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Abstract
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Introduction

Physical geography is a composite discipline of

several interconnected scientific subfields, each

of which has standing in its own right. While

some disagreement exists on the relative impor-

tance of, and even the number of, recognized

subfields, most practitioners would agree that

four – biogeography, climatology, hydrology,

and geomorphology (with foci on the biosphere,

atmosphere, hydrosphere, and lithosphere (taken

conceptually)) – subsume the bulk of the research
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in physical geography (e.g. Clifford, 2009).

Practitioners often self-identify predominately

with one area by aligning the bulk of their work

within conceptual divisions of the environment

into biosphere, atmosphere, hydrosphere, and

lithosphere. The field of physical geography

seems to go through cycles in the amount of

attention paid to integration among these sub-

fields (Stoddart, 1965). These cycles may be

in the form of a punctuated equilibrium, wherein

the equilibrium condition is slight integration, but

in a research environment that has placed a pre-

mium on interdisciplinary studies in recent years,

it has become clear that the separation of these

areas is to a large degree artificial (Martin and

Johnson, 2012).

Here we aim to encourage more integration

by examining where physical geography has

been influential and where it might develop a

new equilibrium. While Venn diagrams are a

traditional way to start such ventures through

examining relationships between sets, they tend

to emphasize domain overlap rather than inte-

gration; Clifford (2009) noted how Fenneman’s

(1919) Venn diagram left the center of the pri-

mary circle unexplained while focusing on its

circumference. Integration is better visualized

in a tetrahedronal diagram (Figure 1) in which

each of the four subdisciplines occupies a ver-

tex of the regular tetrahedron and the center

represents their integration. Therefore, the tet-

rahedron can be thought of as a 3D representa-

tion of 4D relationships between the different

subdisciplines and/or spheres of physical geo-

graphy. In the tetrahedron, any three of the

domains creates an equilateral triangle and

can be imagined similar to a soil texture trian-

gle or a Holdridge life zones triangle. Unlike

simple bivariate plots where the relationships

between only two variables can be easily visua-

lized, or 2.5D graphics where three variables

can be represented in quasi-3D, the tetrahedron

is a non-orthogonal representation much like

the real world where variables are intercorre-

lated. The axes internal to the tetrahedron can

be thought of as the eigenvectors, while the

‘closeness’ of the object of interest to the cen-

troid of the tetrahedron can be thought of as

the loading on these eigenvectors (Figure 1).

As such, the position of a specific study within

the tetrahedron feature space is a mapping of

the relative strength of each of the subdisci-

plines for that study. Many studies lie close

to a vertex or can be well described in refer-

ence to a single triangular face, but we start

on the edges.

To begin, we identify historical and recent

geographical research for the six binary links

that define the edges of the tetrahedron. We then

choose two areas for examining triangular links,

recognizing that others are as illustrative. Last,

we consider areas where all four domains are

brought to bear, and we discuss how we can

improve such linkages. Physical geography that

expands the temporal dimensions for places

engages all four vertices, human-environment

interaction pulls physical geography toward the

center of the tetrahedron, and modeling pro-

vides a vehicle.

Figure 1. A three-dimensional tetrahedron repre-
sents the four primary domains and subdisciplines of
physical geography (biogeography/biosphere; clima-
tology/atmosphere; geomorphology/lithosphere;
hydrology/hydrosphere) with their integration in the
center.
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II Binary links

1 Climatology/biogeography – atmosphere/
biosphere

The link in geographical research between the

atmosphere and the biosphere is most developed

in the area of plant geography, wherein the dis-

tributions of biomes, functional types, species,

or finer divisions are seen in response to spa-

tiotemporal change in temperature and moist-

ure availability (Daniels and Veblen, 2000).

Patterns of different plant structure and leaf

type in relation to temperature gradients were

described by von Humboldt and Bonpland

(1807) and this is a common starting point

for chapters on biogeography in current intro-

ductory textbooks. Since then, geographers

have refined the description for various areas,

such as the USA (Kuchler, 1949; Nichols,

1923) and aspects of this association have been

at the heart of paleoclimate reconstruction

using biological data (discussed below). Stud-

ies have also examined atmosphere-biosphere

connections over the range from individual spe-

cies to biomes. One of the most dynamic applica-

tions of these principles is in the arena of species

distribution (or niche) modeling (Franklin, 2010).

Work that uses models to simulate the response

of vegetation to climate change is a salient current

extension of this core connection (Malanson,

2011a; Murray et al., 2013).

Geographers also have been concerned with

biogeographic function. Geographic patterns

of productivity have been mapped at multiple

scales (Luus and Kelley, 2008), but the global-

scale work garners the most attention (Justice

et al., 1998; Still et al., 2003). While most work

emphasizes net primary productivity, signifi-

cant geographical work on net ecosystem pro-

ductivity (Grant et al., 2011; Kljun et al., 2006)

and net biome productivity (Beringer et al.,

2007) advances our understanding of function.

In addition to being a response to climate, the

pattern of productivity is also an effect of the bio-

sphere on the atmosphere because the biosphere,

including soil, is a major sink and a potential

source for carbon. The idea of a carbon sink has

been explored locally (Scull, 2007) and for exten-

sive regions (Dull et al., 2010; Myneni et al.,

1997) as well as globally (Pan et al., 2011; Trum-

bore et al., 1996) while the release of methane

from existing carbon stores is seeing increased

attention (e.g. Wadham et al., 2012). In addition

to the composition of the atmosphere, vegetation

and soil affect albedo, surface roughness, and

water content (McPherson, 2007), which are cen-

tral to modeling and understanding the impacts

of climate change (Pitman, 2003; Salmun and

Molod, 2006; Zabel et al., 2012).

2 Geomorphology/biogeography –
lithosphere/biosphere

The link between the lithosphere and the bio-

sphere is most developed in biogeomorphology.

Viles (2011) highlighted early work in biogeo-

morphology, citing luminaries such as Darwin,

Lyell, and Penck. She noted the effects of organ-

isms in creating whole landscapes, ranging in

scale from the Great Barrier Reef to microde-

pressions. In practice, biogeomorphology is pri-

marily about the effects of plants and animals

on geomorphic processes and patterns and is a

‘sub-field of geomorphology’ (Viles, 2011:

246), although interactions go both ways (Butler

et al., 2003, 2007; Resler et al., 2005). The orga-

nizing theme is that the rates of surficial pro-

cesses (at least for Earth) are usually changed

by organisms. Some of the earlier work is

focused on the reverse direction, with topogra-

phy providing a simple differentiation (Vann,

1959; von Humboldt and Bonpland, 1807), but

most of this topographic work is now tied to

geospatial applications (e.g. Warner et al., 1991).

Among environments where current research

in biogeomorphology is most active, Viles (2011)

identified river channels. Therein she focused

on riparian vegetation and bank stability. She

noted the mechanical and hydrological roles

played by the vegetation, with attention to large
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woody debris (e.g. Bendix and Cowell, 2010;

Brierley et al., 2005; Malanson and Kupfer, 1993;

Piegay and Gurnell, 1997), but animals are also

important (e.g. Butler and Malanson, 1998; Gur-

nell, 1998; Harvey et al., 2011). Geomorphology

plays an equally large role in affecting biogeo-

graphic processes, whether in differentiating wet-

land and/or riparian vegetation (e.g. Tooth and

McCarthy, 2007) or influencing differences in

plant species at a fine scale within a wetland.

3 Lithosphere/atmosphere –
geomorphology/climatology

This area is perhaps the least dynamic, but at a

longer timescale is important. The response of

landforms to climate – and the very idea of cli-

mate change – is rooted in glacial geomorphol-

ogy (Agassiz, 1840) and is still current (Clark

et al., 2012; James, 2003). This response of land-

forms to climate, however, extends to all climatic

regions (e.g. Migon, 2009). The core of these

relations must include water, but some research

foci are essentially binary.

The effect of geomorphic surfaces on the

atmosphere has implications at multiple scales

(as illustrated by Willmott and Matsuura,

1995, for near-surface air temperature). Cross-

ing the largest range of scales, at the finest geo-

morphological scale but the largest atmospheric

scale, chemical weathering of rock affects the

composition of the atmosphere and thus global

climate. While recognized by geographers

(Dadson, 2010), this link between climatolo-

gists and geomorphologists is not as strong as

this functional connection would indicate; more

work is on erosion than weathering (e.g. see

Brocklehurst, 2010; Finlayson et al., 2002). At

the broadest scale, tectonic activity and climate

change are linked (Scuderi, 1990, 1992). For

ongoing processes, renewed focus on the role

of erosion on carbon flux falls into this link if

we consider soil carbon to be non-biospheric;

much work in this area does focus on the geo-

morphology (Kuhn et al., 2009; Quine and Van

Oost, 2007) at local (Dlugoss et al., 2012;

Yadav and Malanson, 2009), regional (Nadeu

et al., 2012; Smith et al., 2001, 2005) and global

scales (Van Oost et al., 2007).

A more intimate connection is in aeolian

geomorphology, wherein the process of aeolian

transport of sediment mixes the two spheres.

Geographers have worked on landform pro-

cesses at local (Hesp, 2002; Sherman and Bauer,

1993; Tchakerian, 1991; Yang et al., 2011) and

regional scales (Arbogast and Johnson, 1998;

Goudie and Middleton, 2001; Lee and Tchaker-

ian, 1995). More specifically, dust in the atmo-

sphere is an important factor in climate

dynamics (Dentener et al., 1996).

4 Lithosphere/hydrosphere –
geomorphology/hydrology

Water moving on and through the upper layer

of the Earth affects weathering and then

accounts for most of the erosion, transport, and

deposition of Earth materials (i.e. sediment)

(Roy and Lamarre, 2011). One of the best-

developed research areas in physical geography

is fluvial geomorphology and, herein, a distinc-

tion between hydrology and geomorphology

is difficult to maintain. Clifford (2011) sum-

marizes the concepts in this area by focusing

on rivers within drainage basins. The focus is

on processes, particularly erosion, in an expli-

cit systems frame and scale context.

Highlights in the area of fluvial geomorphol-

ogy start with the Strahler school, which had a

major influence in Britain (e.g. Chorley, 1978;

Gregory, 1973; Richards, 1982), perhaps more

than in the USA. Basic research has elucidated

process above all else (e.g. Calver and Anderson,

2004; Powell, 1998), but pattern and history are

also important (e.g. Lane and Richards, 1997;

Macklin et al., 2006). In the USA, following in

the footsteps of Strahler and Schumm, highlights

include the interaction of flood flows and

geomorphology (Constantinescu et al., 2011;

Rhoads and Kenworthy, 1995; Woltemade and
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Potter, 1994), but the insights of Jim Knox and

Stan Trimble on non-equilibrium sediment flux

and storage dominate the field, perhaps because

this work has been tied to climate and land cover

work beyond the geomorphology-hydrology link

(e.g. Knox, 1972, 1977, 1993, 2006; Trimble,

1981, 1983, 1999, 2009).

5 Climatology/hydrology – atmosphere/
hydrosphere

Because a number of major hydrologic compo-

nents are located within the atmosphere, these

two spheres are the most difficult to distinguish

from one another. Fundamental connections are

the processes and patterns of water vapor and

clouds and the drivers of precipitation. While

hydrologists tend to take atmospheric inputs

and outputs as boundary conditions, and clima-

tologists are not much concerned with the

movement of water on or below the surface,

the area of hydroclimatology is thriving

(Mather, 1991; Nickl et al., 2010; Willmott

et al., 1985). The connection between the pro-

cesses and patterns of precipitation and those

of surface water flux and storage deserves more

attention than it gets, but new work on satellite

measurement of precipitation may address this

(Chappell et al., 2013).

Hydroclimatology has been applied to water

resources regionally (Day, 2009; Granger,

1983; Larsen, 2000; Wise, 2012) while flooding

problems have been addressed for single rivers

(Choi, 2008; Konrad, 1998; Todhunter, 2001;

Zume and Tarhule, 2006). The connection to

climatology is especially clear where flooding

is functionally linked to climate change (Wilby

and Keenan, 2012). For water resources, early

work examined where water came from (e.g.

Hoyt and Langbein, 1944) and the connection

to atmospheric circulation continues (Kingston

et al., 2006; Rohli et al., 2008). Much of the

emphasis is regional (Goodrich and Walker,

2011; Keim et al., 2011; Wise, 2012), but it

includes study of fundamental processes as

well as regional and global patterns (Ellis and

Barton, 2012; Fekete et al., 2004). Again, the

link to climate change is obvious (Xu, 1999).

Some research on the amount of water is not

so much about resources; glacier volume and

movement provide important evidence of cli-

mate change (Diolaiuti et al., 2011; Hall and

Fagre, 2003; McCabe and Fountain, 2013;

Ohmura and Reeh, 1991). Some of this work

also focuses on processes per se (Fountain and

Walder, 1998; Hock, 2005; Post and Motyka,

1995).

6 Hydrology/biogeography – hydrosphere/
biosphere

The binary connection here is diffuse because

life is inseparable from water. The link between

the hydrosphere and the biosphere, and hydrol-

ogy and biogeography, is most developed where

an abundance of water affects plants and pat-

terns of vegetation, as in wetlands and flood-

plains (Bendix, 1997; Craig and Malanson,

1993), but extending to in-stream biota (Bragg

et al., 2005). However, the prior process of run-

off generation is affected strongly by infiltration

as well as interception (Holder, 2006; Levia and

Frost, 2006) and evapotranspiration (Williams

et al., 2012).

Much of the work connecting hydrology and

biogeography is in the area of flood effects in

wetlands, wherein the hydroperiod (in addition

to climate) and the dynamics of water levels dif-

ferentiate biogeography based on anoxia nutrient

inputs and the tolerances and adaptations of

species to these negative and positive drivers of

productivity. Geographers have mostly worked

on the details linking processes within wetlands

(e.g. Burt and Pinay, 2005; Holden et al., 2004;

Thompson, 2004) rather than broad differences.

An important area for current research is the role

of wetlands as sites for transforming organic

matter into methane (Butler and Malanson,

1995; Chen et al., 2013; Moore and Roulet,

1993; Roulet et al., 1992), and while this research

Malanson et al. 7



is connected to the atmosphere it is not specifi-

cally climatology.

III Multiple links

Binary links provide common insights into the

importance of scale and other interactions:

� The adaptations (of function) that suit

species to the climate of their time and

place become complicated by the simul-

taneous temporal and spatial changes in

geomorphology and hydrology (and inter-

actions with other species).

� In biogeomorphology spatial patterns and

processes of landforms and organisms are

intertwined with the adaptations of the

plants to climate and their relation to the

force of water in erosion.

� The effects of geomorphic patterns and

processes on the atmosphere illustrate that

local processes are integrated with global

phenomena, but depend on exposure –

surfaces not covered by plants and soil.

� Fluvial landforms are the spatial result,

and context for, the processes connecting

water and Earth surface materials, with

vegetation controlling rates.

� The connection between precipitation and

surface water flux and storage is through

landforms and vegetation.

� At the scales studied by geographers, the

connections between water and life are

complicated by landforms and flows

across time and space.

Much research in physical geography goes

beyond binary connections (even in constructing

the above list of examples, some Procrustean

effort was needed). For example, riparian land-

scapes, including wetlands on floodplains and

deltas, combine fluvial geomorphology, biogeo-

morphology, and ecohydrology (e.g. ‘wetlands

science’) with a link (albeit weak) to hydroclima-

tology in the response of floodplain geomorphol-

ogy to climate change (Knox, 1993). Primarily

because of a foundation in fluvial geomorphol-

ogy, the conceptual links between pattern and

process are well developed in riparian geography

(e.g. Bendix and Hupp, 2000; Corenblit et al.,

2007; Graf, 1978; Hughes, 1997; Malanson,

1993). The example of riparian landscapes illus-

trates the inevitability of linking conceptual

spheres and subdisciplines, when one focuses

on particular places, but questions of scale

are embedded (Walsh et al., 1997). However,

more general linkages for physical geographers

are possible.

IV From links to integration

Combining all four domains of biogeography,

climatology, geomorphology, and hydrology

would seem to be natural for physical geo-

graphers. All four are covered as interacting

in any introductory text in the subject. At the

most advanced levels, we think of the con-

nections in systems as elucidated by Chorley

and Kennedy’s (1971) Physical Geography:

A Systems Approach, but an integrative sys-

tems approach can be hard to find in geography

(Malanson, 2011b). But we can look beyond

individual studies to a meta-domain of research.

To move toward the center of the tetrahedron

(Figure 1), we see two directions to follow. First

is the more explicit treatment of time at multiple

scales. Much research in physical geography

includes time in process studies (e.g. in rates)

or as change, but crossing temporal scales leads

to integration across subdisciplines. Second, the

greater the relevance of physical geography to

human activity, and vice versa, is explicit in

research, the more the interaction among subdis-

ciplines is necessary. The links among subdis-

ciplines are fostered most strongly in studies

of long-term and human-connected climate

change.

1 The treatment of time

Considering time across scales necessitates con-

sideration of space across scales. The relationship
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is best illustrated in Stommel diagrams (Malan-

son, 1999; see also Figure 2). Most processes and

patterns are arrayed along the diagonal of the

graph, linking temporal and spatial scales. Cross-

ing temporal scales in physical geography means

addressing paleoenvironments.

One important reason that paleoenvironmen-

tal studies have such well-developed linkages

among the different environmental spheres is

because these studies use proxies for measuring

attributes of past physical environments. These

proxies integrate different components of the

Earth system. Work on past climate uses biogeo-

graphical, geomorphological, and hydrological

observations together; for example, in paleolim-

nological research, lake sediments incorporate

multiple proxies that integrate signals from all

different subfields (Moser, 2004; Moser et al.,

1996; see also, for example, Baker et al., 2000;

Caffrey and Doerner, 2012; Kiage and Liu,

2006; Reinemann et al., 2009; Tingstad et al.,

2011).

Why have paleoenvironmental studies seen

more well-rounded linkages among spheres than

studies of the present? To engage in such multi-

dimensional study requires a specific spatial

focus. A scan of titles of work on paleoenviron-

ments indicates that most include place names,

revealing that many, perhaps most, are specific

to a locale. This specificity contrasts with the

generalizability for which those studying the

present strive. It is not that paleogeographical

research is idiosyncratic, but that it can contrib-

ute to greater generality – a theory of climate

change – by doing place-specific studies. More-

over, by locating studies in a particular place in

the study of long-term change, paleogeographers

deal with scale as a basic innate aspect of their

studies. Other physical geographers, with no

mega-theory to which to contribute (e.g. evolu-

tion and plate tectonics are established theories),

must strive for a more limited generality in each

and every study. Moreover, in order to empha-

size particular, often binary, relations of process

and pattern we choose model systems where we

can, to the extent possible, hold other factors con-

stant. This approach has been a good model for

science, but it may be limiting in practice.

Figure 2. A Stommel diagram, but with many geographic processes occurring off the diagonal (their
reliability in climate models are differentiated by font).
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Can work in paleoenvironmental and global

climate geography provide the model for pulling

more work into the center of the tetrahedron?

Agnew (1993), writing for human geographers,

identified place as the outcome of processes

(the focus of much physical geography), history

(a strong component of much physical geogra-

phy and the raison d’etre for paleogeographers)

and location (bringing in the quantification of

relative spatial relations and scale). Richards and

Clifford (2008) argued for a such a localized

approach to physical geography, at least in geo-

morphology. But a change of scale to places is

another level of complication, and a concept of

geodiversity (Gray, 2004) for conservation con-

siders the variation in place, long important in

biogeography. Bringing process, history, and

location (spatial pattern and scale) and geodiver-

sity together could be a way toward making a

geography that nears the center of the tetra-

hedron through work on place, with spatial tools

enabling more inclusion of spatiality in physical

geography.

2 The human component

Underpinning much of the increased focused

on paleoenvironmental studies is an interest

in characterizing natural environmental varia-

bility and, crucially, how these environmental

systems respond to change. Global environ-

mental change, perhaps the defining issue of

our time, therefore presents a special opportu-

nity for physical geographers.

Long-recognized in geography (Marsh,

1864), the impact of human activities on the

spheres of physical geography has spanned

millennia, but its intensification in recent cen-

turies has reversed von Humboldt’s (1845)

position on ‘the reciprocal, although weaker,

action which [man] in his turn exercises on

these natural forces’ in the phenomena sum-

marized as global change. The fingerprint of

humans on the physical world modifies and

augments relationships within the spheres, and

in most cases this impact cannot be separated

in our study of the physical world; see com-

mentaries by Harden (forthcoming), Malanson

(forthcoming), and Retchless et al. (forthcoming)

on the human component in research on geo-

morphology, biogeography, and climatology,

respectively. Given this suffusion, the chal-

lenge for physical geographers is to understand

the variability in the Earth system, to differ-

entiate anthropogenic from non-anthropogenic

processes, and to assess resources and hazards

in the system (e.g. Johnston, 1983; Macdonald

et al., 2012); Harden (2012) noted that advance

in physical geography also reinvigorates human-

environment geography.

Ties to human activities exist in the binary

links discussed above. Bioclimatology has had

a long history of significant practical impor-

tance in agriculture, which often is left out of

physical geography (but see Goldblum, 2009;

Mearns et al., 1996; Thornthwaite, 1953). Flu-

vial geomorphology is often applied to river

management in some way (Csiki and Rhoads,

2010; Fryirs and Brierley, 2000; Graf, 1975,

1985, 2001; Gregory et al., 2008), given that

drainage basins are, as Clifford (2011: 503)

describes them, ‘hybrid human-environmental

systems’. Abrahart et al. (2012) have provided

direction for new work under the rubric of river

forecasting. Anticipating floods (or low flows)

is a connection of hydroclimatology that links

basins with global-scale processes, but also with

organisms and people. In ecohydrology, the

effects of vegetation on runoff generation

(Abrahams et al., 1995; Gurnell and Gregory,

1987; Maetens et al., 2012; Post and Malanson,

1994) also link to flood flows (Peel, 2009).

Bringing the feedbacks between human

action and physical geography into focus also

forces us to cross scales because humans break

scale boundaries (Figure 2). In geomorphol-

ogy, local processes are linked to continental-

scale erosion. For example, erosion of 1–20 t/

ha/yr in c. 4 ha agricultural fields (Yadav and

Malanson, 2009) and as much as 8 m/yr for
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mountaintop mining in an area of c. 160 km2

(DeWitt, 2013) accumulate to continental-scale

erosion of *5t/km2/yr for the coterminous USA

(Smith et al., 2001) and to global estimates up

to *21 Gt/yr (Wilkinson and McElroy, 2007).

Given links to carbon and to atmospheric car-

bon dioxide, these processes affect the climate

system that drives agricultural and energy extrac-

tion processes. Thus, as geographers work on

global climate models, other aspects of major

global change, especially land use change, have

become increasingly important components for

understanding the processes (e.g. Feddema et al.,

2005).

Climate change is the keystone of global

change because it has feedbacks through all

spheres. Incorporating multiple factors in glo-

bal climate models (i.e. general circulation

models) and then interpreting their implica-

tions are now inescapable motivations for

linking the subdisciplines of physical geogra-

phy. A range of feedbacks have been described

(e.g. Salmun and Molod, 2006; Sitch et al.,

2003; Walko et al., 2000) and we recognize

that details of all four subdisciplines must

be integrated if climate models are to be accu-

rate and useful. The application of information

on climate change to the study of other areas

of concern, such as integrated assessment for

regions (Chhetri et al., 2010; Mearns et al.,

2012), includes the subdisciplines in its def-

inition. Although Clifford and Richards (2005)

pointed out the pitfalls therein, Earth system

as a mega-theory, encapsulated by Schelln-

huber (1999) as: E ¼ (N, H), where N and H

are the natural and human (and simply ex-

panding Stoddart’s 1965 prescription for geo-

graphy), is one avenue toward the center of

the tetrahedron.

V Moving forward

Full modeling of ongoing climate change and

its potential consequences is the logical exten-

sion of paleoenvironmental physical geography

as a focus for integration of the subdisciplines.

Paleoenvironmental studies integrate the sub-

disciplines through the use of proxies because

the interaction of the four spheres means that

information is correlated; global climate mod-

els require information on interaction in order

to represent the relevant processes. Not all phys-

ical geography needs to model climate change,

but efforts to contribute to an understanding of

climate and its impacts, as paleoenvironmental

studies do, will better take advantage of geogra-

phy’s unique perspective and ability to link

subdisciplines.

Modeling per se is also an important objec-

tive, and the concept can be extended beyond

general circulation modeling. Where physical

geography can effectively integrate its sub-

fields is in the development and use of theory

as embodied in models. While models can

mean many things to many people, as expli-

citly described for geomorphology by Odoni

and Lane (2011), models of all kinds lead to

links. Theoretical models that will advance the

research frontier, however, may challenge phys-

ical geography. Martin and Johnson (2012) con-

cluded that process-based models could take

advantage of new data sources to advance the

biogeosciences (their term for the core of the

physical geography tetrahedron). Physical geo-

graphers need to ‘model-up’ in the areas of

mathematical and computer-programming skills

that are essential for explicitly specifying and

evaluating meaningful theory where all subdis-

ciplines intersect with human activity. This

new call echoes other – now decades old and

more full-throated – calls made by Chorley and

Kennedy (1971), Terjung (1976) and others.

However, the challenges of moving more phys-

ical geography closer to the center of the tetra-

hedron are ever-present.
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