utility function), leaving room for more consumption. 

In retirement years, the household ceases saving and lives off unearned income.  This income declines, 

not because marginal returns decline, but because household claims on the capital stock of the 

productive economy decline as new investment dilutes their ownership claims and holdings.  Their 

household consumption declines as their unearned income to support it declines.  

But in aggregate (Figure C.2), household savings maintain the supply of productive capital and 

household consumption stays steady in a zero-growth economy. 

According to the Modigliani model, then, households have incentive to save even a zero-growth 

economy with zero net return to savings. 

Producers 

What about producer incentives?  If net returns they can deliver using household savings are zero, why 

invest in capital stock to begin with? 

In a stable zero-growth economy, capital and labor supply are in balance, so aggregate corrective forces 

that arise from imbalance are not in play and don’t provide an answer.  What profit incentive still exists 

for producers to maintain production? 

One consideration is that households will want to save and invest and, as the ultimate owners of 

production, could effectively force producers to create capital that replenishes and sustains production 

and throws off unearned income for retirement.  But that sheds little light on the market dynamics. 

From the producer side, picture the flow as follows: producers will still want to maximize investment 

returns.  Think of these returns as dividends flowing to households.  Producers count on households 

turning around and reinvesting these dividends to offset depreciation of producer-operated capital 

assets (at least count on those coming from households in the working-age cohort) and to maintain 
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production levels and profit levels steady. These dividends are available as surplus cash flow from the 

productive economy (revenues less input costs) because existing capital is throwing off return, even if 

it’s aging.  As individual households enter retirement, producers count on new entrants to the system to 

cover depreciation losses and thereby allow them to continue operation, while sending promised 

dividends back to those households not contributing capital.  One cohort takes up investing to cover the 

first.  The retired cohort pays a price in the form of a declining share of capital ownership as their 

investment is diluted, but they still receive a return on the declining assets they command and income 

to support consumption. 

Profit-maximizing producers will compete to supply these dividends.  If they don’t, the market 

(households) will punish them in the form of reduced market valuation of their assets and operations, 

and competitors will step in to fill the gap. Even if, on the whole, the productive economy delivers zero 

net returns when depreciation is accounted for, producers will want to maximize the dividends they can 

generate and report as investor gains to owners.  They can accomplish this by invoking the neoclassical 

optimization (profit-maximizing) condition, so to speak, which optimizes the output they generate from 

chosen inputs, and generates surplus cash for dividend payments (or for reinvestment) in the current 

period.   

A deeper look into this picture can be had by considering the work of in Johansen (1959), Solow (1960), 

and Phelps (1964).37  These researchers took explicit account of capital vintaging, via a “putty-clay” 

formulation, which accords with the capital dynamics described here.  They envision that capital 

formation is like a process of adding each period “putty” layers on top of (existing) layers that have 

hardened into “clay.” The new putty layer can be formed to accommodate prevailing conditions of labor 

and capital supply markets and technology to maximize profits.  The older clay (i.e., physical capital) is 

fixed in its production technology, and slowly deteriorates (depreciates) out of the system. 

These researchers show that older vintages still throw off their original return from capital (marginal 

productivity of capital), but decline in their capacity to produce overall returns (rate times volume).  

Only by adding new capital can overall production and returns be maintained.  This fits exactly with the 

picture that, as retirees consume returns from their capital invested pre-retirement, they will receive an 

ever-smaller share of producer returns generated. But they will get back exactly what they put in at the 

end of the day.   It’s as if they have forgone funding depreciation from savings and left that to the next 

generation, while consuming their capital in a way that matches depreciation dynamics (the returns they 

consume are equal depreciation ( r d ) ). 

But production capacity overall remains steady, with producers maximizing profit (returns) along the 

way.  

In summary, physical flows of capital resources between households and producers remain in place in a 

zero-growth economy, with producers maximizing profits and households maximizing retirement-period 

utility given them via their savings. 

                                                           
37 Good expositions are found in Sheshinski (1967) and Gilchrist and Williams (2000). 
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Bottom-line assertion: Even in a zero-growth eco-economy, capital formation can continue apace to 

sustain it.   

This may provide some comfort to ecological economists, and perhaps help assuage concerns on this 

foundational question first raised by Herman Daly. 

Technology Gains 

When technology and innovation come into play, the zero-growth capital formation dynamic is 

reinforced in an appealing way.   

The picture goes back to the insights of Hayek (1945, 1960) and Schumpeter (1947a,b).  Here we picture 

that some producers are able to supply new goods and services to households that are better and 

cheaper, even while households do not increase overall consumption of these goods and services. 

Hayek viewed the system as a complex, evolving one, not one limited to producing only what it has 

produced before.   No product is permanent and economics is about change, not stasis.  Competition 

among producers to better supply the array of goods and services asked for by households, and to grow 

their share of supplying these, feeds production innovation and new technologies.  Even if overall 

production and consumption of goods and services stays the same, it will be ever-refreshed in its 

composition.  Schumpeter likewise saw the system driven by forces of “creative destruction” that act to 

generate new goods and services not before seen, eliminating in the process the production of obsolete 

ones in a complex web of agent interactions.   Schumpeter argued that innovators would be able to 

capture monopolistic “rent” (i.e., higher than average returns to capital) until competition erased it by 

yet newer innovation. 

The emulation model reported here provides supporting evidence that technology improvement 

mechanisms work in this way even while physical consumption of goods and services remains fixed 

overall.  In this framework, new technology means goods and services are produced with ever-lower 

cost, effectively requiring less of the household budget to consume – the utility from which can be 

increased by adjusting the household allocation of utility components.  With “satisficing” behavior on 

the part of households, technology improvements are captured by them in the form of increased leisure 

time, and/or greater value placed on direct benefits from natural capital, even while producers are 

enabled to innovate products that are better, cheaper, and moreover require less drain on natural 

capital assets as well as household labor supply.  It reveals itself to be, in other words, still eco-economy 

sustainability, but enhanced by the Hayek/Schumpeter dynamic and the new technologies that arise 

therefrom. 

Appendix D: Financial markets mechanics and zero-growth dynamics in a physical economy 

Financial markets obscure the underlying physical realities.  Financial markets are subservient to physical 

markets, and are ultimately governed by the physical flow dynamics of the real economy. Various 

dynamics come into play within financial markets regarding banking-based multiplier effects and 

government “fiat” money (both of which can appear as if from nowhere), that appear to be in violation 
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of the physical capital investment flows described here, but they are not.  Financial markets merely 

supply the “fluid” that directs physical capital supplied by households to its most productive uses, and 

merely oils the productive machine.  But it is a highly valuable lubricant.   

For simplicity, first assume that households hold all their savings in the form of equity securities.  These 

securities confer ownership to households of the means of production (physical capital in place)38.  

Households also secure ongoing unearned income from capital returns. In such a circumstance, the 

value of these securities can therefore not exceed the productive economy’s capacity to produce goods 

and services from the capital in place. 

The physical flow of capital (which, remember, is simply forgone consumption by households directed 

instead by producers to the creation of capital goods) is intermediated by financial markets as follows:  

A new entrant to the working-age cohort decides to set aside some consumption for savings to invest in 

equity securities.  In a steady-state economy, these will be purchased from an existing equity owner, (or 

perhaps from producers issuing new shares to the market if the producer is running short of dividend 

reinvestments (say from retirees) or sees a profitable investment opportunity).  But in any case, the 

producer in a zero-growth economy cannot provide total returns to owners in excess of the capital’s 

physical capacity to do so.  In effect this means either existing equity owners surrender their claims (e.g., 

retirees surrender their holdings), or if not, the market value of each security declines.  Either way, 

securities markets adjust to keep overall returns to securities owners fixed (even as ownership by non-

contributing retirement households diminishes via dilution), and nothing physically is either created or 

destroyed in the process. 

Now suppose households instead decide to keep all their savings in the form of bank deposits.  Here is 

where so-called “multiplier effects” obscure the physical dynamics, but do not change them.  Fractional-

reserve banking enables the system to multiply the supply of money circulating in the economy (banks 

lend out a large fraction of the deposits they hold, which fund firms who pay suppliers who in turn 

deposit the proceeds in other banks, who in turn, etc.…, thus apparently “multiplying” household 

savings deposits available to the economy39).  This money supply is greater than the redemption claims 

that could actually be honored should all depositors claim them at once, so the system counts on them 

not doing so.  

But the physical economy ignores all this and the physical capital is what it is and no more, and can 

produce only what it can produce, irrespective of promised claims residing in financial markets.  There 

can be no multiplier effect on the amount of investment physically put into place as a result.  This is 

restricted by household savings and the capacity of producers to profitably use these funds for new 

physical capital. 

                                                           
38 Remember that the ownership conveys direct control as well as claims on a firm’s profit stream: Equity owners 
ultimately have absolute control over producers, as they have to power to democratically hire and fire shareholder 
representatives– Boards of Directors and the management these Boards hire. 

39 The multiplier, m , is formally defined as 1m
R

 , where R is the fractional reserve requirement, typically 

imposed by government central banks.     
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The economy can only produce a limited quantity of goods and services at any one time.  For investment 

to happen, some of these must go to the creation of new or replenishment physical capital – so-called 

capital goods.  These are goods not going to households, so households are sacrificing consumption they 

could otherwise claim from a productive economy that instead used these resources (capital, labor) to 

create consumption goods and services.  This is what is saved by households, in the form of forgone 

consumption.  So both the investment and savings originate in households.   And they are equal because 

the physical economy can only create new capital using goods and services forgone by 

households.  (Thereby honoring a simple identity among total output produced, total consumed and 

total going to new and replenishment capital via savings.)  All this happens notwithstanding anything 

that is happening in the (more “virtual” than real) financial markets where only promises reside.  

Banks are a conduit of household investment capital, lubricating the process, but this cannot exceed the 

household ability to deliver it in the form of forgone physical consumption (money supply 

notwithstanding) used instead by producers to produce new physical capital. 

But households can invest in other financial instruments.  For instance, they could invest in debt 

securities.  While debt holdings, like bank accounts, do not exactly confer ownership of production, they 

do confer a substantial measure of control over producer operations. Corporate bonds issued by firms 

to raise capital carry with them obligations on producers to perform and deliver returns.  This control is 

not only in the form of bond “covenants” restricting producer operations and financing activities, but 

producer returns are preferentially directed to bond holders at the expense of equity security holders if 

necessary – debt holders are “senior” to equity holders in their claims on the profit stream producers 

generate.  Further to that, debt securities most often contain guarantees by producers that “coupons” 

(“dividend” guarantees) will be issued periodically that debt holders can redeem for cash or reinvest.     

Moreover, because debt securities are traded on the open market, debt markets (again, households-

driven) are subject to households downgrading/discounting their financial value if producers are not 

performing to expectations.   Bond rating agencies can “downgrade” corporate bonds, influencing their 

market value and the ability for such producers to issue further debt.  Financial markets thus allow 

households holding debt securities to “punish” under-performing producers.  Again, in the end, 

producers can supply returns to debt holders no more than producers’ capital in place physically allows.  

Bottom line: financial markets in no way violate the underlying physical dynamics of the human 

economy, but only make its operation smoother (by comparison, say, to a currency-free barter 

economy).  

Monetary Policy and Government “fiat” Money 

Governments can affect the quantity of currency circulating in the economy. Their central banks do this 

by various mechanisms, including adjusting banking fractional reserve requirements and these central 

banks’ lending rates.  Their government fiscal counterparts can do this by issuing government securities, 

effectively “printing” money.  But this does not change the physical realities of economic production in 

any substantive way. 
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It is easiest to see this by considering a situation in which the physical productive economy is operating 

(as in a zero-growth condition) at its capacity to produce goods and services.  Suppose the government, 

for the sake of argument, decides to immediately double the money supply circulating.  What would 

then happen is that the prices of everything would double (roughly speaking, twice as many “dollars” 

chasing the same amount of goods and services).  No more goods can be produced by this economy, but 

they would cost consumers twice as much (and, because production inputs would also cost twice as 

much, would cost producers twice as much to produce).  But nothing physically would change. 

Slightly more formally, this dynamic is described by the identity developed by Irving Fisher (1911): 

PY mv , where Y  is the “real” (i.e., physical) output of the economy, m is the money supply 

circulating, v is the “velocity” with which the money is circulating, and P is the price of that output 

(often characterized as the “output deflator”).  From this identity we see that if real physical output Y is 

fixed (zero-growth economy) and the velocity of money remains constant, doubling the money supply 

m merely serves to double prices. Nothing changes in the physical economy.  The physical economy 

ultimately governs what happens, irrespective of money (currency) supplies or financial market 

dynamics. 

Bottom line for Appendix D: household choices, and physical principles, ultimately rule, not financial 

markets or government money creation.  Money (currency or its equivalent) is merely the lubricant of 

the physical system that commands the core of sustainability dynamics. 

Appendix E: Functional Forms and Derivations for the Emulation Model 

The emulation model adopts specific functional forms for use with the general framework presented in 

Section 2.2 of the main article and Appendix A above. 

Households 

For the emulation model, households are assumed to exhibit a household utility function of the 

following form: 

   0, ,u C S l u C S l N      (F.1) 

While more sophisticated functional forms are often used, this Cobb-Douglas form has the advantage 

that the exponents of C , S , l and N  denote households’ preferred shares of consumption, savings, 

leisure time, and desire for natural capital respectively, thus informing intuition in the results that 

follow. 40 The emulations reported in this article assume u is a constant-returns-to-scale (CRS) function, 

so 1       .   

To reflect the possibility of an eco-economy wherein households limit their consumption of goods and 

services to some “satisficing” level (Simon, 1956), we introduce a series of parameters to adjust the 

                                                           
40 As noted in the main text, I am grateful to Herman Daly for suggesting inclusion of natural capital explicitly in the 
utility function. 
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exponents of (F.1) over time.  Specifically, we introduce parameters , ,r r r    indicating periodic 

percentage changes in , ,    respectively, to reflect a situation where overall household utility does 

not change, but its components do.  Owing to the CRS assumption, this means   becomes as follows: 
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1

1

1
r t r t r t

e e e  
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   

   

   

    

    

  (F.2) 

Producers 

The functional form of the producer production function is CES (Solow)41.  While not the most general 

function available, this function has several useful properties. First it is flexible, allowing substitution to 

occur among inputs.  Second, it has a derivable, closed form dual unit cost function.  Other more flexible 

functions, such as the Translog, have dual forms but not analytically derivable ones.42 The CES (Solow) 

function is “self-dual,” meaning the cost form has the same algebraic form and structure as the 

production function form.  This also assists in introducing technology parameters into both forms [see 

equation (E.13)].  The functional form for production is: 

          
1

1 1

1
X X R RK X L X XR K R L RY a K L a K L
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  (F.3) 

Here, we distinguish between effective resources used in production, R , and the raw resources drawn 

from natural capital, rawR : 
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

  (F.4) 

the parameter XR  being the parameter that reflects the efficiency with which the productive economy 

uses raw resources (reflecting both process efficiency and, for energy resources, the conversion of 

energy content into exergy, or useful work).  From (F.3) and (F.4) can be seen the link between output 

production and resource use (extraction). 

                                                           
41 Author note: I use the moniker “CES(Solow)” to emphasize the fact the origin of the “constant elasticity of 
substitution” (CES) production function is properly credited to Robert Solow (Solow, 1956, page 77), not, as is 
commonly mis-attributed, to Arrow et al, 1961, whose article appeared 5 years later (and included Solow as co-
author, ironically).  I have no idea why this misconception is so widespread, but it is such a beautiful and useful 
function that it should be beyond dispute that the actual inventor deserves to be widely credited for it. 
 
42 The Translog cost function widely used for econometric work has a production function dual form (often called 
the “primal” form), but indirect techniques have to be used to derive production-side quantities (Saunders, 2008, 
2015, 2017). 
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The corresponding cost function is introduced later. 

Natural Capital 

The function (F.3) must be further modified to account for scarcity (Ricardian) rent extracted by natural 

capital.  As seen in Appendix A, the natural capital production function is 

    1t t t t t tN N R A W    ¡   (F.5) 

As shown in Appendix A, the dual unit cost function is a fixed scalar for any combination of values for 

the elements of (F.5), and can arbitrarily be set to unity 1Nc  . 

However, as natural capital is limited, it is to be expected that it will extract rent from the productive 

economy in the form of increased effort needed to supply raw resources for use in production.  

Accordingly, what is needed is a price of natural capital defined as follows 

 N N Np c rent    (F.6) 

Further, if it is the case that natural capital has a lower limit below which it experiences catastrophic 

collapse, criticalN , the rent term in (F.6) must accommodate this so that 

  , , , , , ,N N N t criticalp p c N N R A W ¡   (F.7) 

Further, we would like it to be the case that as tN  approaches criticalN , natural capital becomes stingier 

in the resources it provides to producers.  The following functional form exhibits these properties 

 
1

ln
capacity critical

N N

t critical

N N
p c

N N

 
   

 
  (F.8) 

where   is a shaping factor determining how quickly Np  rises as it approaches the critical value, and 

capacityN  is a reference point determining overall Np  magnitude.  When t capacityN N , the above 

expression becomes N Np c : the supply of natural capital is at the maximum possible for the planet 

(which would reflect a condition where human economic activity is absent – no raw resources extracted, 

and no waste inflicted on natural capital).   

This function can be better understood by way of graphical illustration: 
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Figure E.1.  The Natural Capital Supply Curve 

As the level of natural capital in place increases to the right in Figure A2, the Ricardian rent decreases.  

But as instead natural capital decreases toward the critical value, rent extracted becomes asymptotically 

large.  As the value of criticalN  increases, this curve shifts rightward, indicating that the rent extracted by 

natural capital will be higher for any given value of tN  and will rise to its asymptotic value at a larger 

value of tN  than before the shift in criticalN , meaning nature is extracting more rent at lower values of 

tN . 

To accommodate its meaning for producers, Ricardian rent must reflect the added effort required to 

extract raw resources.  As shown in the discussion surrounding equation (B.13), the prices of all 

elements of (F.5) each carry a price equal this unit cost and are fixed to each other and to unit cost.  

Accordingly we say R Np p .  

This dynamic must be introduced to the resource sector of the production function (F.3).  To accomplish 

this, we must introduce a scalar quantity reflecting the difficulty producers face in extracting raw 

resources from natural capital (comparable to the scalar technology terms for other factor inputs).   

Accordingly, we define such multiplier (which we can call R ) based on (F.8) as follows: 
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  (F.9) 

Further, we would like to have it be the case that for some base case reference value of 1t baseN N  , 

this multiplier is unity, given base case choices for capacityN , criticalN , and  .  Specifically, we can define 

this normalizing value base  as follows: 
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  (F.10) 

When this R  is introduced to the production function, (F.4) becomes 

    
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   (F.11) 

This says producers must apply extra capital and labor to produce the same raw resources as natural 

capital’s Ricardian rent becomes larger (natural capital becomes scarcer).  Note that while Rp  is stated 

as a price, it can easily be understood as a price containing a resource exhaustion premium extracted by 

natural capital from the human economy. 

Accordingly, the production function corresponding to (F.3) becomes 
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  (F.12) 

This says producers can become more efficient using raw resources by implementing technology gains 

XR  but resource producers become less effective as Ricardian rent burdens ( R ) become greater. 

The unit cost function that is dual to (F.12) is43 
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  (F.13) 

where  

                                                           
43 That technology gains as specified on the production function side can be introduced this simple way into the 
cost function (for any CRS function) is shown in Saunders, 2005, Supporting Proofs, Theorem 4.  The formal 

derivation (long, tedious) of c  from Y  is available from the author, but follows the method outlined in Saunders, 

2014, Appendix B (supplementary materials).  Note the simple way in which factor-augmenting technology gain 
parameters in the production function instead simply divide the factor prices.  A powerful benefit of duality theory. 
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To be complete, we must specify functional forms for the elements of (F.5).  To keep things simple, we 

choose the following functional forms: 
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where , ,   are constants (that can be changed for emulation purposes to show sensitivities).  These 

relationships imply the following: the replenishment capacity of natural capital depends directly on the 

supply of natural capital in place; resources drawn from natural capital are determined by the 

productive economy’s demand for them; the ability of natural capital to absorb waste thrown off by 

producers again depends directly on the supply of natural capital in place; and the waste generated by 

producers is directly related to on quantity of resource used to produce total economic output, tY .  This 

latter function incorporates a technology improvement parameter W  that allows for waste production 

to become more efficient over time (i.e., less waste produced per unit of resource extracted for 

production – and/or, waste recycled).  From (F.15) it seen that absorption capacity is limited via natural 

capital supply.  There is also a restriction that absorption itself cannot exceed waste ( t tA W ) for the 

identity (F.5) to be physically meaningful. 

Obviously, these are overly simplistic functional forms.  For example, the waste generation function 

assumes all waste is of a single aggregate type, uniformly absorbable by the natural economy.  Present 

economy-climate models treat this in a much more sophisticated way.  But in the cause of generating 

initial insight, we ignore that here, leaving others to more properly specify this – and the other 

components driving the formation dynamics of natural capital. 

But with this, the specification of the simulation model is complete and the eco-economic system is fully 

defined. 

Utility-maximizing Conditions (extended from previous published paper) 

In addition, specific utility-maximizing considerations allow the development of equations that also 

appear in the model.  In particular, equations for consumption, savings and leisure time are readily 

developed: 

Households are assumed to exhibit a household utility function of the following form shown in (F.1): 
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   0, ,u C S l u C S l N      (F.16) 

On the household side, the following equations describe household utility-maximizing behavior, 

assuming knowledge of certain quantities and prices delivered from the production-side optimization: 
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  



  (F.17) 

Utility is maximized subject to two primary constraints.  The first of these is the household budget 

constraint: the amount consumed and saved (in nominal terms) must equal wage earnings plus 

investment returns on the total savings they hold claim to. ( K  is the sum of all past savings from earned 

income, and the sum of all past savings from both earned and unearned income, reduced by 

depreciation).  The second constraint is essentially a statement that total labor supplied to the 

productive economy cannot exceed the amount of labor hours available in a day from the household, 

accounting for the fact that households by necessity take leisure time – even if only for sleep, to eat, and 

for time dedicated to basic household management and child care.  

Solving this utility-maximizing problem involves forming the Lagrangian and calculating the first-order 

partials: 

    , ,u C S l cC cS wl wL rK l L           L   (F.18) 
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  (F.19) 

And the budget constraint must be satisfied 

 cC cS wl wL rK      (F.20) 

Also, from the Kuhn-Tucker theorem, the inequality constraint must satisfy 
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   0l L     (F.21) 

For the Cobb-Douglas utility function used for the simulations (   0, ,u C S l u C S l   , where 

1      ), the first-order conditions (F.19) become: 
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  (F.22) 

One solves this system by testing combinations of the Lagrange multipliers to see under what conditions 

the system constraints are satisfied.  If it is assumed that the leisure constraint is non-binding 

(household time available L is always greater than leisure time taken), so that 0  , it is discovered 

that the resulting value of   delivers a solution.  In particular, after some algebraic manipulation the 

solution is 
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  (F.23) 

where 
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  (F.24) 

Equations (F.23) are used directly in the emulation model. 

Appendix F: Relation to Georgescu-Roegen Functional Forms, Structure and Functioning 

The neoclassical eco-economy model draws heavily on the Georgescu-Roegen Flow-Fund model, with 

some extensions and a few modifications.44 

                                                           
44 As noted in the main text, I am grateful to Herman Daly for suggesting inclusion of Georgescu-Roegen insights, 
principles, and methods. 
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Like Georgescu-Roegen, the neoclassical model treats capital and labor as funds (or stocks) from the 

perspective of producers. Further, resources are likewise treated as a flow to producers and waste as an 

outflow from producers.  The only possibly meaningful departures from the Georgescu-Roegen picture 

are: 

1. Labor is treated by Georgescu-Roegen (GR) as a fund producers call on; the neoclassical eco-

economy model (call it NEEM) treats it likewise.  However, in addition to a fund producers call 

on, NEEM also treats labor as a flow from households to producers each period. 

2. Resources are treated by GR as a flow; NEEM treats it likewise.  However NEEM also treats 

resources as a fund originating in natural capital and drawn on as a flow. 

3. Intermediate Materials is treated by GR as a flow; NEEM does not capture this flow explicitly, 

except inasmuch as the production function (B.5) incorporates in aggregate form the 

interactions among intermediates producers in the X  (intermediates) component of the 

production of final goods and services Y , and also treats extracted resources R as an 

intermediate input drawn from primary sources. 

a. (The designator “ X ” is used to characterize the intermediates sector to convey that it is 

properly modeled at a lower aggregation level by way of Input-Output modeling 

techniques that identify “crisscross” intermediates flows that would feed a GR-style 

production model at each node.) 

4. Maintenance is treated by GR as an input flow to producers; NEEM does not capture this flow 

explicitly, except inasmuch as a certain amount of capital and labor is set aside each period to 

refresh and replenish deteriorating (depreciating) capital.   

a. (Again, a lower aggregation level model would explicitly treat new capital and labor 

flows as specifically tied to the Input-Output nodes in a way that would feed a GR-style 

production model.) 

NEEM does incorporate other funds and flows beyond those in GR, as can be seen in the comparison 

Table A1 below: 

 Neoclassical Eco-economy 
Model 

Georgescu-Roegen Flow-
Fund Model 

Descriptor Fund Flow Fund Flow 

Consumption  
C: flow from 
producers to 
households 

N/A N/A 

Savings  
S: flow from 

households to 
producers 

N/A N/A 

Output  

Y: flow from 
producers to 
households 

and 
intermediates 

producers 

 
Q: flow from 
production 
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Capital 
K: fund for 
producers 

 
K: fund for 
producers 

 

Labor 
L: fund for 
producers 

L: flow from 
households to 

producers 

H: fund for 
producers 

 

Resources 
R: fund for 

natural capital 

R: flow from 
natural capital 
to producers 

 
R: input flow 
to producers 

Waste  
W: flow from 
producers to 

natural capital 
 

W: output flow 
from 

producers 

Replenishment  

R: 

regenerative 
flow from 

natural capital 

N/A N/A 

Absorption  

A: flow from 
natural capital 

offsetting 
waste 

N/A N/A 

Intermediate 
Materials 

 

Not explicit, 
except for 
extracted 
resources 

 
I: input flow to 

producers 

Maintenance N/A 

Not explicit, 
except that I 
and L go to 
replenish 

capital and 
offset 

depreciation. 

 
M: input flow 
to producers 

Land 
Part of natural 

capital, N 
 

L: fund for 
producers 

 

Natural Capital N: stock/fund  Not explicit  

 

Table A1.  Comparison of the Eco-Economy Model to Georgescu-Roegen Structure 

My claim is that this framework honors the essence and spirit of the Georgescu-Roegen formulation. 

Appendix G: A Note on Resource Rebound Dynamics 

In the predecessor paper to this (Saunders, 2014), attention was given to the phenomenon of “resource 

rebound,” wherein increases in resource use efficiency may deliver resource use reductions less than 

naïvely expected from pure engineering calculations.  But the inclusion of the natural economy changes 

these dynamics in interesting ways. 
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First, the emulation model shows rebound dynamics persist even when the natural economy is included, 

but in a curious way.  When the Base Case (zero growth, technology gains absent) is given a resource 

use efficiency gain, this reduces initial resource use (rebound less than 100%), meaning the draw on 

natural capital is initially reduced, causing natural capital to grow.  This boost in natural capital has the 

ancillary effects of increasing its replenishment and absorption capacities (compared to the Base Case), 

which makes more natural capital available to the human economy.   

But over time, two other dynamics come into play.  One, the resource efficiency gain reduces the 

“effective” price of resource use, spurring its use in standard neoclassical rebound fashion.45  But a 

further dynamic comes into play.  That is, Ricardian rent dynamics makes itself evident.  By increasing 

the supply of natural capital (in the short run), Ricardian rent is reduced as constraints on natural capital 

are reduced, thus spurring further resource use.  In the emulations, it happens, this increased resource 

use is allowed by the increased natural capital supply made available. 

Eventually, the emulation model suggests, resource rebound returns to a 100% value, but alongside a 

larger natural capital resource base to supply it. 

A different thing happens when technology gains are deployed to the production of intermediate goods 

and services.  In this case, 100% resource rebound still obtains but natural capital draws are diminished 

in a secular way, even with rebound in operation.  

Finally, an interesting thing happens when the resource substitution elasticity is altered.  Theory to 

date says that the larger is , the larger will be rebound.46 However, when  is reduced in the 

emulation model, long-term rebound is increased.  What happens here is that resource efficiency gains 

decrease resource use more in the short term with lower , just as theory would predict (lower 

rebound); however, the reduced resource draw then allows expansion of natural capital, which because 

this reduces Ricardian rent allows greater resource draw over time (and expansion of the economy 

therewith).  Explicit introduction of the natural economy changes the dynamics of resource rebound. 

Caution: It is crucial to note that the above emulations do not apply only to zero-growth conditions: 

household consumption, savings, and utility can continue growing even while being sustainably fed by 

growing natural capital if biophysical boundaries are honored.  However, a far different picture emerges 

when you force consumption (and savings) to remain at fixed levels (procedure described in the User 

Guide of the model).  For instance, when either resource use technology gain efficiencies or efficiencies 

of production are combined with “satiation” levels of consumption/savings, natural capital can grow 

even while household leisure time increases – resource rebound dynamics (while still in play) 

notwithstanding.  Something like a utopian-like result for many environmental humanists? 

Inclusion of the natural economy changes many common conceptions, it appears. 

                                                           
45 Thus making resource draw from natural capital, and its use, function equivalently to the “exergy/energy” 
distinction drawn by Ayres (1997) and Ayres and Warr (2005,2009).  Perhaps we need a more general moniker for 
resources in use (“exer-resources”?  Awkward.)  
46 See e.g., Saunders (1992,2008,2014) and Sorrell (2007). 
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Second Caution: Results reported from the emulation model rely on a very simple (simplistic) depiction 

of the components driving natural capital (even though the natural capital identity (5) itself is 

mathematically unassailable). More sophisticated depictions of natural capital replenishment and 

absorption dynamics could change this picture entirely.  (Note, however, that the emulation model 

allows for accumulation of waste, even in this simple depiction, should one wish to explore the waste 

dynamic.) 

All of which points to a large and complex degree of subtlety in regard to this (contentious) issue of 

“rebound effects” (Nordhaus, 2016). 
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