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Abstract—Proactive latency-aware adaptation is an approach
for self-adaptive systems that improves over reactive adaptation
by considering both the current and anticipated adaptation needs
of the system, and taking into account the latency of adaptation
tactics so that they can be started with the necessary lead time.
Making an adaptation decision with these characteristics requires
solving an optimization problem to select the adaptation path that
maximizes an objective function over a finite look-ahead horizon.
Since this is a problem of selecting adaptation actions in the
context of the probabilistic behavior of the environment, Markov
decision processes (MDP) are a suitable approach. However, given
all the possible interactions between the different and possibly
concurrent adaptation tactics, the system, and the environment,
constructing the MDP is a complex task. Probabilistic model
checking can be used to deal with this problem since it takes
as input a formal specification of the stochastic system, which
is internally translated into an MDP, and solved. One drawback
of this solution is that the MDP has to be constructed every
time an adaptation decision has to be made to incorporate the
latest predictions of the environment behavior. In this paper
we present an approach that eliminates that run-time overhead
by constructing most of the MDP offline, also using formal
specification. At run time, the adaptation decision is made by
solving the MDP through stochastic dynamic programming,
weaving in the stochastic environment model as the solution
is computed. Our experimental results show that this approach
reduces the adaptation decision time by an order of magnitude
compared to the probabilistic model checking approach, while
producing the same results.

I. INTRODUCTION

Self-adaptive systems have mechanisms to change their
structure and/or behavior in order to deal with changes in
their environment, such as workload and resource fluctuations,
and security threats [1]–[3]. Most self-adaptation approaches
are reactive, making adaptation decisions based on current
conditions [4]. Unless there is an adaptation cost, being
reactive is not a problem if the system can adapt very quickly,
because at any point, the system can rapidly change to best
deal with the conditions at that moment. However, not all
adaptation tactics are instantaneous. For example, provisioning
a new virtual machine in the cloud can take a few minutes [5].
We refer to the period of time between when a tactic is started
and when its effect is produced as tactic latency. The problem
with tactics that have non-trivial latency is that not all system
configurations are possible at all times. For instance, if adding
a new server to a system takes two minutes, it is not possible
to reach a system configuration with one more server in one

minute. The only way to have that additional server on time is
to start its addition proactively, taking into account the latency
of that tactic.

Tactic latency also matters when the system can use tactics
with different latencies to deal with the same situation. For
example, an alternative to adding capacity with a new server,
is to reduce load by reducing the quality of service (QoS);
something that can be done with a much faster tactic. In a
situation like this, considering not only the effect of the tactics
on the system, but also their latency when deciding how to
adapt can result in more effective adaptations.

Latency-awareness is even more useful when concurrent
tactic execution is supported. In that case, it is possible to
complement slow tactics with fast ones if they do not interfere
with each other. For example, suppose at some point the tactic
to add a server is started because that was deemed appropriate
to handle a predicted increase in the request rate to the system.
However, the next time the system evaluates its state—but
before the tactic to add a server completes—the request rate is
worse than was estimated. In this case, the system can reduce
the QoS—and the load—right away using a fast tactic.

Another effect of tactic latency is that the execution of a
tactic with considerable latency can prevent the use of other
incompatible tactics while it executes (e.g., removing a server
while it is being added). Consequently, an adaptation choice
made at some point constrains the possible adaptations in
subsequent decisions.

Proactive latency-aware adaptation is an approach that
improves over reactive adaptation by considering both the
current and anticipated adaptation needs of the system, and
taking into account the latency of adaptation tactics [6],
[7]. Making an adaptation decision with these characteris-
tics requires solving an optimization problem to select the
adaptation path that maximizes an objective function over a
finite look-ahead horizon. This requires relying on predictions
of the state of the environment over the decision horizon,
which are not perfect and have uncertainty. Since this is a
problem of selecting adaptation actions in the context of the
probabilistic behavior of the environment, Markov decision
processes (MDP) are a suitable approach. However, given all
the possible interactions between the different and possibly
concurrent adaptation tactics, the system, and the environment,
constructing the MDP is a complex task.



In previous work, we proposed a proactive latency-aware ap-
proach to self-adaptation that uses probabilistic model check-
ing to deal with this problem [7]. The probabilistic model
checker takes as input a formal specification of the adaptive
system and its stochastic environment, which is internally
translated into an MDP, and solved. The solution to the MDP
is the set of tactics that have to be started in order to achieve
the adaptation goal (e.g., utility maximization). Using MDPs in
this way, it is possible to reason about latency and uncertainty.
However, the probabilistic transitions of the MDP depend on
the stochastic behavior of the environment, which can only be
estimated at run time, and with a short horizon. Consequently,
the high overhead of constructing the MDP must be incurred
every time an adaptation decision has to be made, so that
the latest predictions of the environment behavior can be
incorporated.

In this paper we present an approach that practically elim-
inates the run-time overhead of constructing the MDP by
doing most of that offline. Using formal methods, the approach
exhaustively considers the many possible system states, and
combinations of tactics, including their concurrent execution
when possible. At run time, the adaptation decision is made
by solving the MDP through stochastic dynamic programming,
weaving in the stochastic environment model as the solution
is computed. To explain and evaluate the approach, we use
RUBiS, a web application that has the core functionality of an
auctions website [8]. Our experimental results show that this
approach reduces the adaptation decision time by an order
of magnitude compared to the probabilistic model checking
approach, while still producing the same results.

The rest of the paper is organized as follows. The example
that is used throughout the paper is presented in Section II. In
Section III, we describe the general adaptation model within
which the adaptation decision approach proposed in the paper
works. The core of the approach is presented in Section IV.
The evaluation of the approach is described in Section V,
including the results. Related work is presented in Section VI.
Our conclusions and future work directions are in Section VII.

II. EXAMPLE

To illustrate and validate the approach, we use RUBiS,
an open-source benchmark application that implements the
functionality of an auctions website [8]. This application is
widely used for research in web application performance,
and various areas of cloud computing [9]–[12]. RUBiS is a
multi-tier web application consisting of a web server tier that
receives requests from clients using browsers, and a database
tier. In our setup, we also include a load balancer to support
multiple servers in the web tier. The load balancer distributes
the requests among the servers following a round-robin policy.
When a client requests a web page, the web server accesses
the database tier to get the data needed to render the page
with the dynamic content. The request arrival rate, which
induces the workload on the system, changes over time. This
changing arrival rate is the only relevant property of the
system’s environment that is considered for this example.

RUBiS was not designed as a self-adaptive system, but we
added an adaptation layer to make it self-adaptive. We included
two pairs of inverse adaptation tactics that can be used to deal
with the changing arrival rate and the load it induces. One
pair of tactics can be used to add and remove servers, thus
changing the capacity of the system. The tactic to add a server
has a latency λ.1 The inverse tactic removes a server. Although
this requires waiting for the server to complete processing the
requests being handled by the server, we assume that time
to be negligible, and thus assume the tactic to be immediate.2

The other pair of tactics leverages the brownout paradigm [13].
With brownout, the response to a request includes mandatory
content, such as the details of an item being browsed, and,
possibly, optional content, such as recommendations of related
items. A parameter called dimmer controls the proportion of
responses that include the optional content. In that way, it is
possible to use the dimmer to control the load on the system.
The value of the dimmer can be thought of as the probability
of a response including the optional content, thus taking values
in [0..1]. To control the dimmer, the system has two immediate
adaptation tactics that increase and decrease its value. We
allow tactics to be executed concurrently only if they belong
to different pairs. For example, if a server is being added, a
server cannot be removed, but it is possible to increase or
decrease the dimmer.

The goal of self-adaptation in our example is to maximize
the utility provided by the system at the minimum cost. The
utility is computed according to a service level agreement
(SLA) with rewards for meeting the target average response
time over a measurement interval, and penalties when the
response time is not met [14]. The cost is proportional to the
number of servers used. The SLA specifies a target response
time T . The utility obtained in an interval depends on whether
the target is met or not, as given by

U =

{
τa(dRO + (1− d)RM ) if r ≤ T
τ min(0, a− κ)RO if r > T

(1)

where τ is the length of the interval, a is the average request
rate, r is the average response time, d is the dimmer value,
κ is the maximum request rate the site is expected to handle,
and RM and RO are the rewards for serving a request with
mandatory and optional content, respectively, with RO > RM .

III. SELF-ADAPTATION MODEL

Our approach fits in the general class of self-adaptation
architectures based on explicit closed-loop control such as the
MAPE-K autonomic manager [15]. The MAPE phases cover
the activities performed in the control loop: (i) monitoring the
system and the environment; (ii) analyzing the information
collected and deciding if adaptation is needed; (iii) planning
how to adapt; and (iv) executing the adaptation. These activi-
ties share a knowledge model that integrates them.

1The latency is assumed to be constant, but if it was a random variable, λ
would be its expected value.

2This is just a choice we made for this example. If that time was not
negligible, the tactic could be modeled as a tactic with latency.



Even though MAPE-K has distinct analysis and planning
phases, these are combined into a single activity in our ap-
proach because when the goal is to maximize a utility function,
determining whether the system can adapt to a configuration
that will give higher utility (the analysis part) implies finding
such configuration (the planning part). The adaptation decision
phase is run periodically, at a fixed interval τ , to determine
both whether adaptation is required, and what tactics to use.

IV. ADAPTATION DECISION

The goal of the adaptation decision is to determine what
adaptation action to take, if any, with the goal of maximizing
the utility that the system will provide over the rest of its
execution. In principle, each adaptation decision could be
made in isolation. However, when adaptations have latency,
reacting to the current situation without looking ahead can
result in suboptimal decisions even if there is no adaptation
cost [7]. The reason is that the configuration of the system
at any given time constrains the possible configurations at a
later time. Consequently, it is not possible to find the best
configuration, or the adaptation to get to it, without looking
ahead to see which configurations will be needed in the future.

Considering that the decision made at a given time af-
fects the possible evolutions of the system and constraints
subsequent decisions, the adaptation decision problem is a
sequential decision problem [16]. The managed system and its
environment evolve through time, and the adaptation manager
has to decide at regular intervals what adaptation action to
take, if any, to maximize the utility that the system will
provide. Since the utility the system provides with a given
configuration depends on the state of the environment, the de-
cision process must be based on the joint process that describes
the combined behavior of the system and its environment. In
this work we assume that the effect of tactics on the system
configuration is deterministic, and depends only on the current
state of the system. However, the behavior of the environ-
ment is stochastic, thus making the transitions in the joint
system/environment process probabilistic. Consequently, the
adaptation decision problem can be formulated as a Markov
decision process.

The stochastic model of the environment in the MDP is
based on predictions of the future state of the environment. In
our example, it is built using a time series predictor. Taking
into account that the uncertainty of these predictions increases
as they get further into the future, it is not practical to look too
far ahead. Therefore, the adaptation decision is formulated as a
discrete-time sequential decision problem with finite horizon,
and its solution approximates the original decision problem,
determining what adaptation tactics should be started at the
current time, if any, to maximize the aggregate utility the
system will provide over the decision horizon.

A. Adaptation Decision Problem Formulation

A new adaptation decision is made at regular intervals
of length τ , and each decision itself is the solution of a
discrete-time finite horizon decision problem, in which time
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Fig. 1. Pattern of adaptation transitions in adaptation decision solution

is discretized into intervals of length τ , with a horizon of
H intervals. The adaptation decision considers two kinds
of configuration changes or transitions due to adaptation:
immediate, and delayed. Immediate transitions are the result
of either the execution of tactics with very low latency (e.g.,
changing the dimmer value), or the start of a tactic with
latency (e.g., adding a server). In the latter case, the transition
is immediate because the target state is a configuration in
which a new server is being added, but the addition has not
been completed yet. Delayed configuration changes are due to
adaptation as well, but also require the passing of time for the
transition to happen. This is the case, for example, with the
addition of a new server, transitioning from a state in which
the server is being added to a state in which the addition has
completed.

Any solution to the adaptation decision problem will follow
the same pattern of immediate and delayed transitions as
shown in Fig. 1 for H = 3. The interval t = 1 corresponds
to the interval of length τ starting at the current time, interval
t = 2 starts τ later, and so on. To simplify the presentation,
we start with two assumptions that will be relaxed later: (i)
the evolution of the environment over the decision horizon
is known deterministically; and (ii) each tactic is either in-
stantaneous or its latency is approximately τ . The state of
the environment in interval t is et.3 State c0 represents the
configuration of the system when the adaptation decision is
being made. At that point, an immediate transition takes the
system from c0 to c1 right before the first interval starts. The
negligible time that this transition takes is denoted as ε, and it
is shown disproportionately large in the figure so that it can be
drawn. The passage of time causes the configuration to change
from c1 to c′1. For example, if c1 is a configuration in which the
addition of a server has been started, c′1 is one with the server
addition completed. After that, another immediate transition
resulting in c2 takes place, then the second interval starts, and
so on. For the purpose of considering the utility accumulated
over the decision horizon, the intermediate configuration that

3In general, the state of the environment can change during a decision
interval. However, for the decision problem, a metric representative of the
state throughout the interval is used (e.g., the average request arrival rate).



precedes each immediate transition is ignored, and the utility
accrued in interval t is U(ct, et).

In general decision problems, the solution is found by
considering all the actions that are applicable in each state,
and the result is a policy that maps states to actions. However,
in our setting there are two reasons why finding and expressing
the solution directly in terms of actions is not practical.
First, our approach supports concurrent execution of tactics,
which means that more than one tactic (or action) can be
started simultaneously, resulting in a single transition to a
configuration with the combined effect of the tactics. Second,
there can be tactics with latency longer than the decision
interval, which means that once the tactic has started, it is
possible to have transitions that are exclusively due to the
passage of time. Instead of dealing directly with actions,
we use predicates over pairs of states that indicate whether
configuration c′ can be reached from configuration c. These
reachability predicates are:

• RI(c, c′), which is true if configuration c′ can be reached
with an immediate transition from c with the use of none,
one or more tactics; and

• RD(c, c′), which is true if configuration c′ can be reached
with a delayed transition from c in one time interval.

A third helper predicate, used for a more compact notation, is
true if c′ can be reached from c in one time interval through
a delayed transition followed by an immediate transition:

RT (c, c′) ≡ ∃c′′ : RD(c, c′′) ∧RI(c′′, c′)

Defining these predicates is not trivial due to the possible
interactions between different tactics, which requires exploring
all the possible combinations of tactics. In our approach, we
use formal methods to compute these predicates offline (as
it is explained in Section IV-B), reducing the burden on the
run-time decision algorithm.

These predicates define the transition matrix for the system
portion of the adaptation MDP. Therefore, a solution like
the one shown in Fig. 1 is feasible only if RI(c0, c1) and
RT (ct, ct+1),∀t = 1, . . . ,H−1 hold. To find the solution, let
us refer to the set of all system configurations as C. This set
contains all the configurations that are unique with respect to
the properties relevant to computing the utility function. In our
example, these properties include the number of active servers,
and the dimmer value. Later on, this set will be extended to
capture the state of running tactics in the system configuration.
Let us also define sets of configurations that can be reached
from a given configuration using different kinds of transitions:

CT (c) =
{
c′ ∈ C : RT (c, c′)

}
CI(c) =

{
c′ ∈ C : RI(c, c′)

}
With the assumption of a deterministic environment, the
solution C∗ to the adaptation decision problem can be found
using dynamic programming as follows:

vH(c) = Û(c, eH), ∀c ∈ C (2)

vt(c) = Û(c, et) + max
c′∈CT (c)

vt+1(c′),

t = H − 1, . . . , 1
(3)

C∗ = argmax
c′∈CI(c0)

v1(c′) (4)

Note that the utility function used to solve the adaptation
decision problem is the decision utility function Û , which
has some differences with respect to U in (1), the one used
to measure the utility of the system. The first difference is
that the response time used in the computation is not the
measured response time of the system, since Û is used to
compute the utility that the system would attain under a certain
configuration and state of the environment. Therefore, the
response time has to be estimated. In our case, we resort
to queueing theory using a limited processor sharing (LPS)
model, which models a system in which the number of
concurrent requests that can be processed simultaneously by
each server is limited by a constant [17]. For the web servers
in our example, this constant is equal to the maximum number
of processes configured for them. Another difference is that
for our particular self-adaptation goal, Û is defined so that if
U(c1, e) = U(c2, e), then Û(c1, e) > Û(c2, e) if c1 has lower
cost (this is achieved by scaling the original utility values).4

The result of argmax in (4) is actually a set, so we can pick
any configuration c∗ ∈ C∗. However if c0 ∈ C∗, we can avoid
adapting, since no configuration change would render any
improvement. Since the actions in our setting are deterministic,
given the source and target of a transition, it is possible to
determine the actions that have to be taken as it will be
explained later. Therefore, once c∗ is found, the set of tactics
that have to be started to reach it from c0 can be determined.

1) Stochastic Environment: We model the evolution of
the environment over the decision horizon as a discrete-time
Markov chain. The set of environment states is denoted by
E, and the probability of transitioning from state e to state
e′ is given by p(e′|e). Although how the set E and the
transition probabilities for the environment are obtained is
not relevant, for this work we used a time series predictor
to predict future request rates based on past observations of
the environment. These predictions and their uncertainty are
then used to generate a probability tree using the technique
described in our previous work [7].

The most straightforward way to take into account the
stochastic evolution of the environment would be to create the
joint MDP of the system MDP and the environment Markov
chain,5 and then find its solution. However, this would require
creating the transition probability matrix over the joint state
space C × E, and evaluating many joint states that would

4In a case in which all the configurations would exceed the target response
time, the utility function would choose the one with the smallest number of
servers. This is not the right decision because removing resources from an
overloaded system would cause the backlog of requests to increase at a higher
rate, making the recovery of the system in subsequent decisions even more
unlikely. Therefore, an exception to this rule is included in Û to favor the
configuration with the most servers in such a case.

5A discrete-time Markov chain can be turned into an MDP by assuming
there is a single action applicable in every state.
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Fig. 2. System and environment transitions

never be reachable. Keeping in mind that this would have to
be done every time an adaptation decision has to be made,
doing this has a couple of drawbacks. First, the full joint
MDP would have to be created for every decision so that the
latest environment predictions could be incorporated. Second,
evaluating the utility for a pair of system configuration and
environment state may involve some extensive computation, so
doing that for unreachable joint states is a waste of resources
and time.

To reduce the running time of the adaptation decision,
we avoid creating the joint MDP, and instead weave the
environment model into the predefined MDP of the system
as needed. Referring to Fig. 1, we can see that the system
and the environment make a transition almost simultaneously
at the beginning of each interval. For example, at the start
of the interval at t = 1, the system transitions from c0 to
c1 (the alternative target configurations are not shown), and
the environment transitions from its current state e0 to e1.
The difference with the stochastic environment is that both the
system and the environment have several possible target states
at each interval. Fig. 2 depicts these two kinds of transitions
interleaved. First, the system takes a deterministic transition,
and then the environment takes a probabilistic transition.

Using the principles of stochastic dynamic program-
ming [16], the adaptation decision problem with a stochastic
model of the environment can be solved as follows:

vH(c, e) = Û(c, e), ∀c ∈ C, e ∈ EH (5)

vt(c, e) = Û(c, e) + max
c′∈CT (c)

∑
e′∈Et+1

p(e′|e)vt+1(c′, e′),

t = H − 1, . . . , 1

(6)

C∗ = argmax
c′∈CI(c0)

∑
e′∈E1

p(e′|e0)v1(c′, e′) (7)

Note that instead of evaluating all environment states in E for
each time interval, only those that are feasible are considered.
Et is the set of environment states feasible in time interval t.
When a probability tree is used to model the environment, Et
is the set of nodes of depth t.

2) Handling Latency: When a tactic has latency, the adap-
tation decision has to be able to determine when the tactic is
going to complete, so that its effect on the system configuration
can be accounted for at the right time. In addition, while a
tactic executes, it can prevent other incompatible tactics from
starting, which affects the decision. So far, we assumed that if a
tactic had latency, it was roughly equal to one time interval, but
in reality it can be of any length, and span multiple intervals.
Since we use a Markov model, there is no history in the model
to allow us to directly keep track of the progress of the tactic.
Consequently, we have to extend the state space in the model
to keep track of the progress of tactics with latency. However,
given that decisions are made at regular intervals over the
decision horizon, it is necessary to keep track of the progress
of the tactic only at the granularity of the time interval.

For our running example, the configuration of the system
with the properties relevant for computing the utility function
can be captured by a tuple (s, d), where s is the number
of active servers, and d is the discretized dimmer value. In
order to keep track of the progress of the tactic to add a
server, we extend the configuration with another component,
so that the full configuration tuple is (s, d, padd), where
padd ∈

{
0, . . . , dλτ e

}
is the number of time intervals left

until the tactic completes, with 0 indicating that the tactic is
not being executed.6 For example, the start of the tactic to
add a server implies an immediate transition in the model
to a configuration with padd equal to its maximum value.
This transition is enabled by RI . It is then be followed by a
sequence of delayed transitions enabled by RD that decrease
the value of padd until it reaches 0, and when that happens,
the number of servers in the configuration tuple is increased.

B. Computing Reachability Predicates

The predicates RI and RD determine which system configu-
rations can be reached from other configurations through adap-
tation; that is, they specify which transitions are feasible in the
system MDP. Defining these predicates by extension, or trying
to express them in propositional logic can be a daunting and
error prone task due to all the possible combinations of tactics,
all their possible phasings (i.e., how their executions overlap in
time), and all the possible system states that must be taken into
account. Instead, we use formal methods to compute the reach-
ability predicates. Specifically, we use Alloy [18] to formally
specify system configurations and adaptation tactics, and to
compute the reachability predicates. Alloy is a language based
on first-order logic that allows modeling structures—known
as signatures—and relationships between them in the form of
constraints. Alloy is a declarative language, and, in contrast
to imperative languages, only the effect of operations—tactics
in our case—on the model must be specified, but not how the
operations work. The Alloy analyzer is used to find structures
that satisfy the model. Thanks to delaying as much as possible
combining the system and environment states in our approach,

6In our example, each tactic cannot execute concurrently with itself, so a
single value can track its progress. If multiple instances of a tactic could be
executed concurrently, one progress component per instance would be needed.



1 open util/ordering[S] as SO
2 open util/ordering[D] as DO
3 sig S {} // the different number of active servers
4 sig D {} // the different dimmer levels
5

6 // each element of C represents a configuration
7 sig C {
8 s : S, // the number of active servers
9 d : D // dimmer level

10 }

Fig. 3. Alloy model: configurations

these predicates are independent of the environment state, and
thus can be computed offline. Hence, the overhead of using
formal methods to compute the predicates is not incurred at
run time.

The support for concurrent tactics in the adaptation deci-
sion is handled by these predicates. The adaptation problem
formulation (5)-(7) is agnostic with regard to concurrent tactic
execution, since it only cares about state reachability, regard-
less of whether that requires concurrent tactics or not. On the
other hand, to correctly determine whether a configuration
can be reached from another configuration when computing
the predicates, it is necessary to consider whether tactics can
be executed concurrently or not. To that end, we rely on a
compatibility predicate for each tactic that indicates whether
it can be run, considering the other tactics that are executing.
We require that two tactics are allowed to execute concurrently
only if they affect disjoint subsets of the properties of the
configuration state. From the formal model perspective, this
requirement makes the tactics serializable, since the state
resulting from their serial application would be the same as if
they were applied in parallel.

To compute RD, we use Alloy to find all the pairs (c, c′) ∈
CP×CP, such that RD(c, c′), where CP is the configuration
space extended with tactic progress. To achieve that, we intro-
duce first other necessary pieces of the model. Fig. 3 shows the
declarations that define the system configuration space for our
example. The sets S, and D represent the different numbers of
active servers, and dimmer levels, respectively. The elements
of these sets are not numbers, but just abstract elements.
However, lines 1-2 specify that these are ordered sets. Thus,
we can refer to their first and last elements, for example, with
SO/first and SO/last. Also, we can get the successor
and predecessor of an element e with SO/next[e] and
SO/prev[e]. The signature C defines the set of all possible
configurations, each having a number of active servers s, and
a dimmer level d. In the Alloy model, we distinguish between
plain system configurations, C, and configurations extended
with tactic progress, CP. The reason we do this is for the
code to be more modular, keeping concerns separated, so that
it is easier to generate the Alloy code for different systems,
and/or different sets of tactics. Note, however, that when
the adaptation decision problem is solved, CP in this model
corresponds to C in the formulation presented in Section IV-A.

Fig. 4 shows the elements needed to represent tactic
progress. The declaration of the set of all the tactics T as ab-

1 open util/ordering[TPAS] as TPASO // tactic progress for adding server
2

3 abstract sig T {} // all tactics
4 one sig IncDimmer, DecDimmer, RemoveServer extends T {} // tactics

with no latency
5 abstract sig LT extends T {} // tactics with latency
6 one sig AddServer extends LT {} // tactic with latency
7 abstract sig TP {} // tactic progress
8 sig TPAS extends TP {} // one sig for each tactic with latency
9

10 // configuration extended with the progress of each tactic with latency
11 sig CP extends C {
12 p: LT −> TP
13 } {
14 ˜p.p in iden // p maps each tactic to at most one progress
15 p.univ = LT // every tactic in LT has a mapping in p
16 p[AddServer] in TPAS // restrict each tactic to its own progress class
17 }
18

19 fact uniqueConfigs { all disj c1, c2 : CP | !equals[c1, c2] or c1.p != c2.p}

Fig. 4. Alloy model: configurations extended with tactic progress

stract in line 3 indicates that all its elements must be elements
of one of the signatures that extends it. For each of the tactics
with no latency, a singleton set extending T is declared (line 4).
Since it is necessary to tell tactics with latency apart, the
abstract subset LT is declared (line 5), and a singleton subset
of it is declared for each of the tactics with latency (line 6, only
AddServer in our example). The different levels of progress
of each tactic are represented by the elements of an ordered
set. For example, TPAS (lines 1 and 8) contains the levels of
progress of the tactic to add a server, with TPASO/first
indicating the tactic has just started, TPASO/last indicating
that the tactic execution has completed, and the elements in
between representing intermediate progress. The ordered sets
that represent the levels of progress of tactics are subsets of an
abstract set TP. The signature CP extends C, adding a mapping
from tactics with latency, LT, to the tactic progress, TP. The
facts in lines 14-15 constrain p to be a function over LT.
Additionally, we require that the function maps each tactic to
a progress in its corresponding class (line 16). Lastly, the fact
in line 19 requires that all elements of CP are different.

Now that we have all the basic elements in the model, we
can present the predicates that determine the reachability in
one time interval. For each tactic with latency, a predicate like
addServerTacticProgress, shown in Fig. 5, is needed.
This predicate is true if according to the tactic, the post-state
c’ can be reached in one time interval from the pre-state c.
If the tactic is running, the predicate requires that in the post-
state, the progress of the tactic is the next one. If it reaches
the last level of progress, then the configuration has one more
server in the post-state (lines 3-4), reflecting the effect of the
completion of the tactic. In addition, it is as important to ensure
that if the tactic is not running, it stays in that state (line 6),
and does not have an effect (line 7). We also need to require
that nothing else changes (lines 10-11). Finally, the predicates
for the progress of each tactic with latency have to be put
together to define progress, a predicate equivalent to RD

(line 14-16). If we had more than one tactic with latency, their
predicates would have to be composed to reflect the effect that



1 pred addServerTacticProgress[c, c’ : CP] {
2 c.p[AddServer] != TPASO/last implies { // tactic is running
3 c’.p[AddServer] = TPASO/next[c.p[AddServer]]
4 c’.p[AddServer] = TPASO/last implies c’.s = SO/next[c.s] else c’.s =

c.s
5 } else {
6 c’.p[AddServer] = TPASO/last // stay in not running state
7 c’.s = c.s
8 }
9 // nothing else changes other than s and the progress of this tactic

10 equalsExcept[c, c’, C$s]
11 (LT − AddServer) <: c.p in c’.p
12 }
13

14 pred progress[c, c’ : CP] {
15 addServerTacticProgress[c, c’]
16 }

Fig. 5. Alloy model: tactic progress predicate

all of them would have on the state. All the progress predicates
are serializable, because they either correspond to tactics that
can execute concurrently, for which serializability is required;
or they correspond to incompatible tactics. In the latter case,
only one of them could be in a state in which it can affect the
configuration, whereas the rest would have no effect, making
them serializable as well. Therefore, all the progress predicates
can be combined using sequential composition [19].

With the complete model, the Alloy analyzer is run to find
all the instances that satisfy progress. Alloy requires that a
scope (i.e., cardinality, either exact or as a bound) be provided
for the different sets in the model. In our case the scope can
be determined based on the maximum number of servers for
the system, the number of dimmer levels, and the number of
time intervals needed for the execution of tactics with latency.
The output of Alloy can be read using its API, and used to
generate a simple encoding of RD as a lookup table suitable
for use at run time when a decision has to be made.

In order to compute RI , we define a predicate for each
tactic that checks whether the tactic is applicable, and if so,
it reflects the effect of the tactic on the post-state. However,
we cannot simply compose them sequentially, as we do for
RD, because it is necessary to consider cases in which a
tactic is not used even if its applicable. That is, we need
to consider every possible combination of tactics that can be
applied concurrently. The approach we take to deal with this
problem is to model a trace of configuration states such that
each element of the trace is related to its predecessor by either
the application of a tactic, or the identity relation. Using the
Alloy analyzer we can find all the possible traces that satisfy
this model, and the set of all the pairs formed by the first and
last state of each trace is the relation RI .

Fig. 6 shows a portion of the model to compute RI . In
addition to computing RI , we also need to compute for each
pair in that relation the (possibly empty) set of tactics that
have to be started for the immediate transition represented by
the pair to hold. This is used to determine which tactics have
to be started once the solution to (7) is found. To accomplish
that, the elements of the trace have not only the configuration
state, but also a set of tactics that have been started to arrive

1 open util/ordering[TraceElement] as Trace
2

3 sig TraceElement {
4 cp : CP,
5 starts : set T // tactic started
6 }
7

8 pred addServerCompatible[e : TraceElement] {
9 e.cp.p[AddServer] = TPASO/last

10 !(RemoveServer in e.starts)
11 }
12

13 pred addServerTacticStart[e, e’ : TraceElement] {
14 addServerCompatible[e] and e.cp.s != SO/last
15 e’.starts = e.starts + AddServer
16 let c = e.cp, c’=e’.cp | {
17 c’.p[AddServer] = TPASO/first
18 // nothing else changes
19 equals[c, c’]
20 (LT − AddServer) <: c.p in c’.p
21 }
22 }
23

24 fact traces {
25 let fst = Trace/first | fst.starts = none
26 all e : TraceElement − last | let e’ = next[e] | {
27 equals[e, e’] and equals[e’, Trace/last]
28 } or addServerTacticStart[e, e’] or removeServerTactic[e, e’] or

decDimmerTactic[e, e’] or incDimmerTactic[e, e’]
29 }

Fig. 6. Alloy model: predicates for tactic start

at that particular state in the trace (lines 3-6).
For each tactic with latency there is a predicate that models

the start (but not the effect, which is delayed) of the tactic
(line 13-22). It first checks that the tactic is compatible and
applicable in the pre-state (line 14). In the post-state, the tactic
is added to the set of tactics started (line 15), and the progress
of the tactic is set to the first level (line 17). In addition, the
predicate ensures that nothing else changes (lines 19-20). For
instantaneous tactics, the predicate follows the same pattern,
except that the effect of the tactic on the post-state is included
(e.g., an increase of the dimmer value), and no tactic progress
state is affected. The fact traces defines what a valid trace
is. Line 25 states that at the beginning of the trace no tactic has
been started at this time. The remainder of the fact specifies
that every trace element is related to its predecessor by one of
the predicates for the tactics, or is the same as its predecessor.

Similarly to what is done for computing RD, Alloy is used
to find all the possible instances that satisfy the model, and
through its API we can obtain all the traces needed to construct
RI as a lookup table. Also, a map that associates pairs in RI

to the set of tactic starts is constructed to be used at run time.

V. EVALUATION

The objectives of the evaluation were to assess the adapta-
tion decision speedup attained by the proposed approach; and
to confirm that the effectiveness of the adaptation decision was
not affected, maintaining the advantage of proactive latency-
aware adaptation. To this end, the experiments were done
using three different adaptation approaches. The first proactive
latency-aware approach, PLA-SDP, is the one presented in
this paper. The second one, PLA-PMC, corresponds to the
approach based on probabilistic model checking [7]. The



adaptation decision in PLA-PMC uses PRISM version 4.3 [20]
to build and solve the MDP at run time. The third adaptation
approach is a feed-forward (FF) approach that is latency-
agnostic. It uses a one-step-ahead prediction of the request rate
to select the adaptation tactic that would result in the highest
utility, assuming that tactics are instantaneous, and not looking
beyond the current decision.

For the evaluation, the system was deployed on a quad-core
server running Ubuntu Server 14.04 as the host OS, with three
virtual machines (VM), also running Ubuntu, each pinned to
a dedicated core. These cores were isolated, and thus not used
by the host OS. The VMs were used to deploy up to three
web servers with RUBiS. The version of RUBiS we used
was one modified by Klein et al. to support brownout [13].
The load balancer HAProxy [21] was run in the host OS to
distribute requests among the servers. In order to keep the
latency of the tactic to add a server experimentally controlled,
the server VMs were kept running at all times, and the addition
and removal of a server was simulated by enabling and
disabling the server in the load balancer, respectively. When
the tactic to add a server was used, the execution manager
enabled the server in the load balancer after a time of λ had
elapsed, simulating the latency of the tactic. The adaptation
layer (monitoring, adaptation decision, execution manager, and
knowledge model) was also deployed in the host OS, and a
second computer was used to generate traffic to the website.

The period for the adaptation layer (i.e., the monitoring
and adaptation interval) was τ = 60 seconds. The length
of the look-ahead horizon used for the adaptation decision
was computed as H = max

(
5,
⌈
λ
τ

⌉
(Smax − 1) + 1

)
, where

Smax = 3 is the maximum number of servers. In this way, the
horizon is long enough for the system to go from one server to
Smax, with an additional time interval to observe the benefit. A
minimum of 5 intervals enforces look-ahead even if the tactic
latency is small. The parameters of the utility function were set
as follows: target response time T = 0.75 seconds; rewards for
responses with mandatory and optional RM = 1, RO = 1.5
respectively; and maximum system capacity κ = 67.4 requests
per second (this value was obtained through profiling). The
adaptation tactics could change the number of servers between
1 and Smax, and the dimmer among the values 0.10, 0.30,
0.50, 0.70, and 0.90.

The stream of requests to the system was generated from
publicly available traces captured from real websites. Specifi-
cally, we used half day from WorldCup ’98 trace [22], and one
day from the ClarkNet trace [23].7 Both traces were scaled to
last for 105 minutes, and to reach the maximum capacity of
the validation setup at their peak. They were replayed using
a client able to make as many concurrent requests as needed
to reproduce the requests according to their timestamps. All
the requests targeted a single URL, which in turn selected a
random item from the auction to render its details page.

We compared the PLA approaches against FF to assess the

7The point of using these traces is to exercise the system with realistic traffic
patterns, and not to replicate the behavior of users of an auctions website.
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benefits of proactivity and latency-awareness using a different
utility function, and an additional trace compared to the
evaluation in our previous work. For each approach we ran the
system four times, each with a different latency for the tactic
to add a server (λ = 60, 120, 180, and 240 seconds). For each
run, the first 15 minutes were used to let the system warm up
(e.g., prime the time series predictor) with no adaptation, and
self-adaptation was used during the remaining 1.5 hours of the
run, during which the metrics for the evaluation were collected.
The results of the comparison of the PLA approaches with
FF are shown in Fig. 7. It can be observed that with the
FF approach, the utility provided by the system drops as the
tactic latency gets larger, whereas the PLA approaches are able
to maintain the level of utility despite the increased latency.
Additionally, we show other metrics that, even though are not
the main criteria for adaptation, are interesting to observe. The
FF approach provides more responses with optional content.
This is understandable because a latency-agnostic approach
ignores the fact that the tactic to change the dimmer is
much faster than the tactic to add a server, thus favoring
the latter, expecting to get a higher reward. However, the
percentage of responses that do not meet the target response
time increases with latency when latency is ignored, resulting
in penalties instead. The PLA approaches, on the other hand,
are able to keep the percentage of late responses very low
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in spite of the increase in tactic latency. The charts plotting
the average utility per server show that despite using more
servers, the PLA approaches obtain more utility per server.
Also, we can observe that in these experiment runs, PLA-SDP
produces results very similar to those of PLA-PMC. The slight
difference between the two is due to uncontrolled disturbances
in the runs, such as network delays, and background processes.
In fact, we also ran the experiments using a simulation of the
system that allows us to replicate exactly the conditions for
both approaches [24], and confirmed that PLA-SDP makes
exactly the same adaptation decisions as PLA-PMC.

To compare the running time of the run-time decision
of PLA-SDP with PLA-PMC, we ran the experiments in
simulation8 with different values for the tactic latency λ.
Larger values of λ result in longer look-ahead horizons, which
in turn increase the state space that must be explored to find
the solution to the adaptation decision problem. The results
are shown in the box plot in Fig. 8, with the median, 1st

and 3rd quartiles in the box, and the range in the bar. These
results show that the adaptation decisions with PLA-SDP are
faster than with PLA-PMC, with an average speedup of 16.2,
and with much less variance. In summary, PLA-SDP makes
adaptation decisions close to an order of magnitude faster than
PLA-PMC while still producing the same results.

VI. RELATED WORK

In previous work, we also used Alloy to compute reacha-
bility predicates for making PLA adaptation decisions using
dynamic programming [24]. However, that work neither sup-
ported decisions for concurrent tactics, nor took into account
the uncertainty of environment predictions. In PLA-PMC, we
were able to make adaptation decisions supporting concurrent
tactic execution by modeling tactics as parallel processes [7].
The probabilistic model checker naturally handles models with
stochastic behavior, allowing the approach to consider the un-
certainty of environment predictions. The approach presented
in this paper maintains the features of PLA-PMC, while being

8The adaptation decision code is exactly the same used with the real system;
only the managed system is simulated.

able make adaptation decisions much faster. One limitation of
PLA-PMC is that it requires implementing the computation of
the utility function and its underlying model (LPS queueing
equations in our example) in the PRISM language. PLA-SDP
does not have this limitation, and allows invoking third-party
tools such as layered queueing network solvers to compute the
utility function.

There are approaches that use reinforcement learning
to gradually learn the optimal policy for the underlying
MDP [25], [26]. Their advantage is not requiring the con-
struction of the MDP. However, they need time to learn
the dynamics of the system, and have to execute possibly
inadequate adaptations to learn their effect. Naskos et al.
use MDPs to make cloud elasticity decisions [27]. Their
approach focuses on tactics to add and remove servers, and
consequently, it cannot decide between alternative tactics, nor
supports concurrent tactics. In addition, their work uses the
PRISM model checker at run time, as we do in PLA-PMC,
thus having the run-time overhead that this paper addresses.

Our approach shares the high-level ideas of model predictive
control (MPC), namely, (i) the use of a model to predict
the future behavior of the system; (ii) the computation of a
sequence of control actions, committing only to the first one;
and (iii) the use of receding horizon [28]. Although MPC has
been used in other approaches to self-adaptation [29], [30], to
the best of our knowledge our approach differs in the following
ways. First, it takes into account that control actions executed
at a given time may prevent other control actions from being
applicable in subsequent time steps, as opposed to assuming
that all control actions are applicable at all times. Second, it
considers tactic latency during the selection of the adaptation
action(s), not just as an adaptation cost, but modeling how
the execution of the tactics affects the applicability of other
tactics while the tactics execute (over possibly multiple time
intervals). Furthermore, our approach is able to decide between
fast and slow adaptation tactics. Third, it considers the possible
concurrent adaptation tactics during the decision, not just as
a way to speed up the execution of the adaptation. Fourth,
it considers the transition probabilities of the environment
instead of treating the predictions for the environment state
at each time interval over the decision horizon independently.

VII. CONCLUSION

We have presented an approach for proactive latency-aware
adaptation that makes adaptation decisions faster while pro-
ducing the same results as an approach based on probabilistic
model checking. This can achieved by keeping the system and
environment components of the MDP used to solve the adap-
tation decision problem separate as much as possible. The sys-
tem MDP is difficult to build due to the possible combinations
of tactics, system states, and the (in)compatibility of certain
tactics. However, because of this separation, the system MDP
does not require information about the environment, which
is only known at run time. Therefore, it can be built offline
using formal specification in Alloy. The probabilistic model of
the environment is updated at run time, and is combined with



the system MDP as the adaptation decision is solved using
stochastic dynamic programming. Our experimental results
show that this approach is close to an order of magnitude faster
than using probabilistic model checking at run time to make
adaptation decisions, while preserving the same effectiveness
advantage over an approach that is not latency aware.

Even though in this paper we used an multi-tier web system
as an example, the approach is applicable to MAPE-K systems
in general. In fact, this approach has been used for adaptation
decisions in a team of unmanned aerial vehicles [31]. In
both cases, the formal specification was handwritten. However,
since it follows regular patterns, the specification could be
generated automatically. In future work, we plan on generating
these specifications from simpler specifications written in a
tactic specification language like Stitch [32].
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