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the Behavior of Metals in
Microscale Deformation
Processes
For the accurate analysis and design of microforming process, proper modeling of ma-
terial behavior at the micro/mesoscale is necessary by considering the size effects. Two
size effects are known to exist in metallic materials. One is the “grain size” effect, and
the other is the “feature/specimen size” effect. This study investigated the feature/
specimen size effect and introduced a scaling model which combined both feature/
specimen and grain size effects. Predicted size effects were compared with three separate
experiments obtained from previous research: a simple compression with a round speci-
men, a simple tension with a round specimen, and a simple tension in sheet metal. The
predicted results had a very good agreement with the experiments. Quantification of the
miniaturization effect has been achieved by introducing two parameters, � and �, which
can be determined by the scaling parameter n, to the Hall–Petch equation. The scaling
model offers a simple way to model the size effect down to length scales of a couple of
grains and to extend the use of continuum plasticity theories to micro/mesolength
scales. �DOI: 10.1115/1.2714582�
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1 Introduction
A general trend towards highly integrated, compact products,

and increasing applications in the area of microsystems demand
further miniaturization of the required components. In 1990s, as
the awareness and the need for microsystem technology grew, the
manufacturing industry used microfabrication techniques such as
lithography for silicon-based components. For metallic compo-
nents, traditional turning and milling processes were scaled down
to produce mesoscale parts �1–3�. From the viewpoint of metal
forming, production of such miniature parts drew attention since
forming is the most commonly used method of manufacturing
near net shape parts, especially when mass production and high
production rates are of concern �4�. Applied research in the areas
of miniature scale bending �4�, microextrusion �4–8�, coining
�9–11�, and microdeep drawing �12� has expanded over the recent
years. It was recognized, however, that the knowhow of traditional
metal forming processes cannot be easily scaled down to micro-
forming due to scaling effects.

In order to simulate the microforming process accurately, ap-
propriate models for material behavior across a large range of size
scales are necessary. As the material evolves through a sequence
of manufacturing steps, so must the constitutive equations repre-
senting them. Nevertheless, lack of available material models and
complications associated with linking different size scales limited
the utilization of simulation tools �13�. There may be several ap-
proaches one could take to overcome this. One approach may be
to start from the basic molecular dynamics. As pointed out by
Horstemeyer �14�, however, current computing power restricts the
use of molecular dynamics technology to 10−6 m in the length
scale and 10−8 s in the time scale, at most. On the other hand,
continuum models are currently available down to millimeter and

millisecond range. The inclusion of constitutive equations con-
taining a physical size scale in the continuum models, the ap-
proach undertaken in this study, can extend its application to mi-
crometer ranges �13�.

As miniaturization occurs, scaling effects take place and the
resulting consequences vary depending on the length scales. As
the size of a polycrystal specimen approaches the size of a grain,
many researchers have observed a decrease in the flow stress
�4,5,15,16�. As the length scale of the part further decreases to a
couple of micrometers, however, hardness and yield strength of
metals increase because of the higher-order effects �17–19�. In
these micrometer length scales, researchers attempted to explain
the phenomena using the strain gradient plasticity theory �20,21�.
The scope of this study is restricted to the specimen length scales
down to the size of a couple of grains, typically around 100 �m at
which the higher-order effects are negligible.

This size effect is thought to originate from two distinctly dif-
ferent sources, as shown in Fig. 1. The first is the “grain size”
effect, which does not involve scaling of the feature or specimen
size. This effect has been extensively studied by material scien-
tists. The other is the “feature size” or “specimen size” effect,
which actually involves geometrical scaling of the workpiece.
Surprisingly, not much research has focused on the feature/
specimen size effect and its interactions with the grain size effect
at the length scale of a few hundred micrometers. Miyazaki et al.
noted the decrease of the flow stress as the specimen size de-
creased and explained the trend by analyzing the “affected zone”
of a deformed grain �22,23�. With a similar concept of surface
grains being weaker than internal grains, Engel and co-workers
developed a “surface layer model” �4,5,15,16,24,25�. The study
conducted by Nakamachi et al., however, suggests that the weak-
ening of the polycrystalline material for large grains is due to
stress localization caused by reduced restriction from neighboring
grains rather than weakening of the surface grains �26�.

This study investigates the feature/specimen size effect and
quantifies it by relating it to the fundamental properties of single
and polycrystal deformation. After presenting the background in-
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formation in the next section, the formulation of the proposed
scaling model that includes the two different size effects is pre-
sented. The model has been compared with experimental data re-
trieved from previous studies for validation. A summary and dis-
cussion of the results are then presented in the last section.

2 Background-Size Effects
As pointed out by Armstrong �27� in 1961, there are two types

of size effects when considering the plastic flow of polycrystals.
The first is the grain size effect, which has been investigated by
numerous researchers. One of the most widely accepted empirical
theories relating the yield stress to the grain size is the Hall–Petch
equation �28,29�, which was further extended by Armstrong to
include the flow stress region �30�

���� = �0��� +
k���
�d

�1�

�0��� and k��� are constants at a specific strain ���, and d is the
grain size. The first term, �0���, is known as the friction stress
required to move individual dislocations in microyielded slip band
pileups confined to isolated grains, whereas k��� in the second
term measures the locally intensified stress needed to propagate
general yielding across the polycrystal grain boundaries �31�.
Therefore, the equation makes it possible to separately understand
and analyze the contributions from the grain interior and boundary
on the overall flow stress of a material �32�.

Armstrong suggested that the values of �0��� obtained from
Hall–Petch analysis could be related to the resolved shear stress
�R, a single crystal property, as shown below �31�

�0��� = M�R��� �2�

where M is the orientation factor to account for slips on deforma-
tion systems. The orientation factor, M, is the average value of all
the different orientations of the grains constituting the whole
specimen. Thus, �0��� may be considered as the flow stress of a
single crystal oriented for multislip �33�. The Taylor model, an
upper-bound model that assumes the strains to be the same in all
grains and equal to the macroscopic strain, requires at least five

active slip systems. The Sachs model, a lower-bound model,
which assumes equal stress in all grains, requires only one active
slip system �34�. For face-centered cubic �fcc� crystals, M is found
to be 3.06 and 2.23 for the Taylor and Sachs model, respectively
�35�. Combining Equations �1� and �2�, we can express the poly-
crystal flow stress with the grain size, d, resolved shear stress, �R,
and grain boundary resistance, k, in the following form

���� = M�R��� +
k���
�d

�3�

The first term in Eq. �3� relates the polycrystal flow stress to the
single crystal flow property, and the second term adds the grain
boundary resistance and grain size contribution to the flow stress.

The second effect that needs to be considered in miniaturization
is the feature size or the specimen size effect and its interaction
with the grain size. This feature/specimen size effect has received
relatively less attention compared with the grain size effect until
recently, since most deformation processes dealt with large part
sizes, which could be considered as polycrystals. With an increas-
ing trend toward miniaturization, the relationship between the
grain size and the feature/specimen size needs to be considered
and properly accounted for when modeling material behavior in
the micro/mesoscales.

Hansen �36� reported that the strength of multicrystalline speci-
mens, meaning specimens containing only a small number of
grains across the cross section, decreases with a decreasing num-
ber of grains in the cross section, as shown in Fig. 2. As the grain
number �n� or the number of grains across the cross section re-
duces to about four, the flow stresses also decrease accordingly.
As the number of grains across the cross section further decreases
to only a couple of grains, n�3.0, decreasing the flow stress
suddenly exhibits a large variation �i.e., for the case of n=3.2 in
Fig. 2�. When the grain number is smaller than n�3, the local
grain orientation becomes dominant and exerts a significant influ-
ence on the flow stress. Therefore, the flow stress, in this size
range, will mostly depend upon the texture or the local orientation
of the grains. Similarly, for sheet metals, Janssen investigated
cases where the thickness of the specimen was below two to three
grains and found distinctly different behavior of the sheet metal in
these regions �37�.

Armstrong described the condition whereby a specimen size
effect allows earlier yielding of a material whose grain structure is
intermediate between that of a single crystal and a true polycrystal
in terms of inequality �31�

2�R � � � M�R +
k
�d

�4�

Figure 3 shows a number of flow stress measurements for reason-
ably pure aluminum at different grain sizes and also at different
specimen sizes, as reported by Carreker and Hibbard �38�, Fleis-
cher and Hosford �39�, and Hansen �36�. Carreker and Hibbard
measured the highest strength for the least pure material at the

Fig. 1 Illustration of two types of scaling effects: the “grain
size effect” and the “feature/specimen size effect”

Fig. 2 Stress–strain curves of 99.999% aluminum for various
n values †36‡
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smallest grain size. Fleischer and Hosford measured the lowest
strength for material of intermediate purity but had only a few
grains in the specimen cross section. Hence, Hansen argued that
the specimen size effect was responsible for the Fleischer and
Hosford data �39� falling below those data he reported after hav-
ing employed very large specimen sizes with these large grain
sizes �even for purer material� to ensure that polycrystalline de-
formation behavior was exhibited �36�. The results from Hansen
show no sign of deviation from the Hall–Petch equation even with
large grains.

Recently, feature/specimen size effect has received attention in
the area of microforming for producing miniature parts �i.e.,
100 �m–5 mm�. Engel and his co-workers investigated scaling
effects in CuZn alloys in the form of round specimens and sheet
metals �4,5,15,16,24,25�. They employed the theory of similarity
to study the size effect as part dimensions decreased. Figures 4
and 5 show the feature/specimen size effects in simple compres-
sion and sheet metal forming, respectively. In both figures, 	 rep-
resents not only the geometric scaling factor, but also the scaling
term that was used for the strain rate. In the size scales considered
in this study where the part size is at least the size of a couple of
grains, flow stresses decreased with miniaturization.

The fundamental physics underlying the size effect is still not
fully understood. Different deformation mechanisms may be
dominant at different size scales. For instance, the surface energy
may be dominant on the nanometer scale �40�, while geometri-

cally necessary dislocations and strain gradients may be more ac-
tive on the micrometer scale �21,41,42�. For the size scales con-
sidered in this study when part dimensions are several times the
grain size, Engel and co-workers proposed the surface layer model
to qualitatively describe the feature size effect �25�. In the surface
layer model, a specimen is subdivided into a free surface and an
internal portion. The model argued that the free surface did not
represent a boundary comparable to a grain boundary, and thus the
dislocation movement in surface grains was not restricted in the
same way as in internal grains, yielding a less distinct hardening.
Therefore, it was concluded that the flow stress of the surface
portion is weaker than that of the internal portion of a material.
Recent findings by Han et al., however, suggested that the free
surface may exhibit either stronger or weaker resistance to plastic
deformation, depending on the density of surface dislocation
sources �42�. Also, mentioned in the work of Janssen is the pos-
sible influence of a boundary layer such as a native oxide layer
may have on the dislocation motion in the surface grains �37�.
Hence, the assumption that the surface layer is always weaker
than the internal portion is questionable in certain circumstances.

3 Formulation of the Scaling Equation
In this study, a different approach has been used to explain and

quantitatively model the feature/specimen size effect. Equation
�4�, proposed by Armstrong, suggests that the flow stress of a
polycrystalline material should decrease to the flow stress of a
single crystal as the specimen size is decreased. In achieving this
general hypothesis, the following detailed analysis and assump-
tions have been made in this study.

In Eq. �3�, the second term is related to the contributions from
the grain boundary to the total flow stress. For the case of a single
crystal, however, there are no neighboring grains to resist the
propagation of dislocations, and consequently there would be no
effect induced by the grain boundary. The internal grain boundary
length per area �GBi/area� decreases as the size of the specimen is
decreased, and eventually becomes 0 for a single crystal. This is
explained in Fig. 6 for the ideal case of square-shaped grains and
specimen cross section. As the number of grains �n� increases, the
internal grain boundary per area �GBi/area� increases from 0 to 2
for the square grains. Hence, for a given grain size, when the
specimen size decreases from a polycrystal to a single crystal, the
effects induced by the grain boundary will diminish. The assump-
tion may be represented in the following form

Fig. 3 Hall–Petch results for the polycrystalline aluminum
†31‡: „1… >99.987 Al †38‡; „2… 99.992 Al et al. †39‡; „3… 99.999 Al
†36‡

Fig. 4 Feature/specimen size effects in round specimens
†4,5,15,16,24‡

Fig. 5 Feature/specimen size effects in sheet metal †25‡
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���� = M�R��� +
k���
�d

� �5�

where 0���1; and � will be 1 for polycrystal and will approach
0 as the specimen size is reduced to a single crystal.

From the theory of single crystal plasticity, the deformation
should follow the Schmid law illustrated in Fig. 7

�C = �cos 
 cos 	�� = m� �0 � m �
1
2� �6�

where �C is the critical resolved shear stress; and m is the Schmid
factor. In Eq. �5�, however, � becomes 0 and the second term
vanishes for a single crystal, leaving only the orientation factor
and the resolved shear stress. Thus, the value of M should con-
verge to that of 1 /m when specimen size approaches that of a
single crystal, implying that M will vary with specimen size scal-
ing with a minimum possible value of 2.

Furthermore, a comparison between the magnitude of the flow
stress ���� and the Hall–Petch constant �0��� supports that M is
dependent on the specimen size scaling. In Fig. 8, the magnitude
of the Hall–Petch constant �0��� is similar to the polycrystal flow
stress for n=18, which is much higher than specimens with only a
few grains across the cross section �n=3.9�. Since the second term
in Eq. �5� is positive for the material, the value of M must de-
crease as the n value is decreased, in order to represent the flow
stress at the small n values. In other words, the value of �0��� is

not a constant but varies with respect to the ratio of the feature
and grain size. Therefore, the following equation is proposed to
describe the feature size scaling effect on M

�0��� = M��R��� �7�

where �M��2,��1�; and � is 1 for a polycrystal.
Combining Eqs. �1�, �5�, and �7�, a scaling equation including

both the feature and grain size effects may be derived

���� = M��R��� +
k���
�d

� �8�

where �M��2,��1,0���1�; �=0 for a single crystal; and
�=�=1 for a polycrystal. It is also important to note the limita-
tions and assumptions of the model. The model assumes that the
grains are generally equiaxed, and thus the material behavior is
assumed to be homogeneous. The model may be applied to parts
that are fully polycrystal, down to parts that may contain only
several grains. As the part size approaches the size of a single
grain, the texture of the grain, rather than the averaged effect from
the slip systems, dominates the behavior.

4 Results and Validation
Three sets of experimental data were used to evaluate and vali-

date Eq. �8�. Regarding the value of the orientation factor M, a
study done by Lorentzen et al. �43� was employed. Figure 9 shows

Fig. 6 Illustration of reduction of internal grain boundary
length per area „GBi/area… with miniaturization

Fig. 7 Illustration of the Schmid law †45‡

Fig. 8 Flow stress „�… and Hall–Petch constants „�0 and k… as
a function of strain for 99.999% Al †36‡

Fig. 9 The average value of orientation factor, M, for aluminum
and copper †43‡
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the development of the average M value with increasing strain for
aluminum and copper. After the initial low values in the elastic–
plastic transition range, the M value finds stability at about 2.6.
Thus, for all the calculations hereafter, the orientation factor M
was assumed to be 2.6, about halfway between the values reported
by the Sachs and Taylor models.

Equation �8� was first applied to experiments performed by En-
gel et al. shown in Fig. 4. They obtained flow stress curves from
different specimen sizes through compression tests using round
CuZn15 specimens that had uniform grain size of 0.079 mm for
all the experiments. In Eq. �8�, the true unknowns are � and �.
Unfortunately, the values of �R��� and k��� were unavailable for
the given strain range, and thus they were also considered un-
knowns. To obtain the solution, an iterative approach was em-
ployed. After assigning an initial value to � and �, different sets
of the flow stress curves were used to determine the �R��� and k���
curves. An optimum solution of � and � will yield a minimum
difference among the different sets of �R��� and k��� curves.
Hence, best-fit values of � and � may be determined through
iterative procedures utilizing the experimental data shown in Fig.
4. �The calculated values for � and � are plotted in Fig. 14.�

Results predicted by simulation are shown in Fig. 10, where
��� represents the original experimental data. Calculated �—� re-
sults for each case of “n” match very well the experimental re-
sults. Predicted values for �R��� and k��� were also compared with
the experiments performed by Meakin and Petch for � brass con-
taining Zn at levels of 5–35% �44�. As shown in Fig. 11, the two
Hall–Petch constants agree with the experimental data for the
available strain range up to 0.3. Experimentally measured k values
after strain of 0.3 were unavailable, and thus a full comparison
throughout the whole strain range was not possible. Although a
strong variation of k was observed at higher strains, the calculated
k values from different stress values did not deviate from one
another, which confirms the accuracy of obtained values. Accord-
ing to the Schmid law, the minimum value of �min��� is 2�R���.
This is plotted in Fig. 10 and may be considered as the lower
boundary for the material. It does not necessarily mean that the
flow stress will converge to this curve when n=1, since the local
grain orientation will determine the material behavior at this size.
The polycrystal flow curve when �=�=1 is also plotted for com-
parison.

A comparison between the model proposed in this study and the
“surface layer model” of Engel �24� is presented as shown in Fig.
12. Overall, both models exhibit a similar trend in predicting the
flow stress. As speculated by Engel �24�, the flow stress of the
inner portion of the specimen resembles the polycrystal behavior.
According to Engel’s model, however, the flow stress of the sur-

face layer of the specimen is lower than that of the minimum
single crystal flow stress calculated by our model.

The second set of experiments selected for validation was from
Hansen �36� for cylindrical specimens of pure aluminum in tensile
as shown in Fig. 2. For the case of Hansen, the Hall–Petch con-
stants were given as shown Fig. 8. Thus, only � and � were
considered unknowns in Eq. �8� when predicting the flow stress
curves for various n values. The results are shown in Fig. 13.
Except for the case of n=3.2, all other curves match very well the
experimental values shown in Fig. 2. Hansen speculated that the
higher flow curve obtained for n=3.2 was from the effect of the
different crystal orientation. The inequality in Eq. �4� may be ex-
pressed in the following form to be more precise

�Polycrystal� �Single crystal�

� = M�R +
k
�d

→ � =
�R

m

�9�

where

� 1

m
� 2�

As polycrystal material approaches the size of a single crystal, the
flow behavior would resemble that of a single crystal, which is
strongly affected by the crystal orientation, sometimes even higher
than that of the polycrystal. Consequently, it is expected that the
crystal orientation will have a strong influence when the n value is
close to 1.

Fig. 10 Comparison of the experimental †4,5,15,16,24‡ and cal-
culated results for the case of round specimens

Fig. 11 Comparison of the Hall–Petch constants between the
experiment †44‡ and the values obtained by calculation

Fig. 12 Comparison of flow stresses calculated by Eq. „8… and
“surface layer model” by Engel †24‡
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The parameter values of � and � for the previous two simula-
tions are summarized in Fig. 14. As expected, both parameters
approach the asymptotic value of 1 for the polycrystal as n is
increased. As n decreases to 1, � decreases to 0 and � reaches the
value of 0.73 which yields the minimum value for 1 /m �=M�

=2.60.73=2.0� in Eq. �9�. Thus, the values obtained from the
simulation support the original assumptions for � and �. As
shown in Fig. 14, parameter � had a more dramatic drop than � as
n decreased. The limit of n=15 was suggested by Hansen as when
a specimen may start to show feature size effect �36�, and the
value corresponds to where a significant drop in � and � is ob-
served.

Experimental data for tensile testing of sheet metal �25� were
also used to evaluate the scaling equation. The experimental data
and conditions are shown in Fig. 5. The experimental data were
obtained for thicknesses of 1.0 �	=1�, 0.5 �	=0.5�, and 0.1 mm
�	=0.1� for the grain size of 0.040 mm. Since the �R��� and k���
values were unknown, experimental data for 	=0.1 and 	=1 were
used to calculate their values. Parameters � and � were obtained
from Fig. 14, and n was calculated based on the cross section of
the sheet metal. As shown in Fig. 15, the predicted flow stress for
the case of 	=0.5 agreed very well with the experimental data.

All three sets of predicted results reproduced the experimental
data very well, validating the scaling model in the form given by
Eq. �8�. From the analysis, it is speculated that the parameters �
and � are independent of the material but are governed by the

scaling parameter n, although more evidence and proof are re-
quired to expand the application of the model to all polycrystal
materials.

5 Conclusions
In this study, we proposed a model that can quantify the rela-

tionship between the “grain size” and the “feature/specimen size”
effect based on the phenomenological experimental results. A scal-
ing model was derived based on the hypothesis that a polycrystal
material should recover the fundamental stress–strain relationship
of a single crystal as the specimen size is decreased to the size of
a single grain. By introducing two parameters, � and �, to the
Hall–Petch equation, the scaling equation was proposed to de-
scribe the interactions between the “feature/specimen size” and
the “grain size” effect as in Eq. �8�.

The scaling equation was used to reproduce three different
cases of experimental results reported in previous studies: �1� a
simple compression with a round specimen �4,5,15,16,24�; �2� a
simple tension with round specimen �36�; and �3� a simple tension
in sheet metal �25�. In all three cases, the stress–strain relationship
predicted by the scaling equation had a good agreement with the
experimental results. As the miniaturization of the specimen oc-
curred, the first term in Eq. �8�, M��R, approached the minimum
value predicted by the Schmid law, 2�R, and the second term,
�k /d0.5��, which is related to the resistance from the grain bound-
ary, disappeared as the specimen size decreased to that of a single
crystal.

This study suggests and confirms that the material flow stress
depends not only on the grain size but also on the interactions
with the specimen/feature size. The Hall–Petch relationship de-
scribes the dependence of the flow stress on the grain size in
polycrystal materials. As miniaturization occurs, the flow stress
converges to that of a single crystal. The flow stress continuously
decreases until the part size is that of a couple of grains at which
point the local crystal orientation starts to dominate the material
behavior. Quantification of the miniaturization effect has been
achieved through n value which is defined as the ratio of
specimen/feature size to the grain size. n becomes 1 for a single

Fig. 13 Calculated results using Eq. „8… based on the experi-
ment by Hansen †36‡

Fig. 14 Parameters � and �, and their dependence on n
=D /d „D�feature size, d�grain size…

Fig. 15 Flow stress predicted and compared for �=0.5 based
on experimentally obtained values at �=0.1 and �=1.0 for sheet
metal
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crystal and  for polycrystals. The values of � and � in Eq. �8�
and their dependence on n value, quantify the flow stress depen-
dence on miniaturization.

The scaling model proposed in this study provides the means to
extend the use of continuum plasticity-based finite element simu-
lation tools to micro/mesolength scales cost effectively. The find-
ings and the proposed model, however, need to be further vali-
dated with experiments involving various microforming
processes.
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