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Vehicle-to-grid (V2G) electric vehicles can return power stored in their batteries back to the power grid and be
programmed to do so at times when the grid needs reserve power. Since providing this service can lead to pay-
ments to owners, it effectively reduces the life-cycle cost of owning an electric vehicle. Using data from a national
stated preference survey, this paper presents a study of the potential consumer demand for V2G electric vehicles.
In a choice experiment, 3029 respondents compared their preferred gasoline vehicle with two V2G electric vehi-
cles. The V2G vehicles were described by a set of electric vehicle attributes and V2G contract requirements such
as “required plug-in time” and “guaranteed minimum driving range”. The contract requirements specify a con-
tract between drivers and a power aggregator for providing reserve power to the grid. Our findings suggest
that the V2G concept is most likely to help EVs on the market if power aggregators operate either on pay-as-
you-go basis (more pay for more service provided) or provide consumers with advanced cash payment (upfront
discounts on the price of EVs), rather than imposing fixed requirements on participants.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Vehicle-to-grid (V2G) power is a new concept in electric vehicle (EV)
design. It involves designing EVs so that they can discharge power stored
in their batteries back to the electric grid. An electric vehiclewith V2G ca-
pability has controls that enable it to charge/discharge economically—
charge when electricity is cheap and discharge when expensive. The
idea behind such a design is to use parked EVs as a source of reserve
power to the electric grid. The electric grid uses reserve power to smooth
fluctuation in power generation and to respond to unexpected outages.
This is now done with added power capacity. With proper technology,
EVs may be able to provide reserve service at a lower cost and pay the
owners of EVs for the service (Guille and Gross, 2009; Kempton and
Letendre, 1997, and Kempton and Tomić, 2005).1

Designing EVs with V2G capability has two advantages. First,
payment to owners of EVs for power stored in their vehicles may help
lower the overall cost of ownership of EVs, which is currently well
above the market price of gasoline vehicles (GVs). Kempton and

Tomić (2005), for example, estimated that a Toyota RAV4 EV could
earn up to $2554 annually from providing reserve service to the electric
grid. Second, designing EVs with V2G capability may increase the envi-
ronmental benefits of EVs. V2G vehicles can replace generators current-
ly providing reserve service. Depending on the type of fuel used by the
generators, this may have net environmental benefits. V2G vehicles
can also support renewable sources of energy such as wind and solar,
which have larger fluctuations in output than conventional sources of
energy due to natural causes and are hence in greater need of storage
capacity. V2G vehicles could be used in tandem with wind and solar
power for storage during periods of high output and for reserve power
during periods of low output. Offsetting the environmental benefits to
some extent is a shorter life expectancy for batteries in V2G vehicles
versus conventional EVs. This is due to accelerated battery wear caused
by an increased cycling of the battery, which in turn means higher
effective battery cost for the consumer and more battery disposal.

The potential benefits of V2G electric vehicles have already attracted
the interest of policy makers and power companies. However, little is
known about consumer interest in such vehicles. Will consumers
embrace the idea of selling power to the power sector? If so, at what
price? Can revenue earned from such a plan help EVs on the market?
While there is sizable literature on consumer choice for electric vehicles,
we focus on these questions and consumers' choices vis-à-vis V2G
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contact terms. Beggs et al. (1981), Calfee (1985), Bunch et al. (1993),
Kurani et al. (1996), Tompkins et al. (1998), Brownstone and Train
(1999), Ewing and Sarigollu (2000), Dagsvik et al. (2002), Hidrue et al.
(2011) and Dimitropoulos et al. (2011) are good examples of choice
modeling applications to electric vehicles.

To help answer some of these questions, we administered a web-
based stated preference survey of U.S. households. A total of 3029
respondents randomly selected from a national sample completed the
survey. The survey had three parts: a choice experiment for conventional
electric vehicleswith no V2G capability (hereafter C-EVs), a choice exper-
iment for V2G electric vehicles (hereafter V2G-EVs), and a contingent
valuation question for a prototype V2G-EV. We used data from the first
choice experiment to estimate consumers' willingness to pay for C-EVs
and their attributes in an earlier paper (Hidrue et al., 2011). This paper
is a follow-up focusing on the V2G-EV choice data in the second part of
the survey.

We used a latent class random utility model to analyze respondents'
choice of V2G-EVs. The model allowed us to capture preference hetero-
geneity in the data by identifying two groupswith different sensitivities
to the alternative attributes. We also considered other models to
capture preference heterogeneity (mixed logit and standard logit with
interactions between vehicle and individual characteristics). In our
judgment the latent class model did the best job of capturing heteroge-
neity. To assess the impact of designing EVs with V2G capability, we
simulated several contracts and estimated the payment (or cash

back) that respondents would require to sign the contracts. The
contracts included a minimum number of plug-in hours and a minimum
guaranteed driving range. Guaranteed minimum driving range promises
that car owner that his/her vehicle would always have at least a given
number of miles of charge available (expressed as miles of minimum
driving range). These features capture properties desired by the power
sector to have greater certainty about the availability of power from
parked cars.

This paper contributes to the literature on EVs and stated preference
methods in at least four ways. First, even though the potential contribu-
tion of the V2G concept to EVs has been extensively discussed in the
literature, this is the first paper to empirically evaluate whether V2G
power helps EVs on the market. Second, our findings call into question
the basic assumption that V2G's availability requirements should be of
little consequence to consumers since cars are driven only a small
fraction time on most days and for less than 30 miles per day. On the
contrary, we find that consumers are extremely sensitive to V2G
restrictions. Third, we propose two alternative V2G contract types
based on our results, which may be more promising for V2G initiatives
than conventional approaches. The conventional thinking in the V2G
literature is that drivers sign pre-specified contracts in return for annual
cash payments. We simulated several such contracts and found that
these approaches are unlikely to make V2G power competitive under
current market conditions. We propose other contract approaches that
can appeal to drivers and may make V2G power more competitive.

Fig. 1. Sample C-EV choice question.
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Finally, on the methodological front, we use a two-step choice experi-
ment as a way to convey complex products to survey respondents in a
simple way. We believe the approach has promise in other settings.

The paper proceeds as follows. We discuss the V2G concept in the
next section and follow that with sections covering study design,
model, results, and potential for V2G to help electric vehicles on the
market.

2. The concept of vehicle to grid

As noted above vehicle to grid (V2G) power refers to the flow of
power from electric vehicles back to the power grid. V2G-capable
vehicles can be battery electric vehicles, plug-in hybrid electric vehicles,

or fuel cell electric vehicles. In this study, we consider only battery
electric vehicles.

The basic idea behind the concept of V2G is to use EVs as a source of
reserve power while the vehicles are parked. The average US car is
parked 95% of the time (Pearre et al., 2011). Most of this time no charg-
ing is required, so the vehicle's electric system is unused. If EVs can be
controlled by a grid operator, and if they can both charge and discharge
on such a signal, this idle capacity can be used as reserve power to the
electric grid. There are several markets for such power capacity, traded
on wholesale markets by Transmission System Operators (TSOs), as
well as additional uses of value to power distribution companies
(electric utilities). Currently added power capacity is used for reserves
and for balancing power. EVs can also provide these reserves and the

Fig. 2. Sample V2G-EV choice question.
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revenue stream earned from providing these electric services may help
offset the current high cost of electric vehicles.

The amount of revenue a V2G vehicle can earn depends on many
factors including the length of time the vehicle is plugged in, the size
of the vehicle's battery, the power of the charger, the vehicle's daily
drive, and the type of power market. Generally, the value of the grid
reserve service is greater the longer the car is available, the larger the
size of the battery, the higher the power of the charger, and the shorter
the driver's driving requirements. The equations defining these quanti-
tative relationships are formally derived in Kempton and Tomić (2005).

In most TSO markets, the highest value markets for a V2G-EV are the
ancillary services markets (A/S), called regulation and spinning reserves.
Spinning reserves refers to a reserve generation capacity that is running
and synchronized with the electric grid. This reserve is used when there
is a sudden power interruption, for example from equipment failure. It
is rarely used (typically 30 times per year for 5–10 min per call) but has
to be ready on standby 24 h a day, 7 days a week. Regulation reserve
refers to a power capacity required to keep generation and load in balance
on a continual basis. Power companies smooth the difference between
generation and load by maintaining a regulation reserve capacity from
which they can draw when there is an excess load (regulation up) and
to which they can dump when there is an excess generation (regulation
down). Regulation is called frequently to make small adjustments,
typically hundreds of times per day. Like spinning reserve, regulation
has to be available 24 h a day, 7 days aweek, and TSOs buy frommultiple
generators to insure continuous availability.

Spinning reserve and regulation are paid by capacity (kW)—that is,
they are paid by the assured amount of power available. These markets
pay much less for actual transfer of energy (kWh) than for capacity. In
fact, for new V2G markets, the energy payment for V2G may not be
included. This means, a V2G-EV would be paid for the time the vehicle
is available to provide the service, regardless of whether or not power
is consumed. Spinning reserve and regulation together have an annual
market value of $12 billion (Kempton and Tomić, 2005). Because A/S
markets like spinning reserves and regulation have minimum capacity

requirements to bid, many vehicles must be aggregated by a service
provider who would collect power capacity from individual cars and
sell the aggregate power capacity to TSOs or other electric grid market
participants. Here we are primarily concerned with the relationship
between the aggregator and the individual V2G-EV owners.

The relationship between the aggregator and the V2G-EV owner
may take either a contractual form or a non-contractual form. In the
former, drivers would sign a contract with aggregators and get paid ac-
cordingly. Under this system, drivers have an obligation to make their
cars available for providing reserve service for a specified number of
hours per day or month. In the non-contractual variant, drivers would
have no obligation to provide reserve service, rather they would be
paid on a pay-as-you-go basis for the capacity they provide. The advan-
tage of a contract,which is themostwidely discussed approach, is that it
provides great certainty of power capacity to the aggregator. In this
study, we follow a business model assuming a contract, where each
V2G vehicle owner signs a contract with a power aggregator.

3. Survey design

We conducted a national web-based stated-preference survey in
2009. The survey included two choice experiments: one covering the
choice of C-EVs and their attributes and another covering V2G-EVs
and their contract terms. Details about the design of the survey, sample
selection, and characteristics of the data can be found in Hidrue et al.
(2011). Louviere and Hensher (1983) and Louviere et al. (2000) are
sources for background on choice experiments.

We purposely divided the survey into two separate sets of choice
experiments to improve respondent comprehension of V2G-EVs and
to simplify the V2G-EV choice experiment. Describing C-EVs alone
was complicated, and we felt that including V2G attributes simulta-
neously was too much. Our motivation stems from focus group results
and from the literature on complexity in choice experiments (Arentze
et al., 2003; Caussade et al., 2005; Deshazo and Fermo, 2002; Mazzotta
and Opaluch, 1995; Stopher and Hensher, 2000; Swait and Adamowicz,
2001). The focus groups strongly support separating the C-EV and
V2G-EV choices. The findings in the literature do not suggest the two-
part strategy directly but do generally favor limiting the number of
attributes in any given choice question. By separating our choices we
achieve this result.

The first part of our survey, pertaining to C-EVs, described and
compared C-EVs to gasoline vehicles (GVs). Respondents were given
two choice experiments in which they made a choice between their
preferred GV and two C-EVs of similar configuration (see Fig. 1). This
exercise familiarized people with the C-EVs and their attributes that
differentiated them from GVs-charging time, driving range, fuel saving,
performance, and reduction in pollution. Then,with a basic understand-
ing of C-EVs and the choice experiment process, we introduced the
V2G-EV concept and a V2G-EV contract.

We described how the buyer could charge or discharge the battery
and get paid for selling power back to the company but would be
required to have the vehicle plugged in and available to discharge
power a fixed number of hours. Then, we asked respondents to make
two choices related to V2G-EVs. In each of the choice exercises, we
asked respondents to consider three vehicles: two V2G-EVs with
different contract terms for buying back power and one GV. The GV
was their “preferred gasoline vehicle” based on a response they gave
to a previous question on the type of vehicle they were most likely to
purchase next (it could be gasoline or a hybrid gasoline). The preferred
GV and the amount of money the respondent planned to spend were
mentioned in the preamble to the question, reminding the respondent
what he or she had reported previously. Since we used the same
response format and the same vehicle in the C-EV choice experiment,
it should have been familiar to the respondent.

The two V2G-EVs in the choice experiment were described as
V2G-enabled electric versions of their preferred GV. Respondents were

Table 1
Attributes and levels used in the V2G choice experiment.

Attributes Levels

Minimum guaranteed driving range (GMR) 25 miles
75 miles
125 miles
175 miles

Required plug-in time per day (RPT) 5 h
10 h
15 h
20 h

Annual cash back payment (CB) $500
$1000
$2000
$3000
$4000
$5000

Price relative to your preferred GV (ΔP) Same
$1000 higher
$2000 higher
$3000 higher
$4000 higher
$8000 higher
$16,000 higher
$24,000 higher

The following attributes were held constant in the experiment:

Driving range on full battery 200 miles
Time it takes to charge battery for 50 miles of driving range 1 h
Acceleration relative to your preferred GV 5% faster
Pollution relative to your preferred GV 75% lower
Fuel cost Like $1.00/gal gas
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told that other than the characteristics listed, the V2G-EVs were identical
to their preferred GV. This allowed us, in principle, to control for all other
design features of the vehicle—interior and exterior amenities, size, color,
look, safety, reliability, and so forth. The V2G-EVs were described by five
C-EV attributes, three V2G contract terms, and price. To reduce the
burden of comparing nine attributes across alternatives, we kept the
five C-EV attributes fixed between the alternatives in the choice set in
the V2G-EV experiment (see Fig. 2). Since these five C-EV attributes
were the same attributes used in the first choice, we already have infor-
mation on how these are valued by respondents. By holding these attri-
butes constant across alternatives in a choice set, we were able to focus
respondents' attention on the contract terms and simplify the choice
exercise.

A drawback of this approach is that we do not directly ‘observe’
tradeoffs people may make between V2G contract terms and C-EV
attributes. These are inferred using relative coefficient sizes between
the twomodels. The tradeoff ofmost concern andmissed in this analysis
is the interaction between charging time and guaranteed minimum
driving range (GMR). For example, drivers may be less concerned
about GMR if they have fast charging time (10 min rather than the 1 h
used in our survey). By holding charging time fixed at 1 h in all cases,
our analysis misses this possible effect.

The alternatives in the V2G-EV choice set then varied in price,
required plug-in time per day (RPT), guaranteed minimum driving
range (GMR), and annual cash back. Price was defined as the amount
respondents would pay over the price of their preferred GV. RPT is
defined as average daily plug-in time over the month, which gives
drivers some flexibility in fulfilling the required number of hours per
day by plugging in for more hours on days when their schedule allows
and plugging in for fewer hours on days when it does not. GMR is a
driving-distance-equivalent charge on a battery below which power
aggregators promise not to draw power from a car's battery. For
example, the power company may promise never to let the battery
fall below a charge sufficient for 25 miles of driving. This gives car
owners a guaranteed minimum driving range even if the power
company is drawing energy. It is different from driving range on a full
battery used in the C-EV choice experiment, which indicates the
distance the vehicle can drive on a full battery charge. Respondents
were told that power companies would rarely draw the battery down
to its minimum level and that owners could always skip contract
terms on days of heavy driving requirements so long as the monthly
average was met.2

Cash back was defined as the annual revenue a driver would earn
fromproviding reserve service under the contract. To cover the relevant
range for each attribute, we used four levels for RPT and GMR, six levels
for cash back and eight levels for price. The idea here is that the power
aggregators would set these requirements to establish the viable stor-
age capacity of a fleet of vehicles. The larger the required plug-in time
and the lower the minimum guaranteed range, the larger the potential
for capacity and hence the higher the cash back payment. Table 1
presents the attributes and their levels.

We used “macro functions” available in SAS to configure our choice
experiment (Kuhfeld, 2005). The process involves two steps. First, we
used the “%MktEx macro function” to generate candidate choice set
profiles. This macro uses the number of levels for each attribute to
generate candidate number of profiles for a linear design. In our case,
the macro found an optimal linear design (100% D-efficiency) with 36
profiles. Next, we used the “%ChoicEff macro function” to generate an
efficient design for a choice models (nonlinear designs). This macro
uses the candidate profiles from step one, an assumed model, and
parameters for each attribute level to generate efficient choice design
or profile combination.

The main challenge in developing the profile design is obtaining
prior parameters. Researchers have used different sources to get priors
including manager's prior beliefs (Sandor and Wedel, 2001) and
estimates from a pilot pretest (Bliemer and Rose, 2011). We used data
from our final pretest. A total of 243 respondents participated, each
answering two choice questions. This gave us 486 observations, which
we used to estimate a simple multinomial logit model. The parameter
estimates were then used as the priors in developing the final choice
design. The 36 profiles were grouped into 18 unique blocks or choice
pairs. The blocks were then randomly assigned to respondents in the
survey.

Finally, we also included a treatment for yea-saying in our choice
experiment (Blamey et al., 1999).Wewere concerned that respondents
might report purchasing an EV as a way of showing favor for electric
vehicles and perhaps even green energy policies in general when in
fact they would not actually make a purchase. To test for this effect,
one-third of our sample received a response format in their choice
questions that allowed us to identify yea-saying. The other two-thirds
of our sample received a conventional response format without the
correction.

The correction was a dissonance-minimizing response option
(Blamey et al., 1999). People were given two options for choosing a GV.
One optionwas “I wouldmost likely purchasemy preferred conventional
gasoline vehicle.” The other (using dissonance minimizing) was “I would
most likely purchase my preferred conventional gasoline vehicle—al-
though I like the idea of electric vehicles and some of the features here
are OK, I could/would not buy these electric vehicles at these prices”.
The last response option shown at the bottom of Figs. 1 and 2 is our
correcting format. It essentially allowed people to say “I like the idea of
V2G” (registering favor with concept) “but not at these prices” (showing
their true likelihood of purchase).

Table 2 presents the frequency of choices for the two samples.
Although a large share of the sample with the correction chose the
yea-say response in the V2G-EV experiment (22.3%), there appeared
to be little yea-saying bias in our survey. Comparing the samples with
and without the correction, the share of V2G-EV choices (either V2G
vehicle-1 or V2G vehicle-2) is hardly changed by the yea-saying
treatment—52.5% without the correction and 52.0% with the correction.
Most of the votes for the yea-saying option, in other words, came from
respondents who otherwise would have reported purchasing a GV.

4. Econometric model

We estimated a latent class random utility model using the survey
data described above (Swait, 1994). Our choice of model was driven

2 In retrospect it would have been better if we had created an attribute for the “number
of days per month the battery is drawn down to its minimum” and modeled its effect di-
rectly. For example, levels might be 1, 3, 5, and 10 days per month on average where the
battery would be depleted to some set minimummileage.

Table 2
Distribution of choices among alternatives.

Alternatives Without yea-saying correction (%) N= 1996 With yea-saying correction (%) N= 1033

V2G vehicle-1 22.5 20.9
V2G vehicle-2 30.0 31.1
My preferred gasoline vehicle 47.5 25.7
My preferred gasoline vehicle—although I like the idea of electric vehicles and some
of the features here are ok, I could/would not buy these electric vehicles at these prices

– 22.3

Total 100 100
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by a need to capture heterogeneity in V2G-EV choice. Latent class
models capture preference heterogeneity by estimating separate
models for different classes of consumers. The classes are determined
econometrically by best fit. See Gopinath (1995), Walker (2001),
Boxall and Adamowicz (2002), Greene and Hensher (2003),
Provencher and Moore (2006), Walker and Ben-Akiva (2002), and
Ben-Akiva et al. (2002) for examples andmore on latent class and relat-
ed models. Our model combines the C-EV choice data with the V2G-EV
data and uses a structure much like that in Hidrue et al. (2011), where
we only considered the C-EV choice data.

Our RUMmodel for an individual has the form

Ui ¼ β0dþ βpΔpi þ βχxi þ βyyidþ εi
U0 ¼ ε0

ð1Þ

where i=1,2 for the two EVs in the choice set and i=0 for the GV. ∆pi
is price difference between EV (C-EV or V2G-EV) and GV. The vector xi
includes all of the conventional EV attributes: driving range, charging
time, pollution reduction, performance, and fuel cost saving. The vector
yi includes the V2G contract terms from the second set of choice
questions: minimum guaranteed driving range, required plug-in time,
and cash back payments. The variable d is a dummy, where d = 1 if
the choice pertains to a V2G-EV from the secondpair of choice questions
and d = 0 if the choice pertains to a C-EV from the first pair of choice
questions. β0 is a constant that captures an average effect of V2G-EV
versus C-EV. The errors terms εi and εi are assumed to have type-1
extreme value distributions with mean zero and standard deviation 1.
This gives a multinomial logit probability of the form

L βð Þ ¼
δ1 exp β0dþ βpΔp1 þ βxx1 þ βyy1d

! "

I

þ
δ2 exp β0dþ βpΔp2 þ βxx2 þ βyy2d

! "

I
þ δ0

I
ð2Þ

where δ1 = 1 if the respondent chooses EV1;δ2 = 1 if the respondent
chooses EV2;δ0 = 1 if the respondent chooses GV; I = 1 +
Σi = 1
2 exp(β0d + βpΔpi + βxxi + βyyid); and β = (β0, βp,

βx, βy).

The latent class portion of the model, which captures preference
heterogeneity, has the form

S α;βð Þ ¼ ∑C
c¼1

exp αcz
# $

∑C
c0¼1 exp αc0z

# $ % L βc# $
; ð3Þ

where the first term exp αczð Þ
∑C

c0¼1
exp αc0 zð Þ is the probability of class membership

and the second term L(βc) is the logit probability from Eq. (2) now
defined for each class c. The term z is a vector of individual characteristics;
C is the number of latent classes; β=(β1,…,βC) so each class has its own
set of random utility parameters; α=(α1,…,αC); and one vector αc is set
equal to zero for normalization so there are C sets of βc and C− 1 sets of
αc. Eq. (3) enters the likelihood function for each respondent and each
respondent has four entries—two for the C-EV questions and two for
the V2G-EV questions.

5. Estimation results

5.1. Testing for scale differences

Because our model combines the C-EV and V2G-EV data sets, we
tested for scale difference, or difference in error variance, between the
two data sets. A scale difference between the two data sets may arise
for a number of reasons—difference in number of attributes (6 vs 9),
difference in vehicle types (C-EV vs V2G-EV), and difference in
placement of questions in the survey (the C-EV always comes before
theV2G-EV experiment).WeusedHensher and Bradley's (1993) nested
logit “trick” and found that the scale parameters in the two data sets are
not statistically different. Given the near equivalence of the two sets of
choice questions, this is not a surprising result. We constrain the scales
to be the same through the paper.

5.2. Choosing number of preference classes

We estimated our model with 2, 3, and 4 classes and then compared
them using two measures of fit: the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC). The 2-class model
dominated. The 4-class model failed to converged. The 3-class model

Table 3
Definition and descriptive statistics for variables used in LC model (n = 3029).

Variable Description % in sample Mean (SD)

Young 1 if 18–35 years of age; 0 otherwise 30
Middle age 1 if 36–55 years of age; 0 otherwise 43
Old 1 if 56 years of age or above; 0 otherwise 27
Male 1 if male; 0 otherwise 43
College 1 if completed a BA or higher degree; 0 otherwise 37
Income Household income (2009 dollars) $60,357

($42,398)
Car price Expected amount spent on next vehicle $23,365

($9607)
Gasoline price Expected price of regular gasoline in 5 years (nominal dollars) $4.4

($1.7)
Multicar 1 if household owns 2 or more cars; 0 otherwise 62
Hybrid 1 if household plans to buy a hybrid on next car purchase, 0 otherwise 33
Outlet 1 if the respondent is very likely or somewhat likely to have a place to install an outlet (charger)

at their home at the time of next vehicle purchase; 0 otherwise
77

New goods 1 if respondent has a tendency to buy new products that come on the market; 0 otherwise 57
Long drive 1 if respondent expects to drive more than 100 miles/day at least one day a month; 0 otherwise 70
Small car 1 if respondent plans to buy small passenger car on next purchase; 0 otherwise 17
Medium car 1 if respondent plans to buy medium or large passenger car on next purchase; 0 otherwise 41
Large car 1 if respondent plans to buy an SUV, Pickup-truck, or Van on next purchase; 0 otherwise 42
Major green 1 if respondent reported making major change in life style and shopping habits in the past 5 years

to help the environment; 0 otherwise
23

Minor green 1 if respondent reported making minor change in life style and shopping habits in the past 5 years
to help the environment; 0 otherwise

60

Not green 1 if respondent reported no change in life style and shopping habits in the past 5 years to help the
environment; 0 otherwise

17

318 G.R. Parsons et al. / Energy Economics 42 (2014) 313–324



converged but included a class with less than one percent membership
andwith standard errors orders ofmagnitude larger than the parameter
estimates. Examining the parameter estimates for the two-class model,
one class was easily identified as EV-oriented and the other as GV-
oriented.

5.3. Class membership model parameters

The class membership model is shown in Table 4. The parameter
estimates are close to the results from Hidrue et al. (2011). Given our
survey design, this was expected. Since the results are nearly the same
as in our earlier paper, we will keep the discussion brief.

The model normalizes the parameter vector to the GV-oriented
class, so the estimated parameters represent the partial contribution
of each variable to the likelihood of being in the EV-oriented class. For
example, the parameter on Gasoline Price is positive and significant
indicating that people who expect gasoline prices to rise in the next
five years are more likely to be in the EV-oriented class. The odds-
ratio estimates of the coefficients are also shown in Table 4. This gives
the relative odds of a person being in one class versus the other for a
given change in an attribute. For example, the odds ratio of 3.0 on
Hybrid indicates that a person whose preferred GV is three times
more likely to be EV-oriented than GV-oriented.

The class membership model, based on sign and significance of the
parameters, indicates that the probability of purchasing an EV increases
with youth and being male. It also increases for those who think
gasoline prices will rise, have a green life style, have a hybrid car as a
preferred GV, and have a residence that will accommodate an EV outlet
for charging. People interested in new products and those who make
more “long drives” are also more likely to buy EV. The latter may be
driven by a desire for greater possible fuel savings.

5.4. The vehicle choice model parameters

The parameter estimates for the C-EV attributes (βx) and the V2G
attributes (βy) were estimated simultaneously. The parameters for the
C-EV attributes are very close to the results from Hidrue et al. (2011)
and we will not discuss these here. However, for comparison, we have
reported them in Table 5. Our interest in this paper is on the V2G-EV
attributes, which are reported in Table 6. There are four attributes:
price difference between a V2G-EV and the respondent's preferred GV,
annual cash back under the V2G-EV contract, guaranteed minimum
driving range under the contract (GMR), and required plug-in time
per day under the contract (RPT). The levels used for each attribute
are given in Table 1.

We specified price and cash back as continuous variables, and GMR
and RPT as step-wise dummy variables. The latter specification was
based on Wald and log-likelihood ratio tests, which indicate a non-
linear effect for these two attributes. We used themost-favorable levels
of GMR and RPT as excluded categories, so the parameter estimates for
these attributes are expected to have negative signs.

We present multinomial logit (MNL) results along with our latent
class (LC) results in Table 6. Comparing these shows the advantage of
the LC over theMNLModel. The LCModel provides a statistically better
fit and reveals significant preference heterogeneity in the data.

Looking at the sign of the parameters, we see most of them work as
expected. The coefficient on price difference is statistically significant
and negative, and the coefficient on cash back is statistically significant
and positive. The latter implies that themore revenue a person earns on
a V2G vehicle the more likely he/she is to buy it. Respondents dislike
high RPT and low GMR—utility decreases as required plug-in time
increases and as the minimum guaranteed driving range decreases. All
this is reasonable.

Comparing the parameter estimates between the two classes of the
LCmodel reveals preference heterogeneity in the population. For exam-
ple, the V2G-EV constants show a clear split in the classes. The V2G-EV

Table 4
Class membership model (GV-oriented is the excluded class).

Variables Coefficient T-stat. Odds ratio

Class membership constant −2.9 −11.8 0.06
Younga 0.72 5.6 2.1
Middle agea 0.22 1.96 1.2
Male 0.32 3.4 1.4
College 0.13 1.3 1.1
Income (000$) −0.0023 −1.9 0.99
Gasoline price ($/gal) 0.06 2.4 1.1
Hybrid 1.1 10.2 3.0
Outlet 1.1 9.9 3.0
Multicar −0.04 −0.4 0.96
Small carb 0.2 1.5 1.2
Medium carb 0.15 1.5 1.2
Long drive 0.29 3.0 1.3
Major greenc 1.1 7.6 3.0
Minor greenc 0.68 5.4 2.0
New goods 0.51 5.6 1.7
Log likelihood value −9472.1
Sample size 12,116

See Table 3 for variable definitions.
a Excluded category is Old (N56).
b Excluded category is Large Car.
c Excluded category is Not Green.

Table 5
Parameter estimates and implicit prices for the C-EVportion of the latent class RUMmodel
(t-statistics in parenthesis).

Parameters Implicit prices

GV-oriented
class

EV-oriented
class

Weighted
average

Per
unit

EV constant −4.05 0.45
(−9.9) (2.5)

Yea saying
tendency

−0.11 −0.28
(−0.93) (−2.9)

Price (in 000) −0.167 −0.078
(−11.1) (−27.1)

Fuel cost −0.15 −0.33 −$2776
(−1.3) (−6.3)

Driving range on full battery (excluded category is 75 miles)
150 miles 0.83 0.44 $5322 $71

(3.9) (5.0)
200 miles 0.89 0.84 $8333 $60

(4.2) (10.0)
300 miles 1.3 1.14 $11,653 $33

(6.3) (11.8)

Charging time for 50 miles of driving range (excluded category is 10 h)
5 h 0.58 0.09 $2194 $434

(2.7) (1.2)
1 h 1.05 0.45 $5972 $945

(5.3) (5.7)
10 min 1.31 0.74 $8748 $3331

(6.7) (9.4)

Pollution relative to preferred GV (excluded category is 25% lower)
50% lower 0.15 0.05 $726 $29

(0.68) (0.5)
75% lower 0.36 0.07 $1455 $29.2

(2.0) (0.8)
95% lower 0.54 0.28 $3466 $101

(2.8) (3.2)

Acceleration relative to preferred GV (excluded category is 20% slower)
5% slower 0.58 0.06 $1932 $129

(2.7) (0.7)
5% faster 0.91 0.28 $4452 $252

(4.1) (3.2)
20% faster 1.2 0.50 $6631 $145

(5.3) (5.6)
Log likelihood −9459.7
Sample size 12,116

319G.R. Parsons et al. / Energy Economics 42 (2014) 313–324



constant for the EV-oriented class is positive and significant indicating,
all else constant, a proclivity to buy electric, while the V2G-EV constant
for the GV-oriented class is negative and significant indicating the
reverse. These coefficients define our two classes.

We also see preference heterogeneity for the other parameters.
However, when the signs are the same, direct comparison of the
parameters is difficult, since the two classes have different scale
parameters. Calculating implicit prices eliminates the scale difference
and allows direct comparison. We present the implicit prices in the last
three columns of Table 6. The implicit prices for each class are estimated
by dividing the negative of the attribute coefficient by the coefficient
estimate on price. The probability-weighted prices are estimated by
weighting the implicit price for each class by the probability of class
membership for each person—the sample mean is reported in the table.
Comparing the implicit prices between the two classes of the LC model
shows the preference heterogeneity in the population. For example, the
two classes differ in their values for GMR and RPT. The GV-oriented
appear to be indifferent to changes in GMT and RPT at lower levels but
more adverse at the extremes—such as when GMR is at 25 miles and
RPT is at 20 h/day.

Respondents in the two classes also differ in how they value cashback.
The EV-oriented class discounted cash back less than the GV-oriented
class. Annual cash back of $1000 over the life of the car is worth
around $2400 in present value for the EV-oriented and only $1760 for
the GV-oriented. However, it is important to note that both classes
discount cash back heavily. Following Train (1985), we estimated the
implicit discount rate consumers used when they make their choice.
Assuming 10 years of life span for the V2G vehicle, we found consumers
in the EV-class used a discount rate of 41% while those in the GV-class
used 56%. The probability weighted discount rate for the entire sample
is 53.5%. Increasing the life span of the vehicle has only a marginal effect
on the discount rate.

While it is well documented that consumers heavily discount invest-
ment in energy conservation (see for example Train (1985) andHausman
(1979)), our estimates are on the higher end. For example, recent studies
that examined consumer choice of hybrid and alternative fuel vehicles
found discount rates in the range of 20% to 25% (Horne et al., 2005;
Mau et al., 2008; Axsen et al., 2009). However, the high discount rate in
our data may be plausible given the unfamiliarity of the V2G technology
and the high initial cost it involves. Howarth and Sanstad (1995) argue
that high implicit discount rates might reflect a perceived risk of energy
efficient investments. Hassett and Metcalf (1993) argue that high
discount rates are rational rates if future savings are highly uncertain.
The high discount rate may also reflect respondents' mistrust of power
companies as some people indicated in our focus groups.

The weighted implicit prices in Table 6 show that respondents see a
high inconvenience with GMR and RPT over ranges actually being
considered for policy. People, it seem, place a high value on flexibility
in their driving lifestyles. Reducing GMR from 175 to 125 has the
same negative effect on consumers as increasing the initial price of the
car by $497. Not much. But, reducing it from 175 miles to 75 miles is
equivalent to increasing the initial price by $4020, and reducing it
from 175 to 25 miles is equivalent to an $8438 increase. Note that the
implicit prices increase at an increasing rate: $10/mile (in the range
175 to 125 miles), $70/mile (125 to 75 miles) and $88/mile (75 to
25 miles). For comparison, the per-mile implicit prices for increased
driving range in the C-EV model are $33/mile (in the range 300 to
200), $60/mile (150–200 miles), and $71/mile (75–150). There is
reasonable correspondence between what these variables measure, so
the preference consistency here looks good.

For RPT, the reference level is 5 h per day—a rather short period of
required plug-in time. On average, increasing RPT from 5 h to 10 h is
equivalent to increasing initial price by $1411. Increasing it further to
15 h and 20 h is equivalent to increasing initial price by $4454 and

Table 6
Parameter estimates and implicit prices for the V2G-EV portion of the latent class RUMmodel (t-statistics in parenthesis).

Attributes MNL modela Latent class model Implicit prices for latent class model

GV-oriented class EV-oriented class GV-oriented class EV-oriented class Weighted average

V2G constant −1.1 −2.07 2.5
(−8.0) (−2.1) (18.1)

Yea saying tendency −0.22 −0.11 −0.28
(−5.2) (−0.81) (−2.8)

Price relative to preferred GV (000) −0.08 −0.17 −0.08
(−26.9) (−11.0) (−27.2)

Cash back (000) 0.16 0.30 0.19 $1.76 $2.4 $2.1
(11.0) (6.6) (10.3)

GMR = guaranteed minimum driving range (excluded category is 175 miles):
125 miles −0.05 0.26 −0.17 $1529b −$2125 −$497b

(−0.9) (1.4) (−2.35)
75 miles −0.29 −0.37 −0.44 −$2176b −$5500 −$4020

(−5.1) (−1.91) (−6.03)
25 miles −0.66 −1.13 −0.79 −$6.647 −$9875 −$8438

(−9.0) (−3.8) (−9.3)

RPT = length of required plug-in time per day (excluded category is 5 h):
10 h −0.11 0.07 −0.23 $412b −$2875 −$1411b

(−2.0) (0.36) (−3.1)
15 h −0.32 −0.43 −0.48 −$2529 −$6000 −$4454

(−5.7) (−2.1) (−6.3)
20 h −0.63 −1.42 −0.69 −$8353 −$8625 −$8504

(−9.8) (−5.5) (−8.9)
Log likelihood value −10,938.8 −9472
Sample sizec 12,064 12,116
a TheMNLModel includes the same set of individual-characteristic variables used in the class membership stage of the LC Model (see Table 4). These variables enter as interactions on

the V2G constant in the MNL Model. Since we have opted for the LC Model in our final analysis, we have excluded these interactive coefficient estimates to keep the table compact.
b Based on a statistically insignificant parameter at the 5% level of confidence.
c The data hasmissing demographic information for 13 people. In estimating themodels, these observationswere dropped from theMNLModel. The RUMpart of the LCmodel does not

have demographic variables and is estimated on the full dataset.
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$8504. The per-hour incremental costs are $282/h (5 to 10 h), $608/h
(10 to 15h), and $810/h (15 to 20 h).

We find the RPT coefficients surprisingly high given that the average
car is idle about 23 h/day. In the survey, we asked respondent to consider
the potential availability of plug-in options at work (e.g. for hospital
workers or university employees this might make sense, for farmers or
small business owners it might not). If respondents considered the
likelihood of this for their own circumstance, the range of RPTs should
not have been viewed as constraining for many people. Nevertheless,
respondents did not appear to treat RPT as simple use of idle vehicle
time; rather they seemed to focus on its potential for inconvenience.
We observed the same in focus groups even after describing the length
of time available to most for plugging in.

6. Can the V2G concept help sell EVs?

In this section we use ourmodel to evaluate whether or not the V2G
concept can help EVs on themarket. EVs aremore costly than GVs and it
is still uncertain whether battery technologies will improve enough or
gasoline prices increase enough for EVs to make significant inroads in
the market. Here is where V2G-EVs come into the picture. Since they
provide some payment to owners in the form of cash back for power
provided to the grid, they could make EVs more attractive to potential
buyers. If the cash payments are large relative to the implicit inconve-
nience costs, then the net added value of V2G to an EV will be high
and may help EVs enter the market. We do not attempt to estimate
potential market share for V2Gs explicitly, since that seems beyond
the reach or our data, but we can say some about willingness to pay
relative to cost and that does has implications for success or failure on
the market.

We used our model to see if this might be the case. First, we esti-
mated the cash back required to compensate people for different
combinations of the RPT and GMR (our measures of inconvenience)
and compared it to estimated payments that may actually be feasi-
ble. If the required cash payments are low relative to what is feasible,
there is potential for net added value to consumers of V2G and hence
help for EVs on the market. Second, since cash back was heavily
discounted in our model, we also considered up-front payment in
the form of a reduced vehicle price to compensate for the V2G incon-
veniences. This should be a more effective way to increase the added
value of V2G because people value up-front cash significantly more
in our experiment.

Theminimumcashback compensation (MCBC) required to compen-
sate a person for RPT and GMR inconvenience in our model is the value
of MCBC that solves the following equation

βpΔpþ βxxþ εEV
¼ βpΔpþ βxxþ βCBMCBC þ βRPTRPT þ βGMRGMRþ εV2G;

ð4Þ

where the left-hand side is the utility for a C-EV, the right-hand side is
the utility for a V2G-EV. This measure simply seeks the cash back

value that makes a person indifferent between a C-EV and a V2G-EV
with contract terms RPT and GMR. Solving forMCBC gives

MCBC ¼ βEV−βV2G−βRPTRPT−βGMRGMRþ εEV−εV2G
βCB

ð5Þ

where βp∆p+ βxx cancels after we pull the EV and V2G constants (βEV,
βV2G) from the x vector on both sides.3 Since each respondent has some
predicted probability of being in each of the two classes, we use the fol-
lowing weighted measure of minimum cash back compensation in our
computations

MCBCw ¼ PEVMCBCEV þ 1−PEVð ÞMCBCGV ð6Þ

where PEV is the probability of membership in the EV-oriented class, 1
− PEV is the probability of membership in the GV-oriented class, and
MCBCEV and MCBCGV are conditional minimum compensation
requirements for each class. This approach follows Boxall and
Adamowicz (2002).

The same calculation forminimumup-front price reduction (MPR) is
the value of MPR that solves

βpΔpþ βxxþ εEV
¼ βp Δp−MPRð Þ þ βxxþ βRPTRPT þ βGMRGMRþ εV2G:

ð7Þ

In this case the compensatory value is an asset value since it is
calculated using the price of the car. A weighted measure, MPRw, is
derived in the same way as MCBCw is derived.

Our calculation of MCBCw and MPRw for several V2G scenarios is
shown in Table 7. The contracts were constructed using RPT (=5, 10,
15 and 20 h) and GMR (=25 and 75 miles). We decided not to use
higher GMRs because we wanted to stay within the driving range of
current and near-term EVs andmost have less than 150 miles of driving
range.

The estimatedminimum required compensation for each contract is
shown using a Box–Whisker Plot in Fig. 3—the dispersion comes from
enumeration over the sample since each respondent has a different EV
and GV orientation weight. These estimated MCBCw's are annually
minimum required contract prices over the sample. The median
required compensation ranges from a low of near $2368 for Contract
A (GMR = 75 & RPT = 5) to a high of near $8622 for Contract H
(GMR = 25 & RPT = 20). Again, see Table 7 for both contracts. The
question then is whether or not these amounts, especially those at the
minimums in Fig. 3 for each scenario since this is where the signing is
mostly to take place, are feasible in the market.

The actual revenue a V2G-EV can earn depends on many factors
including the type of power market (spinning power versus regulation
power), the region of the country (different regions have different A/S
prices), power capacity of the connection, hours connected, and so
forth. We used a study by Kempton and Tomić (2005) to assess the

3 The C-EV constant here is adjusted to correspond to the C-EV attribute levels shown at
the bottom of Table 1. This makes them consistent with the EV configuration held fixed in
the V2G experiment.

Table 7
Contract configurations and required compensation under cash-back and up-front payment.

Contract term scenario GMR RPT Median required annual cash-back Median required up-front payment

A 75 miles 5 h $2368 $4252
B 75 miles 10 h 3052 5875
C 75 miles 15 h 4419 8741
D 75 miles 20 h 6480 12,758
E 25 miles 5 h 4511 8668
F 25 miles 10 h 5195 10,292
G 25 miles 15 h 6562 13,157
H 25 miles 20 h 8622 16,628
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feasibility of attaining our estimated earnings requirements. They
estimated the potential net revenue a Toyota RAV4 EV can earn with a
V2G contract of RPT = 18 h and GMR = 20 miles. They calculated
revenue net of depreciation and other equipment costs associated with
providing reserve service. Their contract is on the high-inconvenience
side of our contract scenarios—something like Contract H. Using real
world power market data from a 2003 California Independent System
Operators (CISO) power market, they found, under the best scenario
(providing regulation service), that a Toyota RAV4 EV could earn net rev-
enue of $2554 annually (close to $2900 in 2009 dollars). Our Fig. 3 shows
that the minimum required contract payments for a similarly configured
contract (GMR = 25 & RPT = 20) are near $8000. Making roughly the

same calculations for the other scenarios has little effect on the story. If
the Kempton and Tomić (2005) values are correct, V2G would not help
EVs enter themarket because its perceived cost in inconvenience is great-
er than the total value of the value to the grid. There are, of course, a num-
ber of things that could alter this result. Technology is changing fast and
may lower the cost at which aggregators can withdraw energy. And, the
cost of energy from conventional sources could risemaking the storage of
power more valuable. Still, the gap to close is large.

We suggest two other approaches for V2G payments. First, V2G
payments could be made as up-front price discounts on V2G vehicles
since respondents were shown to heavily discount annual cash-back
payments. Fig. 4 shows the same Box–Whisker Plot for an up-front

Fig. 4. Box–Whisker plot for upfront discounts on purchase of vehicle for eight contracts (A through H) listed in Table 7. The range of required compensation payments is due to the var-
iation (heterogeneity) over the sample.
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Fig. 3. Box–Whisker plot based for minimum required annual compensation in cash-back terms for eight contracts (A through H) listed in Table 7. The range of required compensation
payments is due to the variation (heterogeneity) over the sample.
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cash discount. These are calculated using Eq. (7). The up-front discount
for Contract H in this case is near $14,000 for those requiring the
minimum compensation. Annualized these over 8 years (as an example
contract length) and using a 5% discount rate for the aggregator's
money, gives $2190. This should be low enough to bring some drivers
into the market, since we estimate that aggregators could pay about
$2900/year. Still the V2G value does not overwhelm the compensation
required.

Another strategy that aggregators may consider is a pay-as-you-go
contract. These contractswould haveno required plug-in times. Instead,
power companies would simply pay owners for power capacity on an
hour-by-hour or pay-as-you-go basis, which could vary with power
prices over time. There would still be the issue of people waking up to
a vehicle with a much-depleted battery, but consumers would be free
to plan against such inevitabilities and a GMR could still be used.4 One
difficulty is the uncertainty it poses to aggregators—at any point in
time an aggregator cannot be sure how much back-up power it has.
Indeed, the main reason for the contracts is for aggregators to have
greater certainty about the level of back-up power they can supply to
the market. Presumably, in time, using historic data on patterns of
usage, aggregators would learn about capacity fluctuations (percent of
the V2G vehicles plugged-in) from a given fleet size and could plan
accordingly. No doubt the size of the required fleet would be larger
than under the contract terms approach. There is also the possibility of
a hybrid approach where some customers sign contracts and others
use pay-as-you-go.

7. Conclusion

We found that drivers see high inconvenience cost with signing
V2G-EV contracts. This is probably due to a combination of many fac-
tors, including drivers' desire for flexibility in car use, their lack of
awareness of howmany hours their cars are parked, and their concerns
that theymay not know how to opt out of some contract terms.We also
found that drivers discount revenue from V2G-EV contracts heavily.
This is probably due to driver's uncertainty about earning money from
re-selling power back to power companies. The combined effect of the
two factors is that drivers demand a high price to sign V2G contracts,
which will reduce the competitiveness of V2G-EV power in the power
market.

We suggest two strategies as alternatives to the strict cash-back-
contract approach. One strategy is to eliminate contract requirements
completely and allow consumers to provide the service at their
convenience on a pay-as-you-go basis. This eliminates some of the
inconvenience cost of signing V2G-EV contracts and makes V2G-EVs
more attractive to consumers. Another strategy is for power aggregators
to consider providing consumers with cash payment in advance in
exchange for signing a V2G-EV contract. This approach eliminates the
uncertainty associated with earnings from V2G power and reduces the
high discount rate consumers seem to apply for revenue from V2G-EV
contracts. While more research is required, both strategies seem like
feasible avenues for the V2G technology.

On the methodological front, our analysis also offered an ap-
proach for conveying complex commodities to survey respondents.
We did this by dividing the experiment into two separated but logi-
cally connected smaller experiments—one for a conventional EV and
then a second for a vehicle-to-grid EV. In this way we were able to
bring respondents along slowly as they learned the material and
were forced to evaluate options stepwise in the two simpler experi-
ments. In focus groups, we found that the stepwise approach im-
proved comprehension.
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