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Weierstrass traveling wave solutions for dissipative
Benjamin, Bona, and Mahony (BBM) equation

Stefan C. Mancas,a) Greg Spradlin,b) and Harihar Khanalc)

Department of Mathematics, Embry-Riddle Aeronautical University, Daytona-Beach,
Florida 32114-3900, USA

(Received 21 February 2013; accepted 18 July 2013; published online 7 August 2013)

In this paper the effect of a small dissipation on waves is included to find exact
solutions to the modified Benjamin, Bona, and Mahony (BBM) equation by viscos-
ity. Using Lyapunov functions and dynamical systems theory, we prove that when
viscosity is added to the BBM equation, in certain regions there still exist bounded
traveling wave solutions in the form of solitary waves, periodic, and elliptic func-
tions. By using the canonical form of Abel equation, the polynomial Appell invariant
makes the equation integrable in terms of Weierstrass ℘ functions. We will use a
general formalism based on Ince’s transformation to write the general solution of
dissipative BBM in terms of ℘ functions, from which all the other known solutions
can be obtained via simplifying assumptions. Using ODE (ordinary differential equa-
tions) analysis we show that the traveling wave speed is a bifurcation parameter that
makes transition between different classes of waves. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4817342]

I. INTRODUCTION

In 1895, Korteweg and de Vries, under the assumption of small wave amplitude and large
wavelength of inviscid and incompressible fluids, derived an equation for the water waves, now
known as the KdV equation,14 which also serves as a justifiable model for long waves in a wide
class of nonlinear dispersive systems. KdV equation has been also used to account adequately for
observable phenomena such as the interaction of solitary waves and dissipationless undular shocks.
For the water wave problem Eq. (1.1) is nondimensionalized since the physical parameters u = 3η

2H ,

x =
√

6x∗
H , and t =

√
6g
H t∗, where η is the vertical displacement of the free surface, H is the depth

of the undisturbed water, x∗ is dimensional distance, and t∗ is the dimensional time are all scaled
into the definition of nondimensional space x, time t, and water velocity u(x, t). When the physical
parameters and scaling factors are appropriately absorbed into the definitions of u, x, and t, the KdV
equation is obtained in the tidy form

ut + ux + uux + uxxx = 0. (1.1)

Although (1.1) shows remarkable properties it manifests non-physical properties; the most
noticeable being unbounded dispersion relation. It is helpful to recognize that the main difficulties
presented by (1.1) arise from the dispersion term uxxx. The linearized version of (1.1), which does
not include the nonlinear term, is

ut + ux + uxxx = 0. (1.2)

First, as noted in Ref. 5, when the solution of (1.2) is expressible as a summation of Fourier
components in the form F(k)ei(kx − ωt), the dispersion relation is ω(k) = k − k3, where ω(k) is the
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frequency, and k is the wave number. The phase velocity C p = ω(k)
k = 1 − k2 becomes negative for

k2 > 1, contrary to the original assumption of the forward traveling waves. More significantly, the
group velocity Cg = dω

dk = 1 − 3k2 has no lower bound.
To circumvent this feature, it has been shown by Peregrine,21 and later by Benjamin et al.5 that

(1.1) has an alternative format, which is called the regularized long-wave or Benjamin, Bona, and
Mahony (BBM) equation

ut + ux + uux − uxxt = 0, (1.3)

where the dispersion term uxxx is replaced by − uxxt to reflect a bounded dispersion relation. It is
contended that (1.3) is in important respects the preferable model over (1.1) which is not a suitable
model for long waves.

The initial value problem for this equation has been investigated previously by Refs. 21–23,
while the existence and stability of solitary waves have been investigated by Refs. 2,5,6,8, and 9. In
Ref. 5, Eq. (1.3) is recast as an integral equation, and its solutions global in time are found for initial
data in W 1,2(R). Also, the authors showed that its solutions have better smoothness properties than
those of (1.1). In Ref. 8, global solutions are found for initial data in H s(R), s ≥ 0.

The linearized version of (1.3) has the dispersion relation ω(k) = k
1+k2 , according to which

both phase and group velocities C p = 1
1+k2 and Cg = 1−k2

(1+k2)2 are bounded for all k. Moreover, both
velocities tend to zero for large k, which implies that fine scale features of the solution tend not to
propagate. The preference of (1.3) over (1.1) became clear in Ref. 5, when the authors attempted to
formulate an existence theory for (1.1), respective to nonperiodic initial condition u(x, 0) defined on
( − ∞, ∞).

A generalization to (1.3) to include a viscous term is provided by the equation

ut + ux + uux − uxxt = νuxx , (1.4)

where ν > 0 is transformed kinematic viscosity coefficient. The linearized version of (1.4) has

a complex dispersion relation w(k) = k−iνk2

1+k2 , so u(x, t) = eik(x− t
1+k2 )e− νk2

1+k2 t . The real part of the
frequency coincides with the bounded dispersion relation of the nondissipative case, while the
imaginary part contains the viscosity coefficient ν which must be positive to have decaying waves.
In this case the harmonic solutions exhibit both dispersive and dissipative effects.

II. EXISTENCE OF DISSIPATIVE SOLUTIONS

In this section we propose an easy theorem based on dynamical system theory,4, 12 in which
we prove the existence of solutions to (1.4) for both negative and positive traveling wave velocities
(c < 0, c > 0). Also, we will show that the solution tends to the fixed points of the dynamical system
c − 1 ± k, for any k and large traveling wave variable ζ . We show that on boundaries the solution
does not necessarily decay to zero, but there is flow of energy through the boundaries to the solution
and back to the boundaries.

Theorem 1 below is proven by showing that a certain dynamical system in the plane has a
heteroclinic orbit connecting two critical points. The Lyapunov function L is used to show that a
certain trajectory of the dynamical system is bounded. The Poincare-Bendixson Theorem16 can be
inferred to show that the trajectory approaches either a closed loop or a fixed point. The arguments in
the proof of Theorem 1 show that in the case of a closed loop, L would have to be constant along the
loop, which is impossible by (2.12). Therefore, the trajectory must approach a fixed point instead,
which we show is a function of the viscosity ν and velocity c.

An alternative to the dynamical systems approach to finding heteroclinic solutions to ODEs
similar to (2.3), perhaps with more complicated nonlinearities, are variational methods and critical
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point theory. There is an extensive literature on applying variational methods to these types of
equation without the dissipative term. See, for example, Ref. 7 and the references therein. The
inclusion of the dissipative term makes this approach more difficult. It is necessary to use more
complicated function spaces and more complicated arguments, although this approach was used
successfully in Ref. 3.

Theorem 1: Let c �= 0 and k > 0. (1.4) has a traveling wave solution of the form u(x, t) = u(x
− ct) = u(ζ ) with u(ζ ) → (c − 1) + k as ζ → − ∞ and u(ζ ) → (c − 1) − k as ζ → ∞. If c <

0, then u(ζ ) < (c − 1) + k for all real ζ . If c > 0, then u(ζ ) > (c − 1) − k for all real ζ .

Proof: The class of soliton solutions is found by employing the form of the traveling wave
solutions of (1.4) which takes the form of the ansatz

u(x, t) = u(ζ ), (2.1)

where ζ ≡ x − ct is the traveling wave variable, and c is a nonzero translational wave velocity. The
substitution of (2.1) in (1.4) leads to

(1 − c)u′ + uu′ + cu′′′ = νu′′, (2.2)

where ′ = d
dζ

. Integrating,

(1 − c)u + 1

2
u2 + cu′′ = νu′ + A, (2.3)

for some constant A. With φ = u and ψ = u′, (2.3) is equivalent to the dynamical system

φ′ = ψ,

ψ ′ = ν

c
ψ + c − 1

c
φ − 1

2c
φ2 + A

c
,

(2.4)

or

u′ = F(u) (2.5)

in vector notation. The fixed points of (2.4) are

z± =
[

φ±

0

]
=

[
c − 1 ±

√
(c − 1)2 + 2A
0

]
=

[
c − 1 ± k

0

]
, (2.6)

for A = k2−(c−1)2

2 . We will show that (2.4) has a trajectory from z+ to z−.
First, we will consider the c < 0 case. The linearization of (2.4) at z+ is

u′ =
[

φ′

ψ ′

]
=

⎡
⎣ 0 1

−
√

(c−1)2+2A
c

ν
c

⎤
⎦

[
φ − φ+

ψ

]
≡ M

[
φ − φ+

ψ

]
. (2.7)

The determinant of M is negative, so z+ is a saddle point, and M has eigenvalues λ± with λ− < 0
< λ+ .

The unit eigenvector corresponding to λ+ and pointing to the left is

v =

[
−1

−λ+

]
√

1 + (λ+)2
. (2.8)
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Let g(ζ ) =
[

g1(ζ )
g2(ζ )

]
be a solution of (2.4) with g(ζ ) → z+ and

∣∣∣ g(ζ ) − z+

|g(ζ ) − z+| − v
∣∣∣ → 0 (2.9)

as ζ → − ∞. We will show that g(ζ ) → z− as ζ → ∞ and g1(ζ ) < φ + for all real ζ .
Define

P3(φ) = 1

6
φ3 + 1

2
(1 − c)φ2 − Aφ. (2.10)

P3 is increasing on ( − ∞, φ − ], decreasing on [φ − , φ + ], and increasing on [φ + , ∞). Define

L(u) =P3(φ) − P3(φ+) + 1

2
cψ2

=1

6
φ3 + 1

2
(1 − c)φ2 − Aφ − P3(φ+) + 1

2
cψ2.

(2.11)

Then for all ζ ,

d

dζ
L(g(ζ )) =

(1

2
g2

1 + (1 − c)g1 − A
)

g′
1 + cg2g′

2 =

=
(1

2
g2

1 + (1 − c)g1 − A
)

g2+

cg2

(c − 1

c
g1 − 1

2c
g2

1 + ν

c
g2 + A

c

)
= νg2

2 ≥ 0.

(2.12)

Since L(z+) = 0 then L(g(ζ )) > 0 for all real ζ .
Let φ − − < φ − with

P3(φ−−) < P3(φ+), (2.13)

and let

B = P3(φ−) − P3(φ+) = max{P3(φ) | φ−− ≤ φ ≤ φ+} − P3(φ+). (2.14)

Let L > 0 be large enough so that

1

2
cL2 + B < 0, (2.15)

and define

R = (φ−−, φ+) × (−L , L). (2.16)

We claim that g(ζ ) ∈ R for all real ζ . As ζ → − ∞, g(ζ ) → z+ along the direction [1, λ+ ]T.
Therefore, L(g(ζ )) > L(z+) = 0 for all real ζ , and there exists ζ ‘ ∈ R such that g(ζ ) ∈ R for all ζ

< ζ ‘.
So, it suffices to show that L ≤ 0 on ∂R. Let u ∈ ∂ R. If φ = φ + , then L(u) = 1

2 cψ2 ≤ 0.
Similarly, if φ = φ − − , then L(u) = P3(φ−−) − P3(φ+) + 1

2 cψ2 < 0. If φ − − ≤ φ ≤ φ + and ψ =
L, then L(u) = P3(φ) − P3(φ+) + 1

2 cL2 ≤ B + 1
2 cL2 < 0. Similarly, if φ − − ≤ φ ≤ φ + and ψ =

− L, L(u) < 0.
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Define

L∞ = lim
ζ→∞

L(g(ζ )). (2.17)

L∞ exists and is finite because L(g(ζ )) is a non-decreasing function of ζ , L is bounded on R, and
g(ζ ) ∈ R for all real ζ . Let C be the ω-limit set of g, i.e.,

C = {u | ∃(ζm) ⊂ Rwith lim
m→∞ ζm = ∞, g(ζm) → u}, (2.18)

where C is nonempty because g(ζ ) ∈ R for all real ζ and R is bounded. C is compact and connected,
and L = L∞ on C. We must prove C = {z−}.

Suppose C contains a point w that is not on the φ-axis. Then w is not a stationary point of (2.4),
and C contains another point y. Let δ > 0 with δ < min(|w − y|, |w2|)/2. Then g crosses the annulus
Bδ(w) \ Bδ/2(w) infinitely many times, and there exist sequences (ζ m), (ζ ‘m) with ζ m → ∞ as m →
∞, ζ m < ζ ‘m < ζ m + 1 for all m, |g(ζm) − w| = δ/2, |g(ζ ‘m) − w| = δ, and δ/2 < |g(ζ ) − w| < δ,
for all m and all ζ ∈ (ζ m, ζ ‘m).

Let K = sup(|F(u)| | u ∈ Bδ(w)) < ∞, where F is from (2.5). Then ζ ‘m − ζ m ≥ δ/(2K) for all
m. For ζ ∈ (ζ m, ζ ‘m),

d

dζ
L(g(ζ )) ≥ νg2

2(ζ ) ≥ νw2
2

4
> 0, (2.19)

so

L(g(ζ ‘m)) − L(g(ζm)) =
∫ ζ ‘m

ζm

d

dζ
L(g(ζ )) dζ ≥

∫ ζ ‘m

ζm

νw2
2

4
dζ = ν(ζ ‘m − ζm)w2

2

4
≥ δνw2

2

8K
,

(2.20)

for all m. Therefore,

L∞ = L(g(ζ1)) + (L∞ − L(g(ζ1)) ≥

≥ L(g(ζ1)) +
∞∑

m=1

L(g(ζ ‘m)) − L(g(ζm)) ≥

≥ L(g(ζ1)) +
∞∑

m=1

δνw2
2

8K
= ∞.

(2.21)

But L∞ is finite. This is a contradiction.
Therefore, C is a subset of the φ-axis. Since C is connected and compact, C = [φ1, φ2] × {0}

for some φ − − < φ1 ≤ φ2 < φ + . Recall that L = L∞ on C. L is not constant on any segment of
the φ-axis of positive length. So C is a single point, which is a stationary point of (2.4) in R. There
is only one such point, z−.

Now consider the case c > 0. Let k > 0. Since − c < 0, we have seen that there exists g solving
(2.2) with c replaced by − c, that is,

(1 + c)g′ + gg′ − cg′′′ − νg′′ = 0, (2.22)

with g(ζ ) → ( − c − 1) + k as ζ → − ∞, g(ζ ) → ( − c − 1) − k as ζ → ∞, and g(ζ ) < ( − c
− 1) + k for all real ζ .

Define u : R → R by u(ζ ) = − g( − ζ ) − 2. Then g(ζ ) = − u( − ζ ) − 2, g′(ζ ) = u′( − ζ ),
g′′(ζ ) = − u′′( − ζ ), and g′′′(ζ ) = u′′′( − ζ ). Substituting into (2.22) yields

0 = (1 + c)u′(−ζ ) + (−u(−ζ ) − 2)u′(−ζ ) − cu′′′(−ζ ) + νu′′(−ζ )

= (c − 1)u′(−ζ ) − u(−ζ )u′(−ζ ) − cu′′′(−ζ ) + νu′′(−ζ )

= −[(1 − c)u′(−ζ ) + u(−ζ )u′(−ζ ) + cu′′′(−ζ ) − νu′′(−ζ )].

(2.23)
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Therefore, u satisfies (2.2). By definition of u,

lim
ζ→−∞

u(ζ ) = lim
ζ→−∞

(−g(−ζ ) − 2) = lim
ζ→∞

(−g(ζ ) − 2)

= −2 − lim
ζ→∞

g(ζ ) = −2 − ((−c − 1) − k)

= (c − 1) + k

(2.24)

and

lim
ζ→∞

u(ζ ) = lim
ζ→∞

(−g(−ζ ) − 2) = lim
ζ→−∞

(−g(ζ ) − 2)

= −2 − lim
ζ→−∞

g(ζ ) = −2 − ((−c − 1) + k)

= (c − 1) − k.

(2.25)

For all real ζ , g(ζ ) < ( − c − 1) + k, so for all real ζ ,

u(ζ ) = −g(−ζ ) − 2 > −[(−c − 1) + k] − 2 = (c − 1) − k. (2.26)

Theorem 1 is proved.

III. EXACT SOLUTIONS VIA ℘ FUNCTIONS

A. Abel’s equation

The importance of Abel’s equation in its canonical forms stems from the fact that its integrability
leads to closed form solutions to a general nonlinear ODE of the form

uζ ζ + q0(u)uζ + q2(u) = 0. (3.1)

This can be expressed by the following lemma.18

Lemma 1: Solutions to a general second order ODE of type (3.1) may be obtained via the
solutions to Abel’s equation (3.6), and vice versa using the following relationship

uζ = η(u(ζ )). (3.2)

Proof: To show the equivalence, one just needs the simple chain rule

uζ ζ = dη

du
uζ = η

dη

du
, (3.3)

which turns (3.1) into the second kind of Abel equation

dη

du
η + q0(u)η + q2(u) = 0. (3.4)

Moreover, via transformation of the dependent variable

η(u) = 1

y(u)
, (3.5)

(3.4) becomes the Abel first kind without free or linear terms

dy

du
= q0(u)y2 + q2(u)y3. (3.6)
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Comparing (3.1) with (2.3) we identify the constant, and quadratic polynomial coefficients

q0(u) = −ν

c
,

q2(u) = u2

2c
+ 1 − c

c
u − A

c
.

(3.7)

The need of dissipation is imperative since without the dissipation term q0 = 0, the Abel’s equation
(3.6) becomes separable, as we will see next.

Progress of integration of (3.6) is based on the linear transformation v = ∫
q0(u)du = − ν

c u,
which allows us to write Abel’s equation (3.6) in canonical form

dy

dv
= y2 + g(v)y3, (3.8)

where g(v) is the Appell’s invariant and is the quadratic polynomial

g(v) = − c2

2ν3
v2 + c(1 − c)

ν2
v + A

ν
= a2v

2 + a1v + a0. (3.9)

By Lemke’s transformation17

y = −1

z

dz

dv
, (3.10)

(3.8) can be written as a second-order differential equation with the preserved Appel’s invariant
g(v),

z2 d2v

dz2
+ g(v) = 0. (3.11)

B. No viscosity

If ν = 0 (2.3) becomes

uζ ζ = −u2

2c
− 1 − c

c
u + A

c
. (3.12)

The classical solutions obtained before by Ref. 6 with the assumption that A = 0 are

u(x, t) = 3(c − 1)Sech2
[√

c−1
c

2
(x − ct)

]
if c > 1, (3.13)

u(x, t) = − 3c

1 + c
Sec2

[√
c

2

(
x − t

1 + c

)]
if 0 < c < 1,

see left and middle panels of Fig. 1. Solitary waves that translate with velocity c > 1 are called fast
waves, while the periodic solutions that travel with velocity 0 < c < 1 slow waves.

FIG. 1. Traveling waves ν = 0, left c = 1.5 and middle c = 0.5, Eq. (3.13); right c = 1, Eq. (3.28).
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In (3.6) if let ν = 0, then the Abel’s equation

dy

du
= q2(u)y3 (3.14)

is separable and leads to the elliptic algebraic equation

η2 = −u3

3c
− 1 − c

c
u2 + 2A

c
− 2D. (3.15)

Using again the substitution uζ = η (3.15) becomes the elliptic differential equation

u2
ζ = −u3

3c
− 1 − c

c
u2 + 2A

c
u − 2D. (3.16)

For verification, if one takes d
dζ

of the above, we recover (3.12).

Using a linear transformation, p. 311 of Ref. 11 of the dependent variable u = − 3
√

12cû − (1 −
c), (3.16) can be written in standard form

û2
ζ = 4û3 − g2û − g3, (3.17)

with solution

û(ζ ) = ℘(ζ, g2, g3) (3.18)

and invariants

g2 = 3

√
12

c2
(c − 1)2 > 0, (3.19)

g3 =2(1 − c)3

3c
. (3.20)

The limiting cases are obtained when A = 0, D = 0 to yield back to (3.13). We will not discuss here
this reduction to hyperbolic or trigonometric functions, since this was done extensible before by
many authors, but instead we refer the reader to Refs. 1 and 19 for the reduction and classification
that depends on the sign of the invariants.

Instead, we will obtain a novel class of solutions that travel with a critical velocity c = 1. At the
boundary between the fast and slow waves we will encounter periodic solutions in terms of rational
combination of Jacobian elliptic functions.

If c = 1 and A = 0, Eq. (3.12) becomes

u2

2
+ u′′ = 0. (3.21)

By multiplying by uζ and integrating once we obtain

u2
ζ + u3

3
= B3

3
, (3.22)

where B is some nonzero constant of integration. In (3.15) if we let D = − B3

6 , we will also arrive to
(3.22). Now let us use the substitution μ2 = B − u, where μ = μ(ζ ). Hence (3.22) is

μζ = ±
√

3

6

√
μ4 − 3Bμ2 + 3B2. (3.23)

Moreover, let us assume μ(ζ ) = 4
√

3
√

Bz(ζ ). Then (3.23) becomes

zζ = ±
√

B

2 4
√

3

√
z4 −

√
3z2 + 1. (3.24)

This ODE is solved using Jacobian elliptic functions.
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Claim 1: If Z = 1 + 2z2cos 2α + z4, then

u(x, k) =
∫ x

0

dz√
Z

= 1

2
sn−1 2x

1 + x2
,

with k = sin α, see p. 91 of Ref. 10.

Proof: Putting z = tan θ , we find

u(x, k) =
∫ tan−1 x

0

dθ√
1 − sin2 α sin2 2θ

,

followed by y = sin 2θ , which will give us

u(x, k) = 1

2

∫ 2x
1+x2

0

dy√
(1 − y2)(1 − k2 y2)

,

which is an elliptic integral of the first kind. Therefore, solving (3.24), we obtain the solution in z

2z

1 + z2
= ±sn

(√
B

4
√

3
ζ, k

)
, (3.25)

where k = sin 5π
12 =

√
3+1

2
√

2
is the modulus of the Jacobian elliptic function. It follows that for μ we

will have

2aμ

a2 + μ2
= ±sn

(√
3

3
aζ, k

)
, (3.26)

where a = √
B 4
√

3. By solving the quadratic yields

μ = ±a
1 ± cn

(√
3

3 aζ, k
)

sn
(√

3
3 aζ, k

) . (3.27)

Therefore, the solution to the BBM equation without viscosity and velocity c = 1 is

u(x, t) =B
[
1 −

√
3
(1 ± cn

(√
B

4√3
(x − t), k

)
sn

(√
B

4√3
(x − t), k

) )2]

=B
[
1 −

√
3

1 ∓ cn
(√

B
4√3

(x − t), k
)

1 ± cn
(√

B
4√3

(x − t), k
)]

.

(3.28)

These critical solutions are 2K periodic with K obtained from the complete elliptic integral

K

2
=

∫ 1

0

dz√
z4 − √

3z2 + 1
= 2.76806, (3.29)

see right panel of Fig. 1. The same solution was previously obtained by Cornejo-Pérez and Rosu,
using a factorization technique.24

The expressions (3.13) and (3.28) describe the whole class of solitary wave solutions with
spectrum c ∈ (0, ∞) which is in concordance with Ref. 6. They present periodic and solitary wave
solutions to (1.3), with no restrictions on the constant A, which may be advantageous when adapting
results to physical problems.

Remark 1: All the solutions obtained using simplifying assumptions ν = 0, A = 0 are particular
cases of general solutions of (2.3) in terms of Weierstrass elliptic functions ℘, as we will see next.
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C. Viscosity present, ν > 0

Consider (3.8) in the form of non-autonomous equation F(y, yv, v) = 0. Painlevé proved in
his doctoral thesis in 188720 that all integrals of non-autonomous equations do not have movable
singular points, but only poles and fixed algebraic singularities. Poincare25 proved in 1885 that any
non-autonomous equation of genus p = 0 is reducible to Riccati equation, while if p = 1 is integrable
via Weierstrass ℘ functions, after a linear fractional transformation. Since Riccati equation can be
easily obtained from a linear ODE and the Appel invariant g(v) has no singularities, one can conclude
that the closed form solutions of (3.11) will not have movable singular points, but poles. Since v(z)
has only poles of order two, then the solution to (3.11), must be written in terms of Weierstrass ℘

functions via the transformation

v = Ez pω(z) + F, (3.30)

see Ince, p. 431 of Ref. 13. By substituting this ansatz in (3.11) with E, F constants, then for p = 2
5 ,

ω(z) will satisfy the elliptic equation

ω′2 = 4ω3 − g2ω − g3 (3.31)

with invariants g2, g3.
Moreover, z is an exponential function, because it satisfies

dv

dz
= − 1

yz
, (3.32)

which leads to

ν

c
dζ = dz

z
. (3.33)

The ℘ solutions can be combined into the general substitution

u(ζ ) = σ − g(ζ ), (3.34)

where g(ζ ) = e− nζ �(ζ ). σ and n are constants which are related to A and p.
By substituting (3.34) into (2.3) we obtain the ODE

g′′ − ν

c
g′ − 1

2c
g2 + 1 − c + σ

c
g = 0. (3.35)

The free term was eliminated by setting A = σ 2

2 + σ (1 − c). Since g(ζ ) = e− nζ �(ζ ), (3.35) becomes

�′′ − (
2n + ν

c

)
�′ + (

n2 + nν

c
+ 1 − c + σ

c

)
� = 1

2c
e−nζ �2. (3.36)

Finally, let �(ζ ) = ω(z(ζ )), and by chain rule with ′ = d
dζ

and˙= d
dz , (3.36) is

(z′)2ω̈ +
(

z′′ − (
2n + ν

c

)
z′

)
ω̇ +

(
n2 + 1 − c + σ + nν

c

)
ω = 1

2c
e−nζ ω2. (3.37)

By letting

z′′ − (
2n + ν

c

)
z′ = 0, (3.38)

we obtain

z′(ζ ) = c1e(2n+ ν
c )ζ . (3.39)

We also choose σ = − (n2c + nν + 1 − c) which cancels the linear term in (3.37).
We are left to solve

z′2ω̈ − 1

2c
e−nζω2 = 0 (3.40)
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subject to (3.39). Set n = −p ν
c = − 2ν

5c , then

σ = 14ν2

25c
+ c − 1,

A = −σ 2

2
+ 14ν2σ

25c
.

(3.41)

By substituting (3.39) into (3.40), we obtain

ω̈ = 1

2cc2
1

ω2. (3.42)

Letting c1 = 1
2
√

3c
, we arrive at the elliptic equation

ω̈ = 6ω2, (3.43)

which by multiplication by ω̇ and one quadrature becomes

ω̇2 = 4ω3 − g3. (3.44)

Its solution is

ω(z) = ℘(z + c3, 0, g3) (3.45)

with invariants g2 = 0, and g3. If g3 = 1, this is the equianharmonic case, see p. 652 of Ref. 1.
Moreover, z(ζ ) is found by integrating (3.39) to get

z(ζ ) = c2 + 5
√

3c

6ν
e

νζ

5c , (3.46)

which leads to

�(ζ ) = ω(z) = ℘(c4 + 5
√

3c

6ν
e

νζ

5c , 0, g3), (3.47)

where c4 = c2 + c3, and g3 are two integration constants that depend on the boundary conditions.
Using all of the above, together with (3.41) we obtain

σ = 14ν2

25c
±

√(14ν2

25c

)2
− 2A. (3.48)

Then, the general solution to (3.31) is

u(ζ ) = 14ν2

25c
±

√(14ν2

25c

)2
− 2A(ν, c) − e

2νζ

5c ℘(c4 + 5
√

3c

6ν
e

νζ

5c , 0, g3), (3.49)

see Figs. 2 and 3. Once we fix the velocity c, and dissipation ν, then the constants σ and A(ν, c) are
obtained using (3.41), which substituted back into (3.49), will give us the solution to (1.4). The two

FIG. 2. Weierstrass solutions ν = 1, Eq. (3.49), left c = 1.5; middle c = 0.5; right c = 1.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

99.170.115.22 On: Sun, 24 Nov 2013 02:45:20



081502-12 Mancas, Spradlin, and Khanal J. Math. Phys. 54, 081502 (2013)

FIG. 3. Weierstrass solutions ν = 0.1, Eq. (3.49), left c = 1.5; middle c = 0.5; right c = 1.

integration constants that depend on the boundary conditions are c4 and g3. It is crucial to notice
that the fixed points of (2.4) depend on the velocity c and dissipation ν via the constant A, see (2.6).

Finally, it is worth mentioning that the solution in terms of ℘ functions is not unique. One can
see that there is at least one other similar form previously obtained by Porubov, via the Carnevalle
method and Bäcklund transformation.15, 26

Remark 2: Letting ν = 0 → n = 0, c1 = 1, and c = 1 → σ = 0 in (3.42), and since ω = g, but
f = − g, then ω = − f so (3.44) becomes (3.21), with solution given by (3.28), see right panel of
Fig. 1.

Remark 3: Letting ν = 0 → n = 0 and σ = c − 1 �= 0, then according to (3.39), z′ = c1. Since
ω = g, then (3.37) is actually (3.12), and hence we recover the slow and fast waves solutions (3.13),
see left and middle panels of Fig. 1.

Remark 4: If the second invariant g3 = 0 in (3.44), then by integrating (3.44)

ω(z) = 1

(c5 ± z)2
. (3.50)

Using (3.46) in (3.50) we obtain the kink solution

u(ζ ) = 14ν2

25c
±

√(14ν2

25c

)2
− 2A − e

2νζ

5c(
c6 ± 5

√
3c

6ν
e

νζ

5c

)2 , (3.51)

see Fig. 4.
An analysis when a ℘ function tends to a smooth kink can be found in Ref. 27.

FIG. 4. Kink solutions ν = 1, Eq. (3.51), left c = 1.5; middle c = 0.5; right c = 1.
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FIG. 5. Phase-plane for c = 0.5, left ν = 1, (0.0) node, ( − 1, 0) saddle; right ν = 0.1, (0.0) spiral, ( − 1, 0) saddle.

Remark 5: If A = 0 → c − 1 = ±k = ± 14ν2

25c , and one selects the lower branch of the radical,
we obtain

u(ζ ) = − e
2νζ

5c ℘(c4 + 5

ν

√
c

3a
e

νζ

5c , 0, g3), if g3 �= 0,

u(ζ ) = − e
2νζ

5c(
c6 ± 5

√
3c

6ν
e

νζ

5c

)2 , if g3 = 0.

(3.52)

IV. STABILITY OF THE VISCOUS WAVES

In this section we consider the two-mode dynamical system of (2.4) with equilibrium points in
the phase plane (φ, ψ) at (0, 0) and (c − 1 ±

√
(c − 1)2 + 2A, 0), where A = A(ν, c) is obtained from

(3.41). All the equilibrium points lie only in the plane ψ = 0, in the (φ, ψ , c) space. The bifurcation
curves are given by φ

(
φ − (c − 1) ∓

√
(c − 1)2 + 2A

) = 0, which are two constant lines. Near the
origin (φ − , 0) = (0, 0) [

φ′

ψ ′

]
=

[
0 1

− 1−c
c

ν
c

] [
φ

ψ

]
. (4.1)

Following standard methods of phase-plane analysis the characteristic polynomial of the Jacobian
matrix of (4.1) evaluated at the fixed point (φ − , 0) is

g0(λ) = λ2 − p0λ + q0 = 0, (4.2)

where p0 = ν
c and q0 = 1−c

c .
Since ν > 0, c > 0, then p0 > 0, hence the origin is unstable. Also, putting � = p2

0 − 4q0 =
ν2−4c(1−c)

c2 , we have the following cases:

(i) 0 < c < 1, gives q0 > 0. If ν > 2
√

c(1 − c) > 0, the origin is unstable node; if 0 < ν <

2
√

c(1 − c), the origin is unstable spiral, see Fig. 5 and
(ii) c > 1, gives q0 < 0 ⇒ � > 0, hence the origin is a saddle point, see Fig. 6.

Near the secondary fixed point (φ+, 0) = (c − 1 ±
√

(c − 1)2 + 2A, 0)[
φ′

ψ ′

]
=

[
0 1

1−c
c

ν
c

] [
φ

ψ

]
. (4.3)

FIG. 6. Phase-plane for c = 1.5, left ν = 1, (0.0) saddle, (1, 0) node; right ν = 0.1, (0.0) saddle, (1, 0) spiral.
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FIG. 7. Contour plot of Hamiltonian H = const , see (4.5), left c = 1.5; middle c = 0.5; right c = 1.

The characteristic polynomial of the Jacobian matrix of (4.3) evaluated at the fixed point (φ + , 0) is

g1(λ) = λ2 − p1λ + q1 = 0, (4.4)

where p1 = p0 = ν
c and q1 = −q0 = − 1−c

c .
Since p1 = p0, the second fixed point is also unstable, and moreover we have the following

cases:

(i) 0 < c < 1, gives q1 < 0 ⇒ � > 0, hence the fixed point is a saddle point, see Fig. 5 and
(ii) c > 1, gives q1 > 0. if ν > 2

√
c(c − 1), we have an unstable node; if 0 < ν < 2

√
c(c − 1), the

fixed point is unstable spiral, see Fig. 6.

All the other remaining cases, i.e., both fixed points collide, are degenerate, since if c = 1, g(λ)
= λ2 − νλ.

Note that when there is no viscosity, the system has Hamiltonian, which is directly proportional
with the Lyapunov function via

H(u) = 1

2
ψ2 + 1 − c

2c
φ2 + 1

6c
φ3 = 1

c
L(u), (4.5)

see (2.11). Therefore, along any phase path H(u) = constant is a conserved quantity, see Fig. 7. In
this case, p0 = p1 = 0, and hence

(i) (φ − , 0) is a saddle and (φ + , 0) is a center when q1 > 0, see left panel of Fig. 8,
(ii) (φ − , 0) is a center and (φ + , 0) is a saddle when q1 < 0, see middle panel of Fig. 8, and
(iii) c = 1 is degenerate since both critical points collide at origin φ − = φ + , see right panel of

Fig. 8.

Therefore, in this case the unstable spirals (which correspond to the case with small viscosity
ν = 0.1) become centers when there is no viscosity ν = 0.

This is an example of a transcritical bifurcation where, at the intersection of the two bifurcation
curves φ = 0 and φ = 2(c − 1), the equilibrium changes from one curve to the other at the bifurcation
point. As c increases through one, the saddle point collides with the unstable node, and then remains
there while the unstable node or spiral moves away from (φ − , 0).

FIG. 8. Phase-plane for ν = 0, left c = 1.5, (0.0) saddle, (1, 0) center; middle c = 0.5, (0.0) center, ( − 1, 0) saddle; right c
= 1 (0.0) degenerate.
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V. SUMMARY

In this paper a basic theory for the BBM equation (1.3), and its extension (1.4) to include the
dissipation term was shown. When the viscous term is not present, (1.3) has traveling wave solutions
that depend critically on the traveling wave velocity. When the velocity c > 1 (1.4) has solitary waves
solutions, while if c < 1, the solutions become periodic. At the interface between the two cases,
when c = 1, the solutions are rational functions of cnoidal waves. Based on Ince’s transformation, a
theory including the dissipative term was presented, in which we have found more general solutions
in terms of Weierstrass elliptic ℘ functions. Using dynamical systems theory we have shown that
the solutions of (1.4) experience a transcritical bifurcation when c = 1, where at the intersection of
the two bifurcation curves, stable equilibrium changes from one curve to the other at the bifurcation
point. As the velocity changes, the saddle point collides with the node at the origin, and then remains
there, while the stable node moves away from the origin. Also, the bifurcation curves and the
fixed points of the dynamical system are functions of the traveling wave velocity c and dissipation
constant ν.
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