University of Kentucky

From the SelectedWorks of Glen Mays

Winter December 15, 2015

Geographic Variation in the Implementation of Public Health Services: Organizational, Economic, and Network Determinants

Glen P. Mays, University of Kentucky

Geographic Variation in the Implementation of Public Health Services: Economic, Organizational, and Network Determinants

Inter-organizational Network Effects on Public Health Implementation Glen Mays, University of Kentucky Rachel Hogg University of Kentucky

A Comparison of System-Level D&I Strategies on Local Health Department Quality Improvement Maturity

Melanie Whittington, University of Colorado

Model Simulation Techniques to Estimate the Cost of Implementing Foundational Public Health Services

Cezar B. Mamaril, University of Kentucky

Inter-organizational Network Effects on the Implementation of Public Health Services

Glen Mays, PhD, MPH
University of Kentucky
glen.mays@uky.edu | @GlenMays
www.systemsforaction.org

Systems for Action

National Coordinating Center

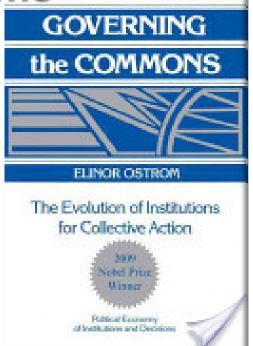
Systems and Services Research to Build a Culture of Health

Acknowledgements & Disclosures

- Funded by the Robert Wood Johnson Foundation through the Systems for Action National Program Office
- Collaborators include Cezar Mamaril, Lava Timsina, Rachel Hogg, David Bardach

How do we support implementation of population health improvement strategies?

- Designed to achieve large-scale health improvement: neighborhood, city/county, region
- Target fundamental and often multiple determinants of health
- Mobilize the collective actions of multiple stakeholders in government & private sector
 - Usual and unusual suspects
 - Infrastructure requirements


Mays GP. Governmental public health and the economics of adaptation to population health strategies. National Academy of Medicine Discussion Paper. 2014. http://nam.edu/wp-content/uploads/2015/06/EconomicsOfAdaptation.pdf

Fundamental challenge: overcoming collective action problems

- Incentive compatibility → public goods
- Concentrated costs & diffuse benefits
- Time lags: costs vs. improvements
- Uncertainties about what works
- Asymmetries in information
- Difficulties measuring progress
- Weak and variable institutions & infrastructure
- Imbalance: resources vs. needs
- Stability & sustainability of funding

Ostrom E. Collective action and the evolution of social norms.

Journal of Economic Perspectives 14(3): 137-58.

National Academy of Sciences Institute of Medicine: For the Public's Health: Investing in a Healthier Future. Washington, DC: National Academies Press; 2012.

Research questions of interest

- Which organizations contribute to the implementation of public health activities in local communities?
- How do these contributions change over time?

Recession | Recovery | Accreditation ACA implementation

How do changes in delivery system structures influence service delivery & population health?

Data: public health delivery systems

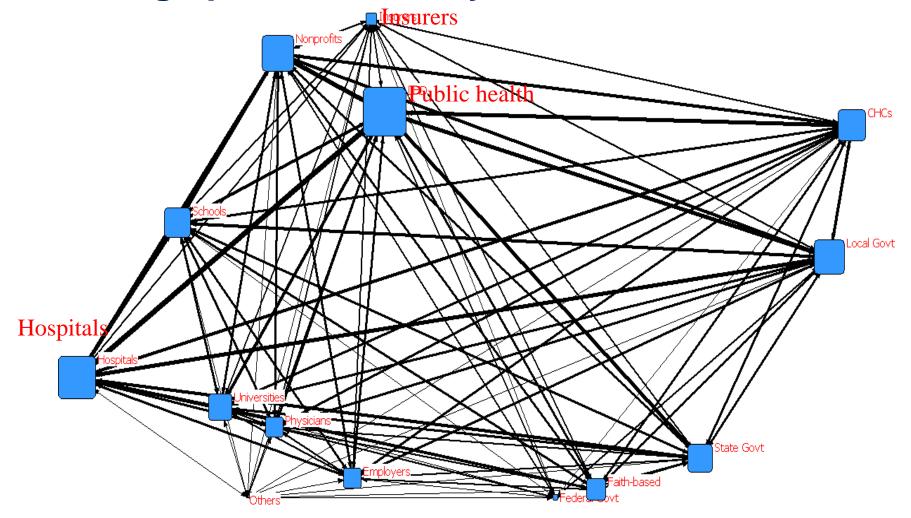
National Longitudinal Survey of Public Health Systems

- Cohort of 360 communities with at least 100,000 residents
- Followed over time: 1998, 2006, 2012, 2014**
- Local public health officials report:
 - Scope: availability of 20 recommended public health activities
 - Network: types of organizations contributing to each activity
 - Effort: contributed by designated local public health agency
 - Quality: perceived effectiveness of each activity

^{**} Expanded sample of 500 communities<100,000 added in 2014 wave

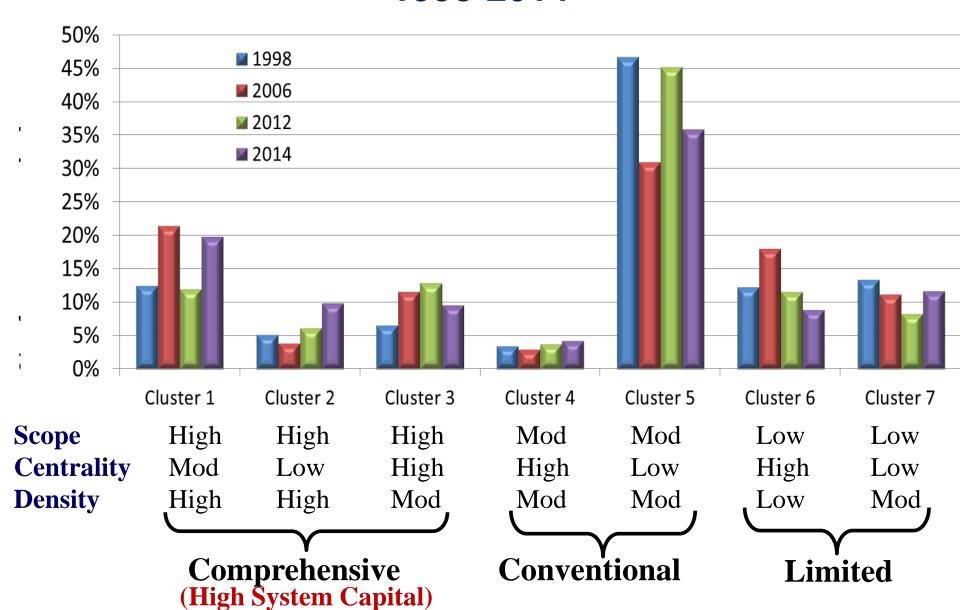
Data: community & market characteristics

- Area Health Resource File: physician, hospital and CHC supply; population size and demographics, socioeconomic status, racial/ethnic composition, health insurance coverage
- NACCHO Profile data: public health agency institutional and financial characteristics
- Medicare Cost Report: hospital ownership, market share, uncompensated care
- CDC Compressed Mortality File: Cause-specific death rates by county


Cluster and network analysis to identify "system capital"

Cluster analysis is used to classify communities into one of 7 categories of *public health system capital* based on:

- Scope of activities contributed by each type of organization
- Density of connections among organizations jointly producing public health activities
- Degree centrality of the governmental public health agency


Mays GP et al. Understanding the organization of public health delivery systems: an empirical typology. *Milbank Q.* 2010;88(1):81–111.

Average public health system structure in 2014

Node size = degree centrality
Line size = % activities jointly contributed (tie strength)

Prevalence of Public Health System Configurations 1998-2014

Changes in system prevalence and coverage

System Capital Measures	1998	2006	2012	2014	2014 (<100k)			
Comprehensive systems								
% of communities	24.2%	36.9%	31.1%	32.7%	25.7%			
% of population	25.0%	50.8%	47.7%	47.2%	36.6%			
Conventional systems								
% of communities	50.1%	33.9%	49.0%	40.1%	57.6%			
% of population	46.9%	25.8%	36.3%	32.5%	47.3%			
Limited systems								
% of communities	25.6%	29.2%	19.9%	20.6%	16.7%			
% of population	28.1%	23.4%	16.0%	19.6%	16.1%			

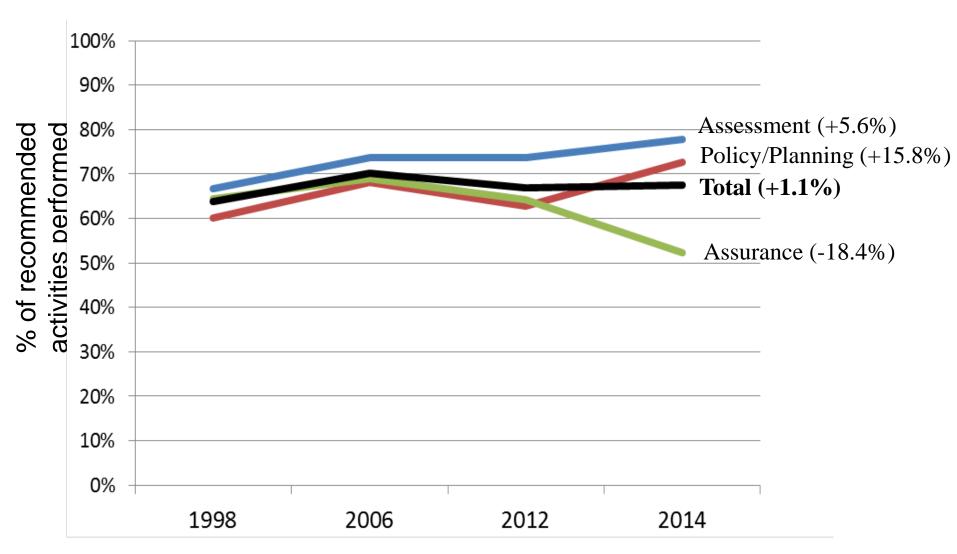
Estimating network effects

Dependent variables:

- Health outcomes: premature mortality(<75), infant mortality, death rates for heart disease, diabetes, cancer, influenza</p>
- Resource use: Local governmental expenditures for public health activities

Independent variables:

- Network characteristics: network density, organizational degree centrality, betweenness centrality
- Delivery system structure: comprehensive, conventional, or limited public health delivery systems

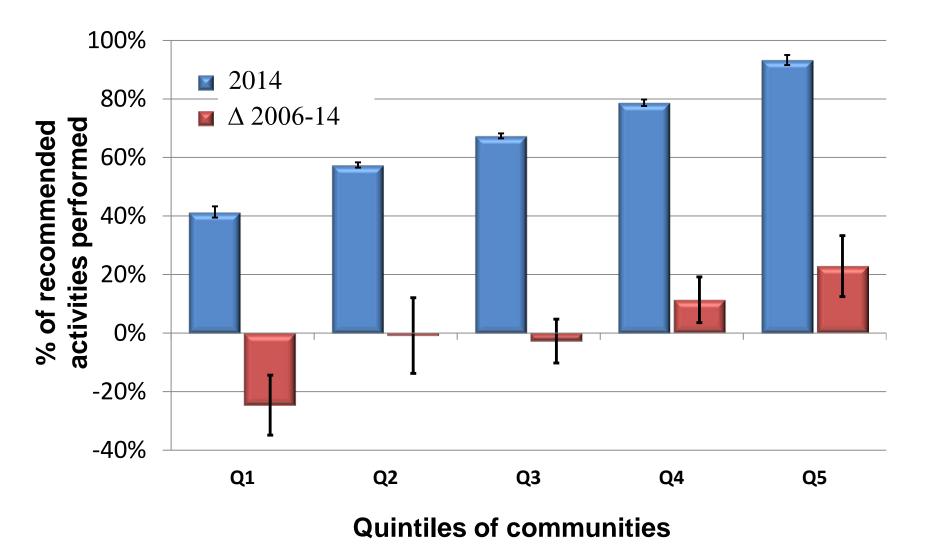

Estimating delivery system effects Statistical Model

- Log-transformed Generalized Linear Latent and Mixed Models
- Account for repeated measures and clustering of public health jurisdictions within states
- Instrumental variables address endogeneity of system structures

$$\begin{split} &\text{Pr}(\text{System}_{z,ijt} = 1) = \sum \alpha_z \text{Governance}_{ijt} + \\ & \beta_1 \text{Agency}_{ijt} + \beta_2 \text{Community}_{ijt} + \mu_j + \phi_t + \epsilon_{ijt} \\ &\text{Ln}(\text{Outcomes}|\text{Cost}_{ijt}) = \sum \alpha_z (\text{System}_z)_{ijt} + \\ & \beta_1 \text{Agency}_{iit} + \beta_2 \text{Community}_{iit} + \mu_i + \phi_t + \epsilon_{iit} \end{split}$$

All models control for type of jurisdiction, population size and density, metropolitan area designation, income per capita, unemployment, racial composition, age distribution, educational attainment, and physician availability.

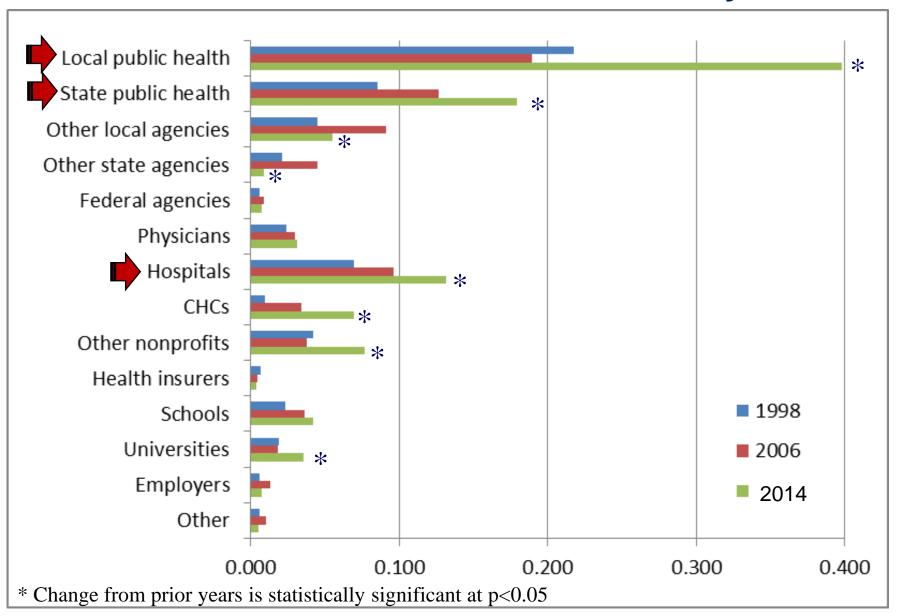
Implementation of recommended public health activities 1998-2014

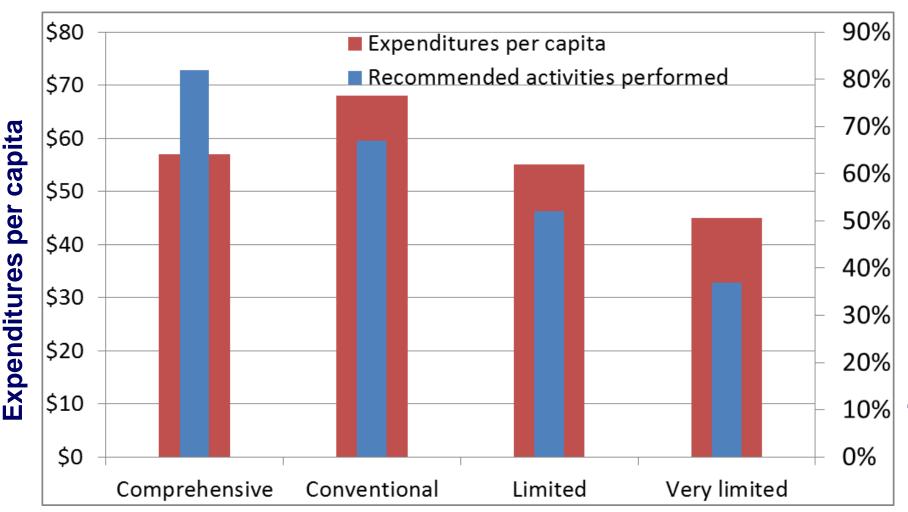


Implementation of recommended activities

4000 2044

<u>Publ</u>	ic Health Activity 1998-2014	<u>1998</u>	<u>2014</u>	% Change
1	1 Community health needs assessment		86.0%	20.2%**
2	2 Behavioral risk factor surveillance		70.2%	53.2%**
3	3 Adverse health events investigation		100.0%	1.4%
4	4 Public health laboratory testing services		96.5%	0.2%
5	5 Analysis of health status and health determinants		72.8%	18.7%**
6	Analysis of preventive services utilization	28.4%	39.4%	38.8%**
7	Health information provision to elected officials	80.9%	84.8%	4.8%
8	Health information provision to the public	75.4%	83.8%	11.1%*
9	Health information provision to the media	75.2%	87.5%	16.3%**
10	Prioritization of community health needs	66.1%	82.3%	24.6%**
11	Community participation in health improvement planning	41.5%	67.7%	63.0%**
12	Development of community health improvement plan	81.9%	86.2%	5.2%
13	Resource allocation to implement community health plan	26.2%	43.2%	64.9%**
14	Policy development to implement community health plan	48.6%	57.5%	18.4%*
15	Communication network of health-related organizations	78.8%	84.8%	7.6%
16	Strategies to enhance access to needed health services	75.6%	50.2%	-33.6%**
17	Implementation of legally mandated public health activities	91.4%	92.4%	1.0%
18	Evaluation of public health programs and services	34.7%	38.4%	10.8%**
19	Evaluation of local public health agency capacity/performance	56.3%	55.0%	-2.4%
20	Implementation of quality improvement processes	47.3%	49.6%	5.0%
Com	Composite availability of assessment activities (1-6)		77.6%	16.4%**
Com	Composite availability of policy development activities (7-15)		72.5%	20.4%
Composite availability of assurance activities (16-20) 64.4% 52.8% -1			-18.0%*	
Composite availability of all activities (1-20) 63.8% 67.6% 6.0%				

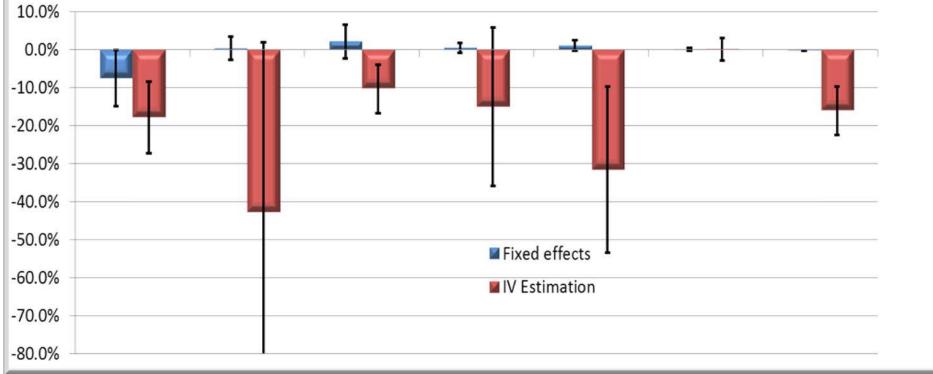

Inequities in Implementation Delivery of recommended public health activities, 2006-14


Organizational contributions to recommended public health activities, 1998-2014

Type of Organization	<u>1998</u>	<u>2006</u>	<u>2012</u>	2014
Local public health agency	60.7%	66.5%	62.0%	67.4%
Other local govt agencies	31.8%	50.8%	26.3%	32.7%
State public health agency	46.0%	45.3%	36.4%	34.0%
Other state govt agencies	17.2%	16.4%	13.0%	12.7%
Federal agencies	7.0%	12.0%	8.7%	7.1%
Hospitals	37.3%	41.1%	39.3%	47.2%
Physician practices	20.2%	24.1%	19.5%	18.0%
Community health centers	12.4%	28.6%	26.9%	28.3%
Health insurers	8.6%	10.0%	9.8%	11.1%
Employers/business	25.5%	16.9%	13.4%	15.0%
Schools	30.7%	27.6%	24.9%	24.7%
Universities/colleges	15.6%	21.6%	21.2%	22.2%
Faith-based organizations	24.0%	19.2%	15.7%	16.8%
Other nonprofits	31.9%	34.2%	31.6%	33.6%
Other organizations	8.5%	8.8%	5.4%	5.4%

Bridging capital in public health delivery systems Trends in betweenness centrality

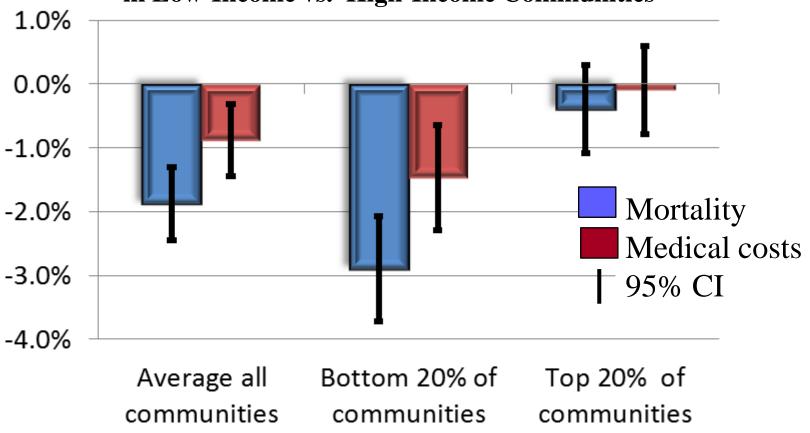
Comprehensive systems do more with less


Type of delivery system

performed

Health and economic impact of comprehensive systems

Fixed Effects and IV Estimates: Effects of Comprehensive


System Capital on Mortality and Spending Residual Public health Premature Infant mortality Heart disease Diabetes mortality Cancer mortality spending/capita

Models also control for racial composition, unemployment, health insurance coverage, educational attainment, age composition, and state and year fixed effects. N=779 community-years **p<0.05

Impact on equity: larger gains in low-resource communities

Effects of Comprehensive Public Health Systems in Low-Income vs. High-Income Communities

Log IV regression estimates controlling for community-level and state-level characteristics

Conclusions

- Comprehensive and highly-integrated public health systems appear to offer considerable health and economic benefits over time.
 - 30-45% more PH services implemented
 - 10-40% larger reductions in preventable mortality rates
 - 15% lower public health resource use
- Low-income communities are less likely to achieve comprehensive public health system capital, but they benefit disproportionately
- Failure to account for endogenous network structure can lead to biased estimates of impact

Policy and Practice Implications

Opportunities for building public health system capital and interorganizational networks:

- Hospital community benefit requirements
- CMMI State Innovation Models (SIMs)
- Accountable Communities initiatives
- Insurer and employer incentives
- Community development projects

For More Information

Systems for Action

National Coordinating Center

Systems and Services Research to Build a Culture of Health

Supported by The Robert Wood Johnson Foundation

Glen P. Mays, Ph.D., M.P.H. glen.mays@uky.edu
@GlenMays

Email: systems4action@uky.edu

Web: www.systemsforaction.org

www.publichealthsystems.org

Journal: www.FrontiersinPHSSR.org

Archive: works.bepress.com/glen_mays

Blog: publichealtheconomics.org

New research program focuses on delivery and financing systems

A Robert Wood Johnson Foundation program

Systems for Action

Systems and Services Research to Build a Culture of Health

Research Agenda

Delivery and Financing System Innovations for a Culture of Health

September 2015

http://www.systemsforaction.org