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Abstract 

I show that specification tests for correlated fixed effects developed by Hausman and 
Taylor extend in an analogous way to panel data sets with endogenous regressors. Given 
panel data, different sets of instrumental variables can be used to construct the test. For 
a simple class of models, the test in many cases is asymptotically more efficient if an 
incomplete set of instruments is used. However, in small samples one may do better using 
the complete set of instruments. Monte Carlo results demonstrate the likely gains for 
different assumptions about the degree of between and within variance in the data. 
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1. Introduction 

Following early work by Hausman (1978) and Hausman and Taylor (1981), 
specification testing for correlated fixed effects in panel data models is now 
a standard tool for researchers. To date, the test as derived in the latter paper 
has not allowed for the possibility of endogenous right-hand side variables. In 
this paper, I extend the results of Hausman and Taylor (1981) to the case where 
right-hand side variables are assumed to be endogenous (specifically, correlated 
with the time-varying component of the error structure). It turns out that the IV 
analogous specification tests for correlated fixed effects given in Hausman and 
Taylor (198 1) are applicable in this context. However, it is important to specify 
the instrument set appropriately for the test. Perhaps surprisingly, for a simple 
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class of models that I consider, the more powerful test statistic in many cases 
uses an inefficient estimator. Asymptotically, while the variance used to con- 
struct the test statistic will be greater than the variance associated with using 
a more efficient estimator, its asymptotic bias will also be greater as the null 
hypothesis of no correlation is violated. The increase in bias more than offsets 
the increase in variance thereby leading to a more powerful test statistic. 

The next two sections derive this asymptotic result for a simple model. I then 
consider the small-sample properties of the different test statistics under differ- 
ent assumptions about the quality of the instrument and the degree of correla- 
tion between the fixed effects and the instrument by means of a Monte Carlo 
experiment. Finally there is a brief conclusion. 

2. The model and test 

The model under consideration is 

(1) 
where Y is an NT x 1 vector, X an NT x k matrix, a an N x 1 vector 
of individual effects (Cli i.i.d. with mean 0 and variance oi), and E an i.i.d. 
random vector with mean 0 and covariance matrix 0,’ ZNT. The vector er is a T x 1 
vector of ones. The data are stacked by individuals over time. That is, 
Y’ = [Y; Y; . . . Yk], where Yi is a T x 1 vector of observations on the ith 
individual. This equation is part of a simultaneous system and by assumption 
some columns of X are correlated with E. It is assumed that was some (possibly all) 
columns of X are also correlated with the individual effects. There is a set of 
instruments Z, a matrix NT x L, L 2 k, valid in the sense that Z is correlated 
with X but uncorrelated with E. It is assumed that columns of X which 
are uncorrelated with E are contained in 2. The present purpose is to test whether 
Z is correlated with the individual effects. Specifically, I consider the hypotheses:’ 

‘An alternative null hypothesis which appears less restrictive is plima.., xy=, {Zr .aJN} = 0 

where Zi is the average over time of the observations of Zi,. However, Amemiya and McCurdy 

(1986) note that the assumptions under the two null hypotheses are equivalent if one also assumes 

that the estimator for /I continues to be consistent when estimated using any T - 1 of the T time 

periods. While there may be circumstances in which this second set of T - 1 assumptions fails to 

hold while the assumption that plim c$ r Zj. ai/N = 0 holds, it seems reasonable to believe this is an 

unusual case. Hence I argue that for our purposes the null hypothesis in the text is not overly 

restrictive. Whether the additional 7’ - 1 assumptions implied by this null hypothesis hold or not is 

in fact an empirical manner. A specification test can easily be constructed to test their validity. 
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Given the loss of information resulting from the use of the within or first 
difference estimators to eliminate correlated fixed effects, there is a large gain 
possible if one can assume the null hypothesis. In this case, the GLS-IV 
estimator will be more efficient. 

Letting u = a @ + + E, then 

or 

E(uu’) = D = TO,2 P, + 0; INT, (2) 

E(uu’) = 0: P, + 0,’ Q”, (2’) 

where a: = Taz + a:, P, = (IN 0 eT S&)/T, and Qv = I - P,. For future refer- 
ence, I use the fact that 52-i12 = a; 1 P, + a; ’ Qu and denote Sz- ‘j2 by H. P, X 
replaces the observations for each column of X by the average of the observa- 
tions for each individual over time. Q”X replaces the observations by the 
deviations from the time averages. 

First note that the Hausman-type specification test, comparing the GLS-IV 
estimator with the fixed effects (within) estimator, can be constructed using the 
within and the between estimators. Define the operator PA as the projection 
operator: PA = A(A’ A)- ’ A’. If Z is a set of variables uncorrelated with E, there 
are different possible instrument sets that I can use. Following the general 
approach of Cornwell, Schmidt, and Wyhowski (1993) (CSW), I consider instru- 
ment sets of the form 2 = [Q,Z,P, B] where B is defined as a matrix of 
potential instruments. The GLS-IV estimator is given by 

& = (X’H’P~HX)-‘X’H’P‘qHY. (3) 

Some simple algebra (see Appendix A) shows that the GLS-IV estimator is 
a matrix weighted average of the within IV estimator (flz) and the between IV 
estimator @‘) . That is, 

&=nfl;+(z-/I)/??, (4) 

where 

n = [a,2X’PQ”z 
- 

x + Ta;2R’PsX]-lo,2X’PQ”=X, (5) 

pg = [x’P,“zx]-’ [X’P,“Z Y], (6) 

&y = [x’P,x]-‘[FP,P]. (7) 

In Eqs. (5) and (7), 8 = [X;.rf;, . . . Xi]‘, where Xi. is the mean of the 
T observations on X for the ith individual (and similarly for B, Y, and Z). That 
Eq. (4) holds should not be surprising as it is simply the IV analog to the result 
for OLS estimators derived in Maddala (1971). 

Under the null hypothesis, /?& and fl,’ are consistent estimators of /I with 
p^rL,“,, the more efficient estimator, while under the alternative, &’ is consistent 
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and &$s is inconsistent. A Hausman test statistic of the form 

m = (&s - &iv) V(iKs - j&v,- 1 (p& - pJ (8) 

can be constructed. Under the null, m is distributed as a chi-square statistic with 
k degrees of freedom. Simple algebra using Eq. (4) shows that m can be written as 

m=(&fJ - &y)'(Vw + v,,-qpg -f&y). (9) 

One advantage of the latter formulation of the test statistic is that the covariance 
matrix of the difference between the between and within estimators is easier to 
compute. While the cov(flzrs - &?) is equal to Vw - l&s if /?zLs is asymp- 
totically efficient, the estimated difference of the covariance matrices may not be 
positive definite in small samples. This equivalent formulation of the chi-square 
test statistic generalizes a result of Hausman and Taylor (1981) to allow for IV 
estimation. 

To this point, I have considered instrument sets of the general form 
[Q. 2, P, B]. Now I turn my attention to the choice of B. An obvious choice for 
B is 2 itself. Then 2 = [Q” 2, P, Z]. In other words, the instruments Z are used 
twice: first as deviations from their time means and then as the time means 
themselves. This is essentially the Hausman-Taylor (HT) estimator discussed in 
Breusch, Mizon, and Schmidt (1989) and Cornwall, Schmidt, and Wyhowski 
(1993). However, since the values of Zi, are uncorrelated with the individual 
effects for each t under Ho, then each of the T N x L matrices Z,, where 
z, = [z;,, . . . ,ZAl]‘, can be used as instruments for X,. As a result, more 
instruments are available which cannot decrease the efficiency of the GLS-IV 
estimator. Under the null hypothesis that individual values of Z are uncor- 
related with the individual effects for all values of t, then the instrument set 
B = Z* provides more efficient estimates of p, where Z* is formed as in Breusch, 
Mizon, and Schmidt (1989).’ That is Z* is an NT x TL matrix: 

- . 
Zll ... ZlT 
Z11 ... Z1T Ii T times 

Note that Q”Z* = 0 and P,Z* = Z*. Hence, 2 = [Q”Z,Z*] and &.Ls con- 
structed using Z* will be more efficient than if constructed using P,Z. CSW 
refers to this estimator as the Amemiya-McCurdy (AM) estimator. 

*Z* is defined as S* in Eq. (7) of Breusch, Mizon, and Schmidt (1989). The instrument set [QyZ,Z*] 
defined below is analogous to set B” in Theorem 2 of their paper. While a more efficient instrument 
set may exist, analogous to the set D in Eq. (8) of B-M-S, for the purposes of this paper all that is 
needed is that the estimator using Z* be more efficient than the estimator using P,Z. 



G.E. Metcalf/ Journal of Econometrics 71 (1996) 291-307 295 

One might imagine that the appropriate specification test should employ the 
more efficient GLS estimator to obtain greater power. However, this need not be 
the case. A reduction in the variance of the difference of the within and between 
estimators will indeed increase the power of the test. Given the greater efficiency 
of the between estimator using Z* rather than 2, the variance will decrease. 
However, the asymptotic bias may also increase when a less efficient estimator is 
used. If, for example, the bias increases at the same rate as the variance as the 
null is violated when using a less efficient estimator, then the power will increase 
since the test statistic is quadratic in bias but linear in variance. The next section 
considers the asymptotic efficiency of the test statistic formed with different 
instrument sets for a particularly simple class of data processes to illustrate this 
point. 

3. Asymptotic efficiency 

To illustrate the point that the statistic for testing correlated fixed effects may 
be more powerful when an inefficient estimator is used, I consider a simple scalar 
model with one explanatory variable and one instrument: 

Xit = Yxxit - 1 + Vif, 

Zit = Yzzit- 1 + Vit, 

plim 
1 

N~m NTV’V =~“~zo~ ( > 
plim 

1 
N-r, &V =ay2>0, 

( > 

plim 
1 

N_a, *)1’1 =+4 
( > 

IYil < l9 i = x,z. 

I will occasionally refer to a: and oz which equal ot/( 1 
respectively. I assume that q is uncorrelated with E. 
correlated with a: 

plim f z;a = oZa, 

N-CO ( ) 

(104 

- $1 and &f/(1 - yz), 
However, it may be 

(11) 

when (T,, equals zero under the null hypothesis and is nonzero otherwise.3 

‘This model easily extends to the matrix case of k explanatory variables and L instruments where 

the autoregressive parameters yX and yz are scalar. For details see Metcalf (1992). 
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This is a particularly simple structure for the data generation process, but it 
has the appealing property that as yi increases from 0 towards 1 an increasing 
fraction of the variance of the random variable is due to the variation across 
individuals.4 Since panel data are often slow-moving over time, the performance 
of the specification test at high levels of yi is of considerable interest. I exclude the 
possibility that yi = 1. A more general model would allow some variables to be 
nonstationary. However, the greater model complexity would obscure the 
essential results without adding much in the way of insights. 

Define the between estimator using the mean of the instrument as /?“, and the 
between estimator using Z* as jAAM. Under the null hypothesis, the asymptotic 

variance of ,/%& is given by 

where 

a, = i y”x- l and b, = i ys-‘. 

The asymptotic variance for fip*,, is given by 

v,, = 0,” 

(12) 

(13) 

whereF=[aT+b1-1a,_l+b2-1...a1+br-1]andBistheTxT 
matrix 

Yz y; rZ” . . . $1 

1 yz y; ... $2 

$2 yT-3 $4 . . . 1 I. 
Consider local alternative of the form gza # 0 and figza -+ $ < co as 

N approaches co. Under the null hypothesis, the probability limit (as N + co) 
Of/?:-& is zero and m is chi-square with one degree of freedom. Under the 
alternative hypothesis, m is distributed as a noncentral chi-square random 
variable with one degree of freedom and noncentrality parameter 6 where 

4 For example, the between variance for X as a fraction of the total variance equals (2 1, a, - T)/T * 

where a, = cf=,y:-‘. This fraction varies between l/T and 1 as yx increases from 0 to 1. 
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6’ = q’M_ ’ 4,4 is the probability limit of 3 (&” - fly), and M is its asymp- 
totic variance (see Scheff, 1959). Let 4i equal 4 with Ji substituted for 
j?r (i = HT, AM). The asymptotic biases for the two estimators using the 
different set of instruments are 

T2 
~HT=C( 

o*, 

a, + b,) - T a,, 

and 

gAh4 = 

T.FB-‘er oza 

FB-‘F’ a,,’ 

(14) 

(15) 

If yX = yz, it is straightforward to show that vu, = VA, and that &T = C&M 
leading to the following proposition: 

Proposition I. Giv_en the m_odel in Eqs. (IO)-(21) and the assumption that yx = yz, 
the two estimators PnT and PAM are equally efficient asymptotically and the power 
of the specification test of the hypothesis that the instrumental variables are 
uncorrelated with the individual efSects is unaflected by the choice of instrument set. 

Proof. See Appendix B. 

As yX - yL diverges from zero, the variances and power of the specification test 
begins to differ. Since vu, - VA, is positive definite, it would appear that the 
power of the specification test should increase using Z* as the set of instruments. 
However, it will turn out that &T may also be greater than qAM which will 
increase the power of the test using the means of Z as instruments. For yX > 0, 
this result is formalized in the following proposition. 

Proposition 2. Zf yx > 0 and yz = 0, then the asymptotic power of the test statistic 
using Z as instruments is greater than the power using Z* as instruments. 

Proof. See Appendix B. 

Proposition 2 illustrates very clearly the trade-off between decreased effi- 
ciency and greater bias in moving from an efficient to an inefficient set of 
instruments. Increasing the asymptotic bias (4i) will increase the power of the 
test. With yX > yz = 0, the bias of each statistic is proportional to the variance 
(4i = Kn, i = HT, AM, where I is a k x 1 vector). Since the power of the test 
statistic is quadratic in bias and linear in the inverse of the variance, the power 
must increase as the bias and inverse of the variance increase at the same rate. 

I now turn my attention to the case where yX = 0 and yz > 0. Some tedious 
algebra shows that the asymptotic bias for the test statistic under the alternative 
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Fig. 1. Power ratio of mHT to mAM. 

hypothesis is greater when Z is used as the set of instruments. Again, the variance 
of the between estimator is greater when Z is used. In this case it is difficult, 
however, to show that the power of the test is greater when Z is used as the 
instrument set rather than Z*. In the simple case where k = L = 1 a grid search 
shows that the test statistic using Z is more powerful than when .Z* is used. 

The increase in power is quite dramatic as illustrated in Fig. 1. Let the 
covariance of Z and c1 be equal to half the variance of Z. At yz = 0.8 and T = 7, 
the increase in the number of rejections is 41% (power equals 0.14 versus 0.10) 
and declines to 26% at T = 16 (power is 0.33 versus 0.26). At yz = 0.9, the test 
using the mean of the instruments rejects nearly twice as often as when the 
instruments for each time period are used separately. Note that at yz = 0.9 and 
T = 7,80% of the variation in the data occurs across individuals rather than for 
individuals across time. It is quite typical for many panel data applications to 
lose 80% of the variance in the data when using the fixed effects estimator. 

Fig. 2 graphs the efficiency gains from using the means of the instruments 
when T = 5 and yX and yz vary between 0.1 and 0.9. As pointed out above, the 



G.E. Metcalf/Journal of Econometrics 71 (1996) 291-307 299 

Fig. 2. Power ratio of mHT to mAM. 

tests perform equivalently when yx = yz and the test using the means of the 
instruments performs better as the two autocorrelations move apart. However, 
the improvement is not dramatic with a maximum improvement of less than 
32%. This raises the issue of the performance of the tests in small samples. I turn 
my attention to this issue in the next section. 

4. Small-sample characteristics of the test 

Specification test statistics in general have been criticized for having low 
power (e.g., Holly, 1982; Newey, 1985). One might expect that the power of the 
test would deteriorate further as a result of the additional noise from the 
instrumenting of variables in X. To consider how well the test works in practice, 
I present results from a Monte Carlo experiment. I consider a simple model with 
k = L = 1, set p equal to 1 in Eq. (1) and take draws from a normal distribution 
for Xir* Zit, sit, and C(i, each with mean 0. The first three variables have variance 
1 and Cli has variance l/T. The covariance of Z and E is zero while the other 
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covariances vary from experiment to experiment.5 After generating the data, 
I compute the within and between estimates of /I, their variances, and the 
chi-square test (which has one degree of freedom).6 I repeat the process 1000 
times for each model. 

For the first set of results, I set yx = yz = 0. With these assumptions, the 
noncentrality parameter, 6’, is given by the formula 

~?~=t+b=T= $+ . ( 1 (16) 

The asymptotic power of the test increases with more time periods, and with 
a higher correlation between the time means of the instruments and the indi- 
vidual effects. Note that the tests should perform equally well based on the 
results from the last section. Table 1 presents Monte Carlo results with N = 200 
and T = 5. Cov(Xi,, E(t) = 0.4 and CT,, and (T,, vary from 0 to 0.06 and 0.1 to 0.7, 
respectively. The numbers in each cell show the fraction of times the null 
hypothesis is rejected due to m in Eq. (9) exceeding the 5% critical value for 
a chi-square random variable with one degree of freedom. The top number in 
each cell presents results using the mean of Z as the instrument set, while the 
bottom number uses the set Z*. For future reference, call the first test statistic 
mm and the second statistic I?1AM. The first column in the table shows the 
computed size of the test. Note that neither of these tests has a computed size 
near 5% at very low levels of correlation between Z and X. This is suggestive of 
the results of Nelson and Startz (1990a, b) who have shown that the distribution 
of IV estimators diverges dramatically from the asymptotic distribution in the 
presence of poor instruments. 

The remaining columns in Table 1 show the power of the test in the face of 
increasing correlation of Z with ~1. In nearly every case, the power of mAM is 
higher than that of ll~i+T. The increase in power can be significant, particularly 
with poor instruments. These results are striking given the number of indi- 
viduals in the data set (N = 200) as well as the fact that mAM has the same 
distribution asymptotically as &iT. Clearly, in the case where yx = yz = 0, the 
main advantage of mAM over mHT lies in its performance in the presence of poor 
instruments. 

These results show that in the case where asymptotically the two formulations 
of the chi-square test should give equivalent results, the test statistic using the 
more efficient estimator is a more powerful test statistic. However, Proposition 

’ I have also experimented with varying the variance of xi. The results are not qualitatively different. 

6 Equivalently, I could take the square root of the statistic and use the standard normal distribution. 

Constructing the experiment with one degree of freedom allows me to avoid issues of direction in 
defining the local alternative which affect the power of the test. 



G.E. MetcalflJournal of Econometrics 71 (1996) 291-307 301 

Table 1 
Computed power and size, yx = y. = 0 

0x2 0.0 0.02 0.04 0.06 

0.1 0.004 0.029 0.082 0.146 
0.018 0.058 0.120 0.196 

0.3 0.032 0.170 0.457 0.754 
0.044 0.184 0.475 0.744 

0.5 0.045 0.174 0.497 0.786 
0.050 0.196 0.512 0.775 

0.7 0.051 0.181 0.459 0.803 
0.063 0.205 0.489 0.807 

This table presents the fraction of rejections of the null hypothesis that ci. = 0 out or 1000 replications. 
The top entry in each cell uses Z as an instrument for X while the bottom entry uses Z*. The 
covariance of X and E equals 0.40, N equals 200, and T equals 5. The nominal size of the test is 0.05. 

Table 2 
Computed power and size, yr = 0.9, yz = 0 

uxz 0.0 0.06 0.12 0.18 

0.1 0.002 0.007 0.021 0.023 
0.003 0.005 0.012 0.011 

0.3 0.026 0.124 0.310 0.362 
0.040 0.101 0.242 0.261 

0.5 0.042 0.256 0.514 0.715 
0.058 0.191 0.421 0.639 

0.7 0.043 0.328 0.813 0.942 
0.046 0.259 0.608 0.791 

This table presents the fraction of rejections of the null hypothesis that ura = 0 out or 1000 replications. 
The top entry in each cell uses Z as an instrument for X while the bottom entry uses Z*. The 
covariance of X and E equals 0.40, N equals 200, and T equals 5. The nominal size of the test is 0.05. 

2 states that in cases where yx > 0 and yz = 0, then the test statistic using the less 
efficient estimator is more powerful. Table 2 presents Monte Carlo results in the 
case that yx = 0.9 and yz = 0. Recall that this implies that 80% of the variance in 
X is lost when the fixed effects estimator is used. In all other respects, the model 
is the same as in the first experiment. Table 2 shows the power of the two test 
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Table 3 
Computed power varying yx and yi 

Y. 0.00 0.25 0.50 0.75 0.90 

0.00 0.979 0.967 0.942 0.837 0.606 
0.980 0.962 0.929 0.748 0.430 

0.25 0.991 0.976 0.969 0.899 0.730 
0.990 0.972 0.956 0.847 0.583 

0.50 0.987 0.981 0.984 0.913 0.806 
0.983 0.978 0.973 0.877 0.695 

0.75 0.975 0.957 0.956 0.879 0.770 
0.977 0.963 0.953 0.861 0.682 

0.90 0.848 0.854 0.814 0.745 0.550 
0.961 0.938 0.926 0.821 0.670 

This table presents the fraction of rejections of the null hypothesis that c,, = 0 out or 1000 
replications. The top entry in each cell uses s?? as an instrument for R while the bottom entry uses Z*. 
The covariance of X and E equals 0.40, N equals 200, and T equals 5. The nominal size of the test is 
0.05. u,, = 0.09 and u,, = 0.70. 

statistics. The clear advantage of m HT over mAM is evident here. While both test 
statistics have the correct size at moderate levels of correlation between Z and 
X, the power of m HT is greater than the power of mAM in every case conditional 
on the alternative. The increase in power can be quite substantial even in the 
presence of good instrumental variables. The power of the test using the 
inefficient between estimator in the case where oxz = 0.7 and ozx = 0.18 is 0.942 
compared to a power of 0.791 when the efficient between estimator is used to 
construct the chi-square test. This suggests that in cases where there is signifi- 
cant time variation for the instrumental variable, while there is little time 
variation for the explanatory variable, one should consider using the inefficient 
between estimator construct the chi-square statistic to test for correlation 
between the instrumental variables and the individual effects. 

The final sets of Monte Carlo results provide guidelines for generalizing 
the results of Propositions 1 and 2 along with the Monte Carlo results of 
Tables 1 and 2. In Table 3, I fix the convariance of Z and c( at 0.09, the 
covariance of Z and X at 0.70 and the covariance of X and E at 0.40 and vary yx 
and yz from 0 to 0.90. In all cases where yx > yz, ~~ZHT has higher power than mAM. 
Again, the increase in power can be quite dramatic (e.g., yx = 0.9, yz = 0.25). This 
suggests that where is more time variation in the instrumental variables than in 
the explanatory variables, the test statistic should be computed using the 
inefficient between estimator. Where yx equals yz, there is no clear result with 
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Table 4 
Computed power when model is overidentified 

Y2 0.00 0.25 0.50 0.75 0.90 

0.00 0.945 0.936 0.951 0.931 0.902 
0.922 0.912 0.941 0.920 0.900 

0.25 0.952 0.945 0.958 0.954 0.925 
0.943 0.932 0.937 0.937 0.933 

0.50 0.962 0.968 0.958 0.963 0.932 
0.943 0.950 0.944 0.949 0.930 

0.75 0.938 0.934 0.941 0.921 0.909 
0.920 0.927 0.936 0.917 0.917 

0.90 0.855 0.888 0.852 0.856 0.782 
0.891 0.917 0.910 0.911 0.897 

This table presents the fraction of rejections of the null hypothesis that era = 0 out of 1000 
replications. The top entry in each cell uses Z as instruments for X while the bottom entry uses Z*. 
The covariance of X and E equals 0.40, N equals 200, and T equals 5. The nominal size of the test is 
0.05. uz. = 0.05 and u,, = 0.50. There is one explanatory variable (x) with a serial correlation 
coefficient of 0.5. There are three instrumental variables, two with autoregression coefficient yz and 
one with coefficient yr 

both test statistics performing about the same, as Proposition 1 suggests they 
should. As yz becomes larger than yX, it becomes more likely that the mZAM 
OUtperfOrmS mm though the improvement is not large until yz is much greater 
than yX. 

Given the large number of possible configurations to consider, it is difficult to 
generalize broadly to cases where k and L exceed 1. As a first pass at broadening 
the findings of the previous tables, Table 4 presents results from a model in 
which k = 1 and L = 3. I fix yX at 0.5 and range y for the instrumental variables. 
The first instrument has an autocorrelation coefficient equal to y1 and the next 
two instruments have a coefficient of yz. In cases where both y1 and y2 are less 
than yX, mm has higher power than m AM. Similarly, when both y1 and y2 are 
greater than yX, mAM has higher power than mnr in three of four cases. These 
results are consistent with the results in Tables 2 and 3. In cases when 
72 > yx > 71, mAM o”tprforms mHT when y2 is very large (0.9). When 
yr > yX > y2, mm tends to outperform m AM, though not by a large margin. These 
results suggest a tendency for m HT to Outperform mAM when there are a number 
of instrumental variables with a greater fraction of within group variation than 
between groups variation - again consistent with the results in Tables 2 and 3. 
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While the results presented here are from a particularly simple model, they 
illustrate an important point. In certain circumstances one can improve on the 
power of a specification test for correlated fixed effects by using an inefficient 
estimator. 

5. Conclusion 

Testing for correlated individual effects has become increasingly important 
with the greater use of panel data sets. This paper shows that the type of 
specification test often employed in models where all the explanatory variables 
are considered exogenous carries over in a straightforward manner to models 
with endogenous explanatory variables. However, greater attention must be 
paid to the quality of the instruments used for the explanatory variables if the 
actual size and power of the test statistic is to correspond to the theoretical size 
and power. 

The between estimator used in the specification test can be constructed with 
different sets of instruments. In many cases, a larger set of instruments leads to 
a more powerful test statistic. However, it is often the case that the more 
powerful test statistic uses a reduced set of instruments for the between es- 
timator. While the variance of the test statistic is driven up in this case, so is the 
asymptotic bias which can more than offset the increase in variance. Such a case 
happens when the explanatory variables are slow moving over time while the 
instruments are not. In this case, there is a distinct advantage to constructing the 
specification test using the less efficient estimator to take advantage of its greater 
asymptotic bias. 

These results have been shown in a simple model with one explanatory 
variable and one instrument. The model is easily extended to the matrix case 
where the autoregressive parameter is scalar. While the model does not directly 
generalize to allow for independent autoregressive paramters for individual 
explanatory variables or instruments or for nonstationary variables, I conjec- 
ture (and show in one example) that the basic insight is unchanged: in many 
cases more powerful statistics for testing correlated fixed effects can be construc- 
ted by using less efficient estimators. 

Appendix A 

Relationship between GLS-IV, within-IV, and between-IV estimators 

Define instrument set 2 = [Q”Z,P,B], where B is an NT x A4 matrix with 
the property that the columns of P,B are legitimate instruments for the regres- 
sion in Eq. (1) (i.e., uncorrelated with E but correlated with X). As noted in the 
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text, the GLS-IV estimator is given by 

B AzLs = (X’H’PfHX)_’ X’H’PZHY. 

It can easily be shown that H’PzH = oF2 PQoz + oL2 Pp,,B and so 

/?rLs = [0;2x’P,“zx + o;2X’Pp”BX]-i 

x [o,2x’PQ,,z Y + a;2X’Ppt,B Y]. 

(A-1) 

64.2) 

If we define the N x k matrix X = [Xi 9; . . . Xh]‘, where Xi is the mean of the 
T observations on X for the i individual (and similarly for B, Y, and Z), we can 
rewrite (A.2) using the fact that P,B = B 0 eT. Making this substitution and 
some simple algebra leads to 

p^& = [o;~X’P~“~X + ToI -2~‘pBn1 

x[o;‘X’P~,~Y + To;~X’P,Y]. (A.2’) 

Now the within estimator (flz) follows first from eliminating c( from Eq. (1) in 
text: 

Qv Y = QvXfl + Que. (A.3) 

We premultiply this by Pz and, noting that Pf = P,,,, + PPoB, obtain 

P,J Y = P,“zXp + P&y (A.4) 

and therefore 

p&Y = [x’PQJx]-’ [X’PQ$ Y]. (A.3 

This is simply the 2SLS regression of Qv Y on QUX using QvZ as instruments. 
The between estimator @F) is similarly derived and is given by 

&” = [R’P,x]-’ [X’P,F]. (A4 

Again, this is simply the 2SLS regression of P and R using B as instruments. 
Defining 

n = [o;2x’PQt,, 
_ 

X + T~;2~‘PsX]-10,2X’Pe,zX,, 64.7) 

then it follows immediately that 

P ~&=/ifl{+(z-/I)p^~. (A.8) 

Eq. (A.8) shows that the GLS-IV estimator can be written as a matrix weighted 
average of the within-IV and the between-IV estimators and is the IV analog to 
the result for OLS estimators presented in Maddala (1971). 



306 G.E. MetcalfJJournal of Econometrics 71 (1996) 291-307 

Appendix B 

Proof of Proposition I. Let yX = yz = y < 1. Therefore a, = b, and B-’ is given 

by 

[ 

1 -Y 0 . . . 0 

B-' =(I -y2)-l -y l+yz -y 0 ... 0 (B.1) 
0 . . . -Y 1 I. 

Then 

FB-’ = (1 - y2)-l [F, - yF2(l + y2) F2 - y(F1 - F3) ... FT - YF~-~], 

(B.2) 

where Fi is the ith element of F. 

Since a, = C:=r y’-i, it is easy to show that a, - ya,_ 1 = 1. Therefore, 

F, - yF2 = aT - ~(LQ-_~ + y) = 1 - y2. 

Similarly, 

FT-yFT_1=1-y2. 

Theexpression(1+y2)FT-y(F,_i +F,_,),t=2,...,T-1,canbewrittenas 

- Yb,+2 - YUT-,,I) + (4 - Y%l) + 2Y - 1 - Y2 + (UT-t+1 - Y%-0 - 

y(u,+i - yut) = 1 - y2. Therefore, 

FB-’ = e!,., (B.3) 

T 

FB-‘F’=2 1 a,- T, (B.4) 
t=1 

FB-‘eT = T. (JW 

Substituting Eq. (B.4) into Eq. (13) shows I/uT equals I/,, and substituting 
(B.4) and (B.5) into (15) shows qHT equals &,. n 

Proof of Proposition 2. Define S,& as the noncentrality parameter for the test 
using Z as the instrument set. Similarly, define 6 &,, for the test using instrument 
set Z*. Let VW be the variance of the within estimator. First, I note that 
T/uT - VAM is a positive definite matrix, assuming yX > 0: 

2 

V V/AM= T3d& 

1 1 
HT - o:-2 

T& 1 > 0, 03.6) 

by Chebyshev’s Inequality. 
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It is easily shown that V;;,’ (IHT = Vii qAM = (‘&/7’) (crxZ o,,/a~) = A. There- 
fore, 

s;, - s:, = ~‘(RHT - RAM)~, (B.7) 

and is greater than zero if RHT - RAM is positive definite, where Ri equals 
[V;’ v,v;’ + v,+-‘, i = HT,AM. RHT - RAM will be positive definite if 
R;i - R;rT’ is positive definite. But 

R&j - R-' HT = (Vii - v;; ) V,( vi; - v;IT’ ) + (I/‘& - v&l ). (B.8) 

Each of the bracketed terms in (B.8) is positive definite, so R& - R;;T’ is positive 
definite and S$, > S&,. n 
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