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COMPENSATORY RESTORATION IN A RANDOM UTILITY MODEL
OF RECREATION DEMAND

GEORGE R. PARSONS and AMI K. KANG∗

Natural Resource Damage Assessment cases often call for compensation in non-
monetary or restoration equivalent terms. In this article, we present an approach
that uses a conventional economic model, a travel cost random utility model of site
choice, to determine compensatory restoration equivalents for hypothetical beach
closures on the Gulf Coast of Texas. Our focus is on closures of beaches on the Padre
Island National Seashore and compensation for day-trip users. We identify restoration
projects that compensate for beach closures and that have good alignment in terms of
compensating those who actually suffer from the closures. (JEL Q26)

I. INTRODUCTION

Natural Resource Damage Assessment
(NRDA) cases often call for compensation in
non-monetary or restoration equivalent terms.
For example, users of a damaged recreational
fishery may seek a new fishing pier, expanded
parking space, new launch sites, added natural
areas, or increased stocking of fish in compen-
sation for their losses. Although it is natural
for economists to think in terms of monetary
compensation for damages, a shift in legisla-
tion favoring restoration over monetary payment
has moved the discussion into the non-monetary
realm. Jones and Pease (1997), for example,
discuss two approaches for non-monetary valua-
tion using conventional welfare theoretic analy-
sis: service-to-service scaling and value-to-value
scaling.

Service-to-service scaling seeks restoration
projects that deliver in-kind resource flows of
equivalent value to those damaged. In cases
where the restored resource is nearly the equiv-
alent in function and location, the scaling is
not difficult, although some discounting may
have to be applied and the baseline level of the
resource must be considered. In more common
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cases, the restored resources vary in function and
location to the damaged resource, and the anal-
ysis becomes more complex. The restoration,
for example, may involve improved access to
a site or expanded protection of an open space
in an entirely different area and with different
uses. In these cases, some type of equivalency
metric is needed. Habitat equivalency is a good
example (Unsworth and Bishop 1994; Strange
et al. 2002; Penn and Tomasi 2002). In any
case, an explicit rendering of an individual’s
preferences is conspicuously missing from the
service-to-service approach.

Value-to-value scaling, on the other hand,
seeks restoration projects that are equivalent in
absolute terms to the discounted present value
of the damages in question. This approach,
while non-monetary in the actual compensa-
tion, requires the knowledge of an individual’s
preferences to implement (Flores and Thacher
2002). The analyst must value the losses from
the injury and the gains from the restora-
tion project to conduct an evaluation. In prin-
ciple, the calculation on both sides of this
equation would use the usual welfare theo-
retic measures of compensating or equivalent
variation.

In this article, we present a value-to-value
scaling analysis using a travel cost random

ABBREVIATIONS
NRDA: Natural Resource Damage Assessment
RUM: Random Utility Maximization
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utility model of site choice to determine com-
pensatory restoration equivalents for hypotheti-
cal beach closures on the Gulf Coast of Texas.
Our focus is on closures of beaches on the
Padre Island National Seashore and compen-
sation for day-trip users. Our approach fol-
lows principles laid out by Flores and Thacher
(2002) and Jones and Pease (1997). The only
other analysis we are aware of that is close
in approach to ours is an NRDA by Trian-
gle Economic Research in 1998. Interestingly,
their application is also on the Gulf Coast of
Texas. They consider compensatory restoration
for a fishing site closure on Lavaca Bay. The
restoration involved new facilities (better boat
launches, parking, and restrooms, and bait shop)
for the population of users. They developed
restoration indexes based on a random utility
model for comparing restoration alternatives to
the loss.

In our analysis, we seek compensatory resto-
ration projects that pass a Kaldor-Hicks Test.
Does the monetary value of the restoration
project equal or exceed the monetary value of
the loss due to the beach closure? If so, the
restoration project is potentially Parteo improv-
ing (ignoring the cost of restoration itself). After
estimating a random utility model of beach
use in Texas, we identify the characteristics
of beaches that are most valued to users and
then systematically alter these characteristics at
beaches seeking improvements larger in abso-
lute value than the losses due to closure of
Padre Island. Our most valued beach character-
istics are beach cleaning programs, vehicle-free
zones, and rest rooms. After identifying a plau-
sible set of Kaldor-Hicks restoration projects,
we analyze how well each project does in com-
pensating those actually harmed by the closures.
Passing the Kaldor-Hicks criterion requires that
the beneficiaries have larger monetary gains than
the losers’ monetary losses, but it provides no
guarantee that the beneficiaries are those most
harmed by the closures. To the extent that this
matters in the analysis or settlement, it is impor-
tant to evaluate the Kaldor-Hicks projects based
on how well they align compensatory payments
with losses. To this end, we also offer two simple
measures of alignment for each of our Kaldor-
Hicks projects.

We begin by laying out our model in the
next section and then follow with sections on
measures of compensation and alignment, data,
estimation results, and conclusions.

II. TRAVEL COST RANDOM UTILITY MODEL
OF SITE CHOICE

We model site (beach) choice using a mixed
logit random utility maximization (RUM) mo-
del.1 We consider day trips only. We assume
each person n has utility Unit = αtcni + βxi +
enit for a visit to site i on trip t — tcni is the
trip cost of reaching site i, xi is vector of site
characteristics at site i, and enit is a random
error. The probability individual n visits site k
on trip t is

prnt (k) =
∫

Lnkt (α, β)f (β|µ, ϕ)dβ

Lnkt (α, β) = exp(αtcnk + βxk)(1)

/ Sn∑

i=1

exp(αtcni + βxi),

where there are Sn sites in individual n’s choice
set, Lnk is a standard multinomial logit prob-
ability, and f (β|µ, ϕ) is a mixing distribution
(normal in our case) with mean µ and standard
deviation ϕ. The model and its properties are
presented in detail in Train (2009, chapter 6).

The advantage of the mixed over standard
logit model is that it induces correlation across
sites over the attributes included in the mixing
distribution. The correlation is realized through
the stochastic portion of consumers’ utility. This
relaxes the assumption of independence of irrel-
evant alternatives and allows for a more general
pattern of substitution across sites. For example,
sites sharing attributes, such as the presence
of lifeguards or same region, exhibit correla-
tion via the mixing distribution. The greater
the standard deviation ϕ for a given attribute,
the greater the degree of correlation and hence
substitution between sites sharing the attribute.2
The parameters α, µ, ϕ are estimated by sim-
ulated maximum likelihood. The procedure and
numerical methods are discussed in Train (2009,
chapter 6).3

Expected utility on any given trip occasion in
the mixed logit model is the log-sum expression

1. See Parsons and Massey (2003), Lew and Larson
(2005, 2008), and Murray, Sohngen, and Pendelton (2001)
for examples of RUM applications to beach use.

2. We tried models that allowed for a correlation among
parameters but were only able to estimate models with three
or fewer correlates. We decided to stay with models that
used many, albeit independent, parameters.

3. We allow for correlation among each respondent’s
trips using Halton draws that are person specific instead of
trip specific.
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used in standard logit models but averaged over
βr as follows

E(vn) = 1/R

R∑

r=1

{

ln
Sn∑

i=1

exp(αtcni + βrx i )

}

.

(2)

βr is one of R draws from the estimated dis-
tribution for f (β|µ, ϕ). Each draw includes all
elements in the vector βr . E(vn) is used through-
out our welfare and compensatory restoration
analysis in the next section as our baseline (with-
out closure) expected trip utility.4

III. MEASURES OF COMPENSATION
AND ALIGNMENT WITH LOSSES

Suppose sites 1 through 5 are closed due to
an oil spill. If so, an individual’s expected maxi-
mum utility on a given trip declines from E(vn)

shown in Equation (2) to 1/R
∑R

r=1

{
ln

∑Sn
i=6

exp(αtcni + βrx i )
}

where five sites are dropped
from the log-sum. Alternatively, one can think
of increasing trip costs to the closed beaches to
infinity driving the utility for those beaches to
zero. The welfare loss for closure of the sites is
the difference in expected utility divided by the
coefficient on trip cost (our marginal utility of
income)

(3)

wn = 1/R

R∑

r=1

{

ln
Sn∑

i=6

exp(αtcni + βrx i )

}

−1/R

R∑

r=1

{

ln
Sn∑

i=1

exp(αtcni + βrx i )

}
/

− α.

Welfare declines for everyone in the sample
except for those for whom sites 1–5 are not
in the choice set, so wn ≤ 0 for all n. Summing
overall individuals in the sample and multiply-
ing by their number of trips taken gives a sam-
ple aggregate welfare loss W =

∑N
n=1 tripsn·wn,

where there are N people in the sample and
n denotes a person in the sample. If the sam-
ple is representative of the population, pW will
be an unbiased measure of the total loss to the
population of users where p is the ratio of the
population size to the sample size.

4. Technically, Equation (2) includes an unknown con-
stant. As it irrelevant in preference ordering and in valuation,
we have excluded it here (see Train 2009, p. 55).

Now, consider a proposed compensatory
restoration project that improves some attributes
in the vector x i at selected sites. A measure of
welfare gain for such a project for person n is

(4)

w̃n = 1/R

R∑

r=1

{

ln
Sn∑

i=1

exp(αtcni + βr x̃ i )

}

−1/R

R∑

r=1

{

ln
Sn∑

i=1

exp(αtcni + βrx i )

}
/

− α,

where x̃ i is the new attribute vector showing
improvements at selected sites and assuming
that the closed sites have reopened. Welfare
either improves or stays the same for everyone
in the sample, so w̃n ≥ 0 for all n. The sam-
ple aggregate gain then is W̃ =

∑N
n=1 tripsn·w̃n

and the population aggregate gain is pW̃ . The
project passes our Kaldor-Hicks test for com-
pensatory restoration if pW̃ ≥ pW . This mea-
sure misses compensation for overnight trips,
nonuse value, any congestion effects that might
ensue at sites where restoration is taking place,
and other external effects that might be induced
by restoration. It also assumes that the number
of trips taken (tripsn) is approximately the same
under the three scenarios considered: baseline,
degraded, and compensated. This assumption
could be relaxed by including a participation
stage (or no-trip utility) in the model.

Of course, a large number of projects involv-
ing different combinations of changes to the vec-
tor x i may pass our Kaldor-Hicks test and each
will have its own distributional consequences.
Some will align compensation with actual losses
reasonably well and others will not. As one
of the main impetuses for using compensatory
restoration is to target compensation at those
suffering losses, this is an important dimension
of project outcomes. To this end, we consider
two measures of the alignment of compensa-
tion with losses: (1) the absolute difference of
seasonal compensation and loss per person and
(2) the coefficient from a linear regression of
compensation on loss (without a constant term).

The first measure is

D = 1/N

n∑

i=1

tripsn· | w̃n + wn |(5)

where |w̃n + wn| is the absolute difference
between compensation and loss per trip for per-
son n for the season and tripsn is the number
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of trips taken by person n. Recall that w̃n ≥ 0
and wn ≤ 0 for all n. When w̃n + wn > 0, a per-
son is overcompensated. When w̃n + wn < 0, a
person is undercompensated. D increases as the
deviations between compensatory payments and
actual loss increase, indicating poorer alignment.

We also estimate a simple linear regression
of compensation on loss as follows

w̃n = β|wn| + ε.(6)

An estimate of β near 1.0 would be good align-
ment—near a 45-degree line in a plot of com-
pensation versus loss. The coefficient alone is
not necessarily a good indicator of alignment
(the dispersion around a fitted line where β =
1.0 can be large or small), but this measure,
coupled with the mean absolute difference, does
a good job of identifying projects where com-
pensation and loss are comparable.

IV. DATA

The choice data used to estimate our model
were collected in 2001 and are in two parts—
survey data of trips and site characteristic data
for the 65 beaches. The survey data were
gathered in a phone-mail-phone survey from
May through September—the peak season for
beach visits. Texas residents living within 200
miles of the Gulf of Mexico (closest point on
the coast) were sampled by random digit dialing
and recruited to participate in a follow-up survey
of beach use. The sample was stratified to avoid
a sample dominated by residents of Houston,
to assure adequate observation on trips to Padre
Island, and to assure adequate participation rates
in beach use. The initial survey was conducted
in May and given to the adult member of the
household (≥18 years old) with the most recent
birthday. English and Spanish versions of the
survey were offered. Users and nonusers were
identified in the initial survey. We define a user
as anyone who had visited the coast in the past
5 years and reported that they were likely to
make a visit during our survey period. Seventy-
seven percent of the people contacted in our
initial phone survey were users—1,154 people.
Of these, 1,012 agreed to participate in five
monthly follow-up surveys. Basic demographic
information was gathered on each respondent in
the initial phone survey. The follow-up surveys
were confined to reporting beach trips. Of the
1,012 respondents who agreed to participate in
the follow-up surveys, 561 took at least one trip

and reported a total of 2,692 trips over the 5-
month period.

The second part of our data set covers the
characteristics of the sites—the x i vector in
Equation (1). We collected data on all the public
beaches on the Texas Gulf Coast including infor-
mation on facilities, amenities, services, and
physical characteristics. This covers 65 beaches.
The beaches included bay side and gulf beaches
and were defined using the 2002 Texas Beach &
Bay Access Guide and a 2-week field trip to the
coast. The delineation of beaches was intended
to be, as the public generally perceived, the
boundaries. The Padre Island National Seashore
is divided into six separate beaches following
the National Park Service definitions.

The beach characteristic data came from sev-
eral sources: interviews with beach managers
at the city, county, and state levels; the 2002
Texas Beach & Bay Access Guide; other inde-
pendent travel guides; field trips to each of the
beaches; and online maps of the area. The vari-
ables used in our model, again the x i vector
in Equation (1), are presented in Table 1 along
with descriptive statistics. As shown, 48 beaches
(74%) are on the GULF COAST (not bay) coast,
4 (6%) are in STATE PARKs, 22 (34%) are
REMOTE, and 26 (40%) are VEHICLE FREE.
We defined REMOTE as requiring a visitor to
leave major roads to access the beach. These
beaches tend to be more natural but are more
difficult to reach.

Many of the beaches in Texas accumulate
debris from the waters of the Gulf of Mexico.
Some is natural (seaweed, etc.) and some is
from human sources. This is due to the cur-
rents in the Gulf and an enormous amount
of human activity such as shipping, pleasure
boating, fishing, and oil platforms. Manage-
ment plans for many beaches involve routinely
manually cleaning or machine cleaning beach
areas. As shown in Table 1, 33 beaches (51%)
had MANUAL CLEANING and 36 (55%) had
MACHINE CLEANING in 2001. In addition,
many of the beaches are managed for use and
include restrooms, lifeguards, and concessions.
We include each of these as dummy vari-
ables in our model—37 beaches (57%) had
RESTROOMS, 17 (26%) had LIFEGUARDS,
and 15 (23%) had CONCESSIONS.

To distinguish beaches by water quality,
we included two variables: CLOSURE and
REDTIDE. We had originally hoped to use an
objective measure of quality but such data are
not gathered uniformly across the beaches. Some
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TABLE 1
Beach Characteristics

Beach Characteristics
Number of

Beaches
Mean or %
of Beaches

Beach length (miles) 5.35
Dichotomous yes/no variables
GULF COAST Beach is located on the Gulf 48 74%
STATE PARK Beach is part of a state park 4 6%
REMOTE Beach has a remote location 22 34%
VEHICLE FREE Vehicles not allowed on beach 26 40%
MANUAL CLEANING Beach is routinely manually cleaned 33 51%
MACHINE CLEANING Beach is routinely machine cleaned 36 55%
RESTROOMS Restrooms located at beach 37 57%
LIFEGUARDS Lifeguards at beach 17 26%
CONCESSIONS Concession located at beach 15 23%
REDTIDE Beach has a recent history of red tide 12 18%
CLOSURE Beach has a recent history of closures and/or advisories 11 17%

are monitored heavily, some get intermittent
readings, some are not monitored, and some are
checked only when problems are expected. An
objective measure was problematic. We opted
for a subjective measure based on interviews
with beach managers for the different areas.
Among the questions, we asked the managers
whether there had been any beach advisories,
closures, or red tide events at any of the beaches
in your area. This information was used to con-
struct the closure and red tide dummies used
in the model. We have 11 beaches (17%) with
a CLOSURE history during the year and 12
beaches (18%) with REDTIDE episodes.

After adjusting for stratification, 28% of all
reported trips were less than 30 miles one way,
44% were less than 50 miles, and 81% were
less than 100 miles. Travel cost was calculated
at 36.5 cents per mile plus any fee paid to use
a beach. Time cost is valued at one-third of
household income divided by 2,000 as proxy for
a person’s wage. Distances and times to beaches
were calculated using PC Miler. The average
round trip cost of reaching the chosen site was
$75. The average cost to all sites was $194. Each
person’s choice set included all beaches within
300 miles of their residence. The average choice
set size is 54 beaches. The minimum is 14, and
the maximum is 65.

GALVESTON and CORPUS CHRISTI were
the most popular regions with 56% and 25%
of all trips. The regions are shown in Figure 1.
We also include regional constants in our model
to account for unobserved differences across the
regions as well as a dummy variable for all sites
located on Padre Island.

V. RESULTS

A. Coefficient Estimates

Our estimation results are shown in Table 2.
For the most part, the results are as expected.
The terms “mean” and “dispersion” here refer
to µ and ϕ discussed in Section II. Our mixed
coefficients include the six regional dummies
(mimicking nests), PADRE, all characteristics
used in our policy analysis, and CONCES-
SIONS.

We discuss the non-mixing coefficients first.
The mean coefficient on TRIP COST, the cen-
terpiece of the travel cost RUM model, is neg-
ative and significant as expected—an individ-
ual’s probability of visiting the site declines as
trip cost increases. LOG LENGTH is included to
scale the sites by size and is positive and signif-
icant also as expected. Our two environmental
quality variables CLOSURE and REDTIDE are
both negative and significant. GULF COAST,
STATE PARK, and REMOTE are all positive but
only GULF COAST is significant.

Now let us consider the coefficients with
mixing. The management variables with pos-
itive and significant means (in order by size
of coefficient estimate) are VEHICLE FREE,
MACHINE CLEANING, MANUAL CLEANING,
and REST ROOMS. The model strongly implies
that the probability of taking a trip to a site will
increase with the presence of these character-
istics. Among these variables, only MANUAL
CLEANING has a large and significant coeffi-
cient estimate on its dispersion term relative to
its mean. LIFEGUARDS and CONCESSIONS
have negative mean estimates, but both have
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FIGURE 1
Six Regions on the Texas Gulf Coast

SOUTH PADRE ISLAND AREA
(Kenedy/Willacy/Cameron County)

CORPUS CHRISTI AREA
(Aransas/Refugio/Nueces/Kleberg County)

PORT LAVACA AREA
(Matagorda/Calhoun County)

FREEPORT AREA
(Brazoria County)

GALVESTON AREA
(Chambers/Galveston County)

SABINE PASS AREA
(Jefferson County)

Port Arthur

Galveston

Freeport

Port Lavaca

Texas Gulf Coast Recreation Survey
Beach Identification Map

Corpus Christi

Brownsville

Gulf of Mexico

large estimates for dispersion—substitution is
strong among sites that share these characteris-
tics.5 We also interacted VEHICLE FREE with
Ownership of Surf Fishing Equipment to allow
for a difference in preferences for vehicle-free
access across the fishing and non-fishing pop-
ulations. Both groups prefer beaches without
vehicles, but the non-fishing population has a
stronger preference.

B. Compensatory Restoration

We consider five attributes for potential use
in compensatory restoration projects: MACHINE
CLEANING, MANUAL CLEANING, VEHICLE

5. In a nested logit model, this result is equivalent to
finding a small inclusive value coefficient and a negative or
near zero value on the constant shared by sites in the nest.

FREE, RESTROOMS, and LIFEGUARDS. We
also consider waiving beach fees on Padre Island
as compensation in one of our scenarios. We
assume any compensatory restoration action that
takes place commences 2 years after the closure
of the Padre Island National Seashore and that
Padre Island will have reopened. Given the
pace of such deliberations, this seems like a
reasonable, perhaps even generous, time frame.
We also assume Padre is closed for one season.

Our strategy for identifying compensatory
restoration projects that pass the Kaldor-Hicks
criterion is as follows. We first calculated the
welfare improvement for adding each attribute
to the beaches currently without the attribute.
For example, if a beach does not presently
(2001) have machine cleaning, we calculate
the welfare gain associated with introducing
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TABLE 2
Estimation Results for Mixed Logit Model

Mean of Coefficient (µ) Dispersion of Coefficient (ϕ)

Variables Estimate t Statistic Estimate t Statistic

TRIP COST −0.04 −14.1 — —
LOG LENGTH 0.30 8.8 — —
GULF COAST 0.79 4.8 — —
STATE PARK 0.38 1.2 — —
REMOTE 0.12 1.1 — —
VEHICLE FREE 1.18 8.9 0.01 0.0
VEHICLE FREE × own surf fishing equipment −0.49 −3.3 — —
MANUAL CLEANING 0.65 3.6 1.38 2.9
MACHINE CLEANING 1.14 7.0 0.32 0.4
RESTROOMS 0.35 3.3 0.02 0.1
LIFEGUARDS −0.01 −0.1 2.28 4.2
CONCESSIONS −0.72 −3.2 2.27 2.5
REDTIDE −2.11 −5.4 — —
CLOSURE −0.86 −3.6 — —
PADRE −2.69 −1.8 7.57 5.2
SABINE PASS — — 1.58 1.4
GALVESTON 2.87 2.5 2.68 5.2
FREEPORT 3.11 2.7 0.10 0.2
PORT LAVACA 2.34 2.0 0.16 0.2
CORPUS CHRISTI 2.86 2.5 2.05 5.5
SOUTH PADRE ISLAND 2.89 2.3 0.69 0.5
Log-likelihood −3955.41
Number of trips 2692
Number of people 561
Average number of sites 54

cleaning on that beach only. Then, we calculate
the number of years that attribute must be kept
active on the beach to ensure that the Kaldor-
Hicks criterion is passed. The most effective
(highest valued) attribute will require the fewest
years. Future years are discounted at a real rate
of 3%. We assume that preferences as esti-
mated in our model extend indefinitely. Next,
we consider the alignment of compensation with
loss for each project to identify those projects
that best target compensation toward individ-
uals actually suffering welfare loss due to a
closure. We use the two measures of alignment
discussed in Section III: (1) the mean abso-
lute difference of compensation and loss per
person (D in Equation [5]) and (2) the coef-
ficient from a linear regression of compensa-
tion on loss constrained to go through the ori-
gin. Finally, based on the individual projects’
Kaldor-Hicks rankings and alignment rankings,
we select combinations of projects that are likely
to be desirable for compensatory restoration.
These allow compensatory restoration to involve
more that one site and more than one site char-
acteristic simultaneously.

Table 3 lists the actions at individual beaches
by the 25 projects with the fewest number of
years required to compensate fully a season clo-
sure on Padre. The number of years to full
compensation is shown in Column 5. Machine
cleaning appears to be the most effective pol-
icy, followed by establishing vehicle-free areas,
manual cleaning, and adding restrooms. The
restoration project with the largest impact and
hence fewest years required before reaching full
compensation is machine cleaning on the Fort
Crockett Seawall Beach located in Galveston.
To compensate for the closure entirely, it would
have to remain in place for 6.4 years beginning
2 years after the Padre closure. Machine clean-
ing on Malaquite Beach on the Padre Island
National Seashore has the second largest impact
requiring 7.7 years before reaching full com-
pensation. The next three projects in order of
effectiveness are providing vehicle-free access
at Bolivar Flats in Galveston for 7.7 years,
machine cleaning on Galveston Island State Park
for 8.8 years, and vehicle-free access on Crystal
Beach in Galveston for 9 years. When we array
all the Kaldor-Hicks projects, the beaches where
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TABLE 3
Summary of Top 25 Individual Projects by Time Required to Pass Kaldor-Hicks Test

1
Project

ID
2

Region
3

Beach Name
4

Project

5
Years Required

to Meet
Kaldor-Hicks

6
Mean Absolute

Difference between
Compensation and

Loss (2001$)

7
Coefficient Estimate

on Regression of
Compensation on

Loss

1 G Fort Crockett Machine cleaning 6.41 42 0.15
2 CC PINS Malaquite

Beach
Machine cleaning 7.65 4.8 0.87

3 G Bolivar Flats No vehicle 7.68 42 0.15
4 G Galveston Island SP Machine cleaning 8.82 42 0.16
5 G Crystal Beach No vehicle 9.01 42 0.15
6 G Galveston’s Western

Beach
Manual cleaning 10.19 42 0.17

7 CC Port Aransas Park No vehicle 10.23 12 1.06
8 CC J.P. Luby Park No vehicle 10.53 15 1.52
9 G Fort Crockett Manual cleaning 10.82 43 0.15

10 G High Island Beach No vehicle 11.49 43 0.10
11 G Fort Travis Beach No vehicle 12.85 42 0.15
12 CC PINS North Beach No vehicle 13.36 3.6 0.90
13 CC PINS North Beach Machine cleaning 13.57 3.6 0.90
14 G Texas City Dike No vehicle 13.81 42 0.14
15 G Bolivar Flats Manual cleaning 14.03 43 0.14
16 G Caplen Beach No vehicle 14.68 43 0.14
17 G Galveston Beach

Pocket Park #3
Manual cleaning 14.83 42 0.16

18 G Gilchrist Beach No vehicle 15.10 43 0.12
19 G Crystal Beach Manual cleaning 15.15 43 0.14
20 CC PINS North Beach Lifeguard 15.72 6.5 0.83
21 G Pointe San Luis No vehicle 16.58 40 0.19
22 CC PINS Malaquite

Beach
Lifeguard 18.14 8.9 0.83

23 G High Island Beach Manual cleaning 18.86 44 0.10
24 CC North Beach (Corpus

Christi Beach)
Machine cleaning 18.92 19 1.21

25 CC PINS South Beach Lifeguard 20.65 6.4 0.84

CC, Corpus Christi; G, Galveston; PINS, Padre Island National Seashore.

compensation is most effective are those located
near large population centers and those where
beach use is highest—Galveston and Corpus
Christi.

Although each project listed in Table 3 passes
our Kaldor-Hicks test, how well they align com-
pensation with damages on an individual-by-
individual basis may vary significantly. Cer-
tainly, compensatory projects that affect beaches
close to or on Padre Island and beaches that have
characteristics similar to Padre are more likely to
align compensation effectively. Columns 6 and
7 in Table 3 show our alignment measures for
each of the top 25 Kaldor-Hicks projects. The
mean absolute difference between compensation
and loss per person for each project is shown
in Column 6. The lower the value, the better

the alignment. Perfect alignment is $0. Column
7 shows the coefficient estimate for the regres-
sion of compensation on loss (without a constant
term) for each project. Perfect alignment in this
case would give a coefficient estimate of 1.0.
This would mimic a 45-degree line in compen-
sation (y-axis)—loss (x-axis) space. The larger
the deviation from 1.0, the poorer the alignment.

As shown, the projects outside the Corpus
Christi region have much higher absolute dif-
ferences and much lower coefficient estimates
(deviations from the 45-degree line) than the
projects in Corpus. This stands to reason. The
beaches most frequently visited by individuals
visiting Padre are other beaches in the Cor-
pus Christi area. Similarly, Galveston area beach
goers are seldom observed visiting Padre Island
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FIGURE 2
(A) Scatter Plot of Compensation versus Loss

for Fort Crockett Beach in Galveston for
Machine Cleaning Compensatory Restoration

Project (Solid Line = Fitted; Dashed
Line = 45 Degree Line). (B) Scatter Plot of

Compensation versus Loss for Malaquite
Beach Machine Cleaning Compensatory
Restoration Project (Solid Line = Fitted;

Dashed Line = 45 Degree Line)
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for day trips. The project with the quickest pay-
back, machine cleaning on Fort Crockett, has
an absolute difference between compensation
and loss of $41.63 and a correlation coefficient
of 0.15. This stands in stark contrast with
Malaquite Beach, which has an absolute differ-
ence of only $3.63 and a correlation coefficient
of 0.87. Figures 2A and 2B show scatter plots

of compensation versus loss for the Malaquite
and Fort Crockett beach projects along with fit-
ted lines and a “perfect compensation 45-degree
line.”

Now consider some combinations of projects
with short payback periods and favorable align-
ment. To obtain favorable alignment, we focused
on project combinations using Corpus Christi
area beaches only. For Padre Island, we only
consider projects on the three northernmost
beaches where use is heaviest.

First, we consider three machine cleaning
projects :
Clean A: Machine Cleaning on 2 non-Padre
Beaches → Corpus Christi and Magee Beaches
Clean B : Machine Cleaning on 3 Padre Beaches
→ North, Malaquite, and South Beaches
Clean C : Clean A & Clean B

Second, we consider three vehicle-free access
projects :

Vehicle A: Vehicle Free on 2 non-Padre Beaches
→ Port Aransas Park and JP Luby Park
Beaches
Vehicle B : Vehicle Free on 2 Padre Beaches →
North and South Beaches
Vehicle C : Vehicle A & Vehicle B

Last, we consider three Padre only projects :

Padre A: Machine Cleaning on 3 Padre Beaches
→ North, Malaquite, and South Beaches &
Lifeguards on 2 Padre Beaches → North and
Malaquite Beaches
Padre B : Padre A & No Entrance Fee on 2 Padre
Beaches → Malaquite and South Beaches
Padre C : Padre B & Vehicle Free on 2 Padre
Beaches → North and South Beaches

Table 4 shows the years required for each
project bundle to pass Kaldor-Hicks along with
our measures of alignment. Five of the project
groups (the top five on the list) require less
than 4 years before compensation is complete.
All these have a mean absolute difference of
about $6 (where the annual loss is estimated
at $30), with the exception of Clean C where
the mean difference is under $4. All have a
strong correlation between compensation and
loss—the scatter plots are similar to Figure 2B.
Clean C has the best compensation to loss
alignment (mean absolute difference of $3.41
and coefficient of 0.97) and the years until
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TABLE 4
Candidate Bundled Projects for Compensatory

Restoration

Project

Years
Required to

Meet
Kaldor-Hicks

Mean Absolute
Difference
between

Compensation
and Loss ($)

Coefficient
Estimate on

Regression of
Compensation

on Loss

Padre C 2.55 $6.12 0.82
Padre B 3.23 5.98 0.83
Clean C 3.72 3.41 0.97
Padre A 3.76 6.02 0.83
Vehicle C 3.86 6.34 1.13
Clean B 4.88 4.16 0.88
Vehicle A 5.69 12.27 1.28
Vehicle B 8.94 3.67 0.89
Clean A 10.79 18.24 1.21

Clean A: Machine Cleaning on 2 non-Padre Beaches →
Corpus Christi and Magee Beaches

Clean B : Machine Cleaning on 3 Padre Beaches →
North, Malaquite, and South Beaches

Clean C : Clean A & Clean B

Vehicle A: Vehicle Free on 2 non-Padre Beaches →
Port Aransas Park and JP Luby Park Beaches

Vehicle B : Vehicle Free on 2 Padre Beaches → North
and South Beaches

Vehicle C : Vehicle A & Vehicle B

Padre A: Machine Cleaning on 3 Padre Beaches →
North, Malaquite, and South Beaches & Lifeguards on 2
Padre Beaches → North and Malaquite Beaches

Padre B : Padre A & No Entrance Fee on 2 Padre
Beaches → Malaquite and South Beaches

Padre C : Padre B & Vehicle Free on 2 Padre Beaches
→ North and South Beaches

compensation is complete is 3.72, only slightly
longer than two of the Padre project bundles.

The cost of the projects, which we do not
take up explicitly here but presumably would be
the subject of negotiation in any NRDA, would
vary widely, not just across project types (vehi-
cle free versus cleaning) but also across the same
project at different beaches. Some beaches will
require more frequent cleaning than others for
natural reasons. Just due to size alone, the cost
of cleaning one beach can be quite different than
another. The equipment, labor, maintenance, and
(in some cases) dumping costs can rise to hun-
dreds of thousands of dollars.6 As noted earlier,

6. For example, Denise Malan writes that “Port Aransas
oversees maintenance on 7 1/2 miles of beach, and removes

there is also some controversy about how the
cleaning is done. Seaweed and other natural
debris are believed by many to help maintain
beach width. The form of compensatory restora-
tion might even call for investment in new
cleaning technologies that inhibit erosion. Vehi-
cle access is costly largely because state law
requires a beach community to provide ample
parking for beach access if vehicles are prohib-
ited on a beach—one parking space for every
15 feet of beach and entry to the beach every
half-mile. The cost of land adjacent to beach
areas is, of course, high. Lifeguard costs are apt
to be less beach dependent. At $15/hour, ten life-
guards for a beach would cost about $1,200/day
ignoring equipment, shelter, training, and per-
haps other associated costs. Finally, the fee for
entry to all but North Beach on Padre Island
is $10 for a weekly pass. The expense here
could be quite large—the National Park Ser-
vice estimates that about 80,000 people visited
Padre Island in July 2001 and about 40,000 in
September.

In all our cases listed in Table 4, and in any
cases generated from a RUM model, we would
expect some ground truthing of the results. Are
these feasible? Are there legal, political, phys-
ical, or other constraints missed in the simple
choice model that rules out some of the sug-
gested set of projects? No doubt these con-
straints as well as the costs would be part of the
deliberations between the responsible party and
the state. In addition, it is important to note that
when considering the candidate projects passing
the Kaldor-Hicks test, some of the projects avail-
able for use as compensatory restoration (per-
haps at a low cost) may be projects that should
be undertaken anyway. For example, suppose
a beach near an urban area is not routinely
cleaned, but doing so would provide large net
benefits. Wise management would presumably
have been already cleaning the beach. If not,
a “cheap and easy” restoration project is avail-
able to provide compensation—made possible
through poor beach management. If beaches are
managed optimally, the cost of restoration will
be higher because projects with large payoffs
will already be exploited. Oddly then, entities
responsible for oil spills are better off if they
spill in an area where beaches are managed
poorly than an area where they are managed

sargassum on 3 1/2 miles of that for four months a year, at a
cost of as much as $500,000 for heavy years.” (Caller-Times
on Oct. 21, 2007)
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well. If Pigouvian-like incentive structures are a
goal (or one goal) for compensatory restoration
projects, this is an important consideration. If
responsible parties find that they compensate for
losses at less than the full cost of the damages
to society, a signal is sent for suboptimal
precaution.

VI. CONCLUSION

We presented a method using the travel cost
random utility model to conduct a value-to-
value compensatory restoration analysis. In an
application to beach use on the Texas Gulf
Coast and a closure of the Padre Island National
Seashore, we showed how a mixed logit model
could be used to identify and compare compen-
satory restoration projects using beach attributes.
We screened candidate projects using a Kaldor-
Hicks criterion—the value of the restoration had
to be at least as large as the loss due to a clo-
sure. We then compared projects in terms of
number of years they needed to be in place
to pass a Kaldor-Hicks test and their success
at aligning compensation with individuals actu-
ally suffering losses. We used two indexes to
measure success of alignment—the mean abso-
lute difference of compensation and loss and an
ordinary least square regression of compensa-
tion on loss. Low-mean absolute differences and
a “fit” with a coefficient near one were taken as
good indicators of alignment. These seemed to
work quite well in identifying projects with good
alignment. Not surprisingly, these were projects
on or near the site experiencing the hypothet-
ical closure. The projects that worked best in
our case were machine cleaning and providing
vehicle-free access on beaches.

Our method is easily transferable to other
areas. However, there are a number of limi-
tations. First, if one seeks restoration projects
that do not involve attributes of the estimated
model, the model cannot be used. For example,
providing parking space at an inland location
could not be analyzed in our model. Stated
preference data on attributes outside the set of
observable attributes could be used to overcome
this limitation. If candidate restoration projects
were known in advance, these could be directly
incorporated into the data gathering effort. Sec-
ond, if current beach management is less than
optimal (beneficial projects are not being under-
taken), the burden of compensatory restoration
on responsible parties will be lessened because
they can use these “cheap and easy” means of

compensation to satisfy their obligation. This
may be an undesirable outcome from an incen-
tive perspective. Third, ground truthing of each
project is required. Are there physical, politi-
cal, or other constraints that prevent the projects
recommended from the model? If so, other sug-
gested projects should be considered. Finally,
our analysis only considers day-trip users. We
miss compensation for overnight trips, nonuse
value, and any congestion effects that might
ensue at sites where restoration is taking place
and other external effects that might be induced
by restoration.
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