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Abstract

This report describes the use of prediction-enabled component technology (PECT) as a means 
of packaging predictable assembly as a deployable product. A PECT results from integrating a 
component technology with one or more analysis technologies. Analysis technologies allow 
analysis and prediction of assembly-level properties prior to component assembly, and, pre-
sumably, prior to component acquisition. Analysis technologies also identify required compo-
nent properties and their certifiable descriptions. This report describes the major structures of a 
PECT. It then discusses the means of validating the predictive powers of a PECT so that con-
sumers may obtain measurably bounded trust in design-time predictions. Last, it demonstrates 
the above concepts in a simple but illustrative model problem: predicting average end-to-end 
latency of a ‘soft’ real-time application built from off-the-shelf software components.
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1 Introduction

This report describes a prototype prediction-enabled component technology (PECT). PECT is 
both a technology and a method for producing instances of the technology. A PECT instance 
results from integrating a software component technology with one or more analysis technolo-
gies. PECT allows predictable assembly from certifiable components. By predictable assem-
bly, we mean:

• Assemblies of components are known, by construction, to be amenable to one or more 
analysis methods for predicting their emergent properties.

• The component properties that are required to make these predictions are defined, avail-
able, and possibly certified by trusted third parties.

The underlying premise of PECT is that while it may be impossible to analyze, and thereby 
predict the runtime behavior of arbitrary designs, it is possible to restrict our designs to a sub-
set that is analyzable. This premise has already been seen in the use of logical (formal) analy-
sis and prediction [Finkbeiner+01] [Sharygina+01], and it can also be applied to empirical 
analysis and prediction. It is a further premise of PECT that software component technology is 
an effective way of packaging the design and implementation restrictions that yield analyzable 
designs.

This report describes and illustrates the structure of a PECT, explores the strengths and limita-
tions of this approach to predictable assembly, and charts a course for further applied research.

1.1 Background

This report presents results of an ongoing internal research and development activity at the 
Software Engineering Institute (SEI). The objective of this research is to accelerate the indus-
trial adoption of technologies that can reliably predict the runtime behavior of systems. A 
premise of this research is that software component technology provides an effective vector 
for packaging analysis and prediction technologies. Prediction-enabled component technology 
is one form this packaging can take.

While this research draws upon an array of published research results, here we describe only 
how this report is related to other SEI reports stemming from this internal research effort. Bass 
et. al. provide a market assessment of component-based software in [Bass+01]. Bachmann et. 



2 CMU/SEI-2001-TR-024

al. discuss the technical elements of software component technology in [Bachmann+00]. 
Wallnau and Stafford outline the key conceptual distinctions of predictable assembly in The 
Philosophy of Predictable Assembly.1

1.2 Organization of this Report

Chapter 2 presents an overview of the major elements of PECT. Chapter 3 describes the com-
ponent and attribute prediction technologies used in the PECT prototype, COMTEK-λ. Chap-
ter 4 describes this prototype and its validation. We describe only enough to illustrate the 
structure of a PECT and how, in general, a PECT must be validated. In Chapter 5, we summa-
rize the key results and questions raised by the prototype. Appendix A and Appendix B pro-
vide the details of how we established the theoretical and empirical validity of the PECT 
prototype. Appendix C shows the assemblies used in empirical validation.

1. Wallnau, K. & Stafford, J. The Philosophy of Predictable Assembly, (CMU/SEI-2000-TR-023),
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, (to be published in
December 2001).
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2 Elements of PECT

PECT integrates software component technologies (hereafter, ‘component technologies’) with 
analysis and prediction technologies (hereafter, ‘analysis technologies’).

Component technologies impose design constraints on software component suppliers and inte-
grators. These constraints are expressed as a component model that specifies required compo-
nent interfaces and other development rules [Bachmann+00] [Heineman+01]. In today’s 
component technology, component models are designed to simplify many aspects of the inte-
gration (composition) of components into assemblies. However, the stress is on the syntactic 
aspects of composition. Behavioral composition is not usually addressed, and where it is 
addressed, it is usually restricted to rely-guarantee reasoning with pre/post-conditions on oper-
ations. While rely-guarantee reasoning can be quite useful for reasoning about correctness, it 
is not particularly useful for reasoning about other assembly-level properties such as perfor-
mance, reliability, and security.

Analysis technologies, for example for performance [Klein+93] and reliability [Lyu+96], 
depend on runtime assumptions concerning scheduling policy, process or thread priority, con-
currency, resource management policies, and many other factors. A PECT makes these ana-
lytic assumptions explicit. We ensure that a component technology satisfies these assumptions 
through a demonstration of ‘theoretical validity.’ We also ensure that predictions based on an 
analysis technology are repeatable through a demonstration of ‘empirical validity.’ These vali-
dations provide bounded confidence that a collection of design constraints on component sup-
pliers and system integrators will yield systems that are, by design and construction, 
predictable with respect to one or more critical system properties.

The structure of a PECT is depicted using the Unified Modeling Language (UML) in Figure 1. 
As already noted, a PECT is an association of a component technology (‘Component Technol-
ogy’) with one or more analysis technologies (‘Analysis Technology’). The UML association 
class ‘Association Validity’ stipulates that each such association is validated. ‘Assumption’ 
and ‘Interpretation’ validity, taken together, demonstrate theoretical validity. Each of these 
forms of validity is discussed later, and are elaborated in detail in the appendices.

In principle, component technology and prediction technology can each be treated as sepa-
rately packaged entities—we will not yet go so far as to call them “components” in their own 
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right1. Where both are separately packaged, an N:M association in Figure 1 between compo-
nent and analysis technologies would be reasonable. However, our perspective is centered on 
component technology, and how these can be extended to predict emergent (assembly-level) 
attributes. We also expect that it will, in general, be much easier to adapt existing prediction 
technologies to work with existing component technologies rather than the converse. Thus the 
1:N association between component technologies and prediction technologies in Figure 1. 

Figure 1: PECT Conceptual Structure (UML)

2.1 Component Technology

While there is no iron-clad definition of ‘component technology’ any more than there is for 
‘component,’ a consensus has emerged regarding the essential elements of a component tech-
nology [Bachmann+00] [Heineman+01] [Szyperski+97]: 

• A component model defines one or more required component interfaces, allowable pat-
terns of interactions among components, interactional behaviors among components and 
between components and the component runtime, and, possibly, a programming model for 
component developers.

• A component runtime environment provides runtime enforcement of the component 
model. The runtime plays a role analogous to that of an operating system2 only at a much 

1. There is, however, an interesting analog between the context dependencies that are included in
Szyperski’s base definition of software component [Szyperski+97], and the assumptions of anal-
ysis technologies.

2. In fact, the various COM-based Microsoft component models are an integral part of the Microsoft
operating systems.

Component
Technology

Analysis
Technology

1 1..N

Association
Validity

Assumption
Validity

Interpretation
Validity

Empirical
Validity

1 1 1
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higher level of abstraction, one that is usually tailored to an application domain or required 
assembly properties (e.g., performance or security). 

• An assembly environment provides services for component development, deployment, 
and application assembly. The assembly environment may also provide assembly-time 
enforcement of the component model.

Each of the elements listed above plays a role in PECT. The component model is the locus of 
the integration of component and analysis technologies; it specifies the design and implemen-
tation constraints that are required to enable predictable assembly. The runtime and assembly 
environments are important insofar as they enforce at least some of these constraints. The runt-
ime environment is itself a target of certification, as it may always be treated as a component 
in its own right, with properties that contribute to the prediction of emergent (assembly-level) 
attributes.

Figure 2: Component Technology and the Constructive Model

Figure 2 introduces the new concept, ‘Assembly Model,’ as a refinement of the traditional 
component model. By this we suggest that the assembly model plays the same role as compo-
nent model, and may indeed describe many of the same things. There are two reasons for 
introducing this refinement. First, a single component technology may be restricted or general-
ized in different ways for different analysis technologies. It therefore makes sense to isolate 
those changes that are particular to a prediction technology. More fundamental, though, the 
refinement allows us to distinguish between constructive and analytic interfaces. 

Component
Model

Assembly
Model

Component
Technology

Runtime
Environment

Assembly
Environment

Constructive
Interface

Analytic
Interface
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The constructive interface includes those properties of a component that permit it to interact 
with other components. It also includes such things as the traditional application programming 
interface (API). The constructive interface corresponds closely to the typical component 
model. The analytic interface includes those component properties that are required by an 
analysis technology, including things such as performance measures, state transition models, 
and process equations. This interface does not correspond to any existing component model.

Although Figure 2 shows the analytic interface to be a constituent of the assembly model, the 
analytic interface described later is, in fact, derived from the component technology. The con-
ceptual model in Figure 2 reflects our assertion that component models must be extended to 
include design-time analysis and prediction of emergent (assembly-level) properties.

2.2 Analysis Technology

There are many analysis technologies available to software engineers. However, these technol-
ogies have not been developed with the objective of being integrated with software component 
technology. As a result it is, in many cases, difficult to distinguish between an analysis tech-
nology and an underlying strategy for optimizing a system with respect to a particular (ana-
lyzed) attribute. That is, analysis technology and architectural design pattern (sometimes 
called a “style” [Shaw+97]) are often conflated. For example, Simplex is an architectural 
design pattern that optimizes for fault tolerant system behavior during replacement of critical 
control functions [Sha+95]. A formal definition of Simplex has been used to prove (the stron-
gest form of prediction) a number of properties [Rivera+96]. However, the link between these 
proofs and the design pattern is at best implicit, and there is no generalization of these predic-
tions over structurally related patterns. The work of Klein and others on quality attribute 
design patterns [KIein+99][Bass+00] offers some clues as to how analysis models and their 
contingent design patterns may be disentangled; this is one starting point for PECT research.

In Figure 3, we introduce the new concept, ‘Analytic Model.’ The Analytic Model is a distil-
late of an analysis technology. It defines the property theory that underlies the analysis tech-
nology. It also defines the parameters of this theory, e.g., the properties that components must 
possess. For example, a property theory that can be used to predict assembly-level deadlock or 
safety properties might require component-level process equations to describe their concurrent 
behavior in an assembly. Such equations would be constituents of the analytic interface of a 
component. 

It is customary to think of component types as being defined by one or more interfaces. In 
Enterprise JavaBeans, ‘SessionBean’ and ‘EntityBean’ are component types defined by dis-
tinct interfaces. Since these interfaces define properties that govern how components are inte-
grated, we consider them as part of the constructive interface. Naturally, components may 
implement several constructive interfaces. Such components are therefore polymorphic in that 
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they satisfy more than one constructive type definition. Components that satisfy a constructive 
interface are called constructive component. The analytic model may also introduce one or 
more analysis-specific component types, and components may likewise be polymorphic with 
respect to these type definitions. Such components are called analytic components.

Figure 3: Analytic Model and Analytic Interface

An assembly of constructive components is called a constructive assembly. Analogously, an 
assembly of analytic components is an analytic assembly. The mapping from a constructive 
assembly to an analytic assembly is called the analytic interpretation of that constructive 
assembly. In effect, we consider that the analysis model defines an analysis-specific view of an 
assembly. The analytic interpretation defines how these views are instantiated for any given 
assembly.

2.3 Integration Co-Refinement

There are many available component and analysis technologies in research and in the commer-
cial marketplace. An important practical consideration for our research is to demonstrate that 
existing technologies can be integrated into viable PECT instances. However, since compo-
nent and analysis technologies have developed independently, and to satisfy different objec-
tives, their integration may not always be straightforward due to mismatched assumptions. 
Where mismatches arise, either or both must be adjusted, as illustrated in Figure 4. 

The effect of making a component technology more specific is to make assemblies more uni-
form in structure, but at the cost of further constraining the freedom of component developers 
and system assemblers. Analogously, making an analysis technology more detailed may make 
its predictions more accurate, but may also increase the cost of applying the technology. Fig-
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ure 4 depicts three (non-exhaustive) alternative ways of integrating a component technology 
with an analysis technology; each alternative reflects the above trade-off:

1. PECT-1 shows an integration of component and analysis technologies that require a weak-
ening of constraints on both. The effect of this tradeoff might be1 to increase the popula-
tion of designs that admit analysis and prediction, but at the cost of making the analysis 
and hence predictions more abstract and less accurate.

2. PECT-2 shows an integration where the component technology remains unaffected but the 
prediction technology is made more specific. This tradeoff might reflect the specialization 
of a prediction technology to an existing component technology, or to the need for 
increased accuracy of predictions.

3. PECT-3 shows an integration where both technologies are constrained. The net effect in 
this case is to restrict the population of designs that admit analysis and prediction and, pos-
sibly, to improve the accuracy of the resulting predictions. 

Figure 4: PECT Integration Co-Refinement

We refer to the integration process implied by Figure 4 as ‘co-refinement’ since either or both 
technologies may be refined (we include generalization and abstraction in our admittedly col-
loquial use of this term) to enable the integration of component and analysis technologies.

1. In general, there is no way to know whether a generalization or restriction of an analysis technol-
ogy will result in an enlarged or diminished scope, or enhanced or degraded accuracy. We can
say, however, that a restriction on the component technology results in a smaller population of
allowable designs.

more abstractmore general

more specific more detailed

Analysis Component 

PECT-1

PECT-2

PECT-3

Technology Technology

original technology

refined technology

Key: 
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2.4 PECT Validation

A technology that purports to enable predictable assembly would be meaningless if its predic-
tions could not be validated. To paraphrase the wisdom of Wittgenstein for use in our own con-
text:

A nothing will do as well as a something (that is, a prediction) about which 
nothing can be said. 

The consumers of PECT will want to know ahead of time how much confidence to place in the 
predictive powers of the technology. That is, can the PECT be trusted?

We believe that theoretical and empirical validity must be established to engender bounded, 
quantifiable trust in a PECT:

• Assumption (theoretical) validity establishes that the analytic model is sound, and that all 
of the assumptions that underlie it are satisfied either by the component technology in part 
or as a whole, or by engineering practices external to the component technology.

• Interpretation (theoretical) validity establishes that each constructive assembly has at least 
one counterpart analytic assembly, and that if more than one such counterpart exists, the 
set of such counterparts is an equivalence class with respect to predictions. 

• Empirical validity establishes measurable (and most likely statistical) evidence of the reli-
ability of predictions made using the analysis technology. All analysis technologies must 
be falsifiable with respect to their predictions. This is a strong condition that rules out a 
variety of “soft” attributes that are defined using subjective and non-repeatable measures.

All three forms of validation are essential, but we place special emphasis on empirical validity. 
Like Simon, we accept the utility of predictive models even if their assumptions are falsifiable 
with respect to the inner workings of the systems under scrutiny, so long as the predictions are 
consistently accurate and useful with respect to observed phenomena [Simon+96]. We also 
observe that software engineering literature is notoriously weak with respect to empirical vali-
dation of design theories. With PECT, we stake a position that opposes this continuing trend.
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3 COMTEK and Latency Prediction

The PECT prototype combines the COMTEK component technology with a property theory 
for latency prediction. We briefly describe both as background to the PECT prototype.

3.1 COMTEK Component Technology

COMTEK1 was developed by the SEI for the U.S. Environmental Protection Agency (EPA) 
Department of Water Quality. Water quality analysis is computationally expensive, and in 
many cases, requires the use of simulation and iterative equation solvers. COMTEK was a 
proof of feasibility that third-party simulation components could be fully compositional, and 
could produce reliable and scalable water quality simulations. 

COMTEK has the following high-level characteristics:

• It enforces a typed pipe-and-filter architectural style.

• A fixed round-robin schedule is calculated from component input/output dependencies.

• The execution of an assembly is sequential, single-threaded, and non-preemptive.

• It runs under the Microsoft Windows family of operating systems.

• Components are packaged and deployed as Microsoft Dynamic Link Libraries (DLLs).

Despite its simplicity, the generality of COMTEK was demonstrated in several application 
domains. The menu tabs above the assembly canvas in Figure 5 display four families of com-
ponents: Hydraulic Interfaces, Hydraulic Models, Wave Interfaces, and Test Interfaces. Com-
ponents are chosen from one or more component families, depending on the application.

Figure 5 presents a screenshot of the COMTEK assembly environment. The graphic depicts an 
assembly built from components of the Wave Interface family. This and similar assemblies are 
the subject of the PECT demonstration. These assemblies implement audio signal sampling, 

1. COMTEK was originally called ‘WaterBeans.’ We have elected to rename WaterBeans because
our scope is far broader than the domain of water quality modeling, and because we wish to
avoid confusion between the original work in simulating water quality and our current work in pre-
dictable assembly.
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manipulation, and playback functionality. We chose to develop a PECT for assembling audio 
playback applications since we could develop (we thought) a simple performance analysis 
model to accommodate the relative simplicity of COMTEK.

Figure 5: COMTEK Assembly Environment

3.2 Predicting the Latency of COMTEK Assemblies

The audio playback application lies in the domain of what is sometimes referred to as ‘soft 
real-time’ applications. In soft real-time applications, timely handling of events or other data is 
a critical element of the application, but an occasionally missed deadline is tolerable. In the 
audio playback application, audio signals received from an internal CD player must be sam-
pled at regular intervals—approximately every 46 milliseconds for each 1,024 bytes of audio 
data. A failure to sample the input buffer, or to feed the output buffer (i.e., the speakers) within 
this time interval will result in a lost signal. Too many lost signals will disrupt the quality of 
the audio playback; however, a few lost signals will not be noticeable to the untrained ear. 
Thus, audio playback has ‘soft’ real-time requirements.

The problem we posed for PECT was to predict the end-to-end latency of an assembly of 
COMTEK components, where latency is defined as the time interval beginning with the exe-
cution of the ‘first’ component executed in an assembly and ending with the return from the 
‘last’ component in that assembly (in a round-robin schedule, the notions of ‘first’ and ‘last’ 
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are relative, but we assume there is some designated ‘first’ and ‘last’). This will allow engi-
neers to predict whether a particular assembly will satisfy its performance requirements prior 
to its integration, and possibly, prior to acquiring the components. Such predictions must be 
made despite the fact that the Windows platforms we used make no performance guarantees.

Our emphasis in this work was on understanding PECT rather than in solving the latency pre-
diction problem. We were hoping to achieve prediction to within 10% of observed assembly 
latency—good enough to demonstrate the PECT concept, even if insufficient for real engi-
neering practice. 

As will be seen, however, we did much better than a 10% margin of error, although this was 
never a goal of the prototype.
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4 Illustration

This chapter describes the packaging of latency analysis and prediction with COMTEK. We 
refer to the resulting integration as COMTEK-λ.1 

4.1 Assembly Model

As explained earlier, an assembly model defines the set of (constructive and analytic) compo-
nent types recognized by a component technology, and also specifies rules for their composi-
tion into assemblies that can be analyzed with one or more analytic models. A specification of 
COMTEK can be found in [Plakosh+99]. This specifies, among other things, the interface that 
components must implement the types of properties allowed, the data structures used to sup-
port introspection, and the ways to transfer data between components. 

We adapted the original COMTEK specification to reflect the additional requirements of 
latency analysis of COMTEK-λ, and to explore how the requisite aspects of the constructive 
and analytic interfaces might be specified. Figures 6, 7, and 8 show UML specifications of 
three views of the assembly model. In these views we use UML stereotypes to distinguish the 
constructive (‘<<constructive>>’) and analytic (‘<<analytic>>’) interfaces. 

At this stage of our research, we are uncertain about the best way to document the assembly 
model, and indeed are uncertain about precisely what lies within the scope of the assembly 
model. What follows should be interpreted as suggestive rather than normative. The three 
views of the assembly model illustrated below define the component metatype, interaction 
rules, and dynamic behavior of COMTEK-λ assemblies, respectively.

4.1.1 Component Metatype Specification

The component metatype defines interfaces and other rules that components must satisfy, that 
is, what it means to be a COMTEK component. This includes interface, pre- and post-condi-

1. We modify the name of the base component technology with an attribute designator that indi-
cates the types of analyses that are enabled by the PECT. The form of a PECT name is as fol-
lows:

component technology designator[-attribute theory designator]+

More than one attribute theory might be used with the same component technology simulta-
neously, and thus a string of one or more attribute theory designators is used. We use greek let-
ters to designate attribute theories, and λ for the latency theory.



16 CMU/SEI-2001-TR-024

tions, invariants, and packaging. Note that we include packaging in this list because this speci-
fication must describe the component types as deployable units. Therefore, the specification of 
the binary form a component must take, for example a dynamic link library (DLL) or a Java 
archive (JAR), is also part of the constructive model. 

Figure 6 shows a UML model of the metatype for COMTEK-λ components. Many things have 
been abstracted away in this model—but it gives an example of the things that have to be spec-
ified, such as required properties, methods, and invariants. Instances of ‘ComponentType’ are 
deployable units that are component factories—they provide runtime instances of themselves 
via their ‘getNewInstance()’ method. For example, let us assume that we have an 
instance of ‘ComponentType’, whose ‘componentTypeName’ property is set to ‘WaveView.’ 
Then, ‘WaveView’ is a component that can be deployed, and can provide instances of itself via 
‘getNewInstance().’

Figure 6: COMTEK-λ Component Metatype

More significant for our purposes is the differentiation of constructive and analytic interfaces. 
Input and output ports and a set of properties constitute the constructive interface. The analytic 
interface consists of two mandatory analytic properties, ‘p’ and ‘e,’ whose meanings are 
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*
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*
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described later in this report. Note that UML does not permit co-habitation of classes and 
instances in models. Thus, although ‘p’ and ‘e’ are, logically, instances of ‘Property,’ they are 
depicted as classes in Figure 6. Also associated with ‘p’ and ‘e’ properties are constraints on 
their values, specified in the UML Object Constraint Language (OCL). 

4.1.2 Interaction Rules

The interaction model describes rules for composing components into assemblies. Figure 7 
shows some aspects of the COMTEK-λ assembly model. This model defines the way that 
components can be connected, and specifies invariants for the whole assembly. The ‘Compo-
nent’ class in the diagram represents an instance of ‘ComponentType’ from Figure 6. The 
association class ‘Connection’ represents how components are linked together. In addition, 
OCL invariants represent the constraints that must be observed when composing components; 
for example, a component cannot connect to itself, and the data types of the output and input 
ports must be the same. In the case of COMTEK-λ applications, we are also interested in a 
property of the application that indicates whether an assembly is fully connected, because the 
COMTEK-λ runtime environment will not execute the application unless it is fully connected. 
The definition of ‘fullyConnected’ for component and application are defined in OCL.

Figure 7: COMTEK-λ Interaction Rules
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i.required implies

i.connection→notEmpty() )

context c : Connection inv:
c.source <> c.sink and 
c.sink.inputPort→exists (i | c.input = i) 
and c.source.outputPort→exists(o | 
c.output = o) and 
c.output.dataType = c.input.dataType

context a : Application inv:
a.fullyConnected = 

a.component→forAll(c | c.fullyConnected)
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4.1.3 Assembly Behavior

The assembly model may also detail runtime aspects of the component technology, such as 
when and how instances are created and initialized, scheduling, and data transferred among 
components. This information may be vital not only for implementing the component runtime 
environment, but also for constructing a PECT. For latency prediction, there are several ques-
tions we need to answer: 

• How are components scheduled?

• Can components be preempted?

• Do components block on resources?

• Can components have different priorities?

• Can components be multi-threaded?

The above list is not exhaustive and will, of course, vary from analysis model to analysis 
model. This kind of information is also important for component developers and application 
assemblers. For instance, a component technology that executes components in a multi-
threaded environment might require the component developer to synchronize accesses to 
shared resources.

Figure 8: Assembly Behavior and Definition of Assembly Latency
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Figure 8 shows a runtime view of the assembly model. In this model, ‘A’ is an assembly of 
components; ‘p(c)’, where c is a component such that c ∈ A, is the number of times c has been 
executed; ‘getTime()’ is a function that returns the current value of the system clock. The 
model shows that components are executed once per cycle. There are other runtime details that 
we have abstracted, such as the order in which components are executed. Execution order is 
not required to predict end-to-end latency of a COMTEK-λ assembly in steady state (as will 
be explained in the appendix). However, this information might be needed in other circum-
stances.

Also defined in Figure 8 are the runtime interpretations of assembly latency (‘A.latency’) and 
component latency (cj.latency). These definitions serve two purposes. First, they give (reason-
ably) unambiguous model definitions of latency in the context of a particular component tech-
nology. Second, they describe how the properties will be measured for empirical validation.

4.2 Analytic Model

The analytic model defines a property theory used to predict the latency of an assembly of 
components based on their measured properties. In addition, the analytic model also exposes 
the assumptions that must be satisfied for the analysis to be valid.

4.2.1 The Property Theory

The COMTEK-λ latency theory, denoted as AΛ, is summarized by the following equation: 

We denote an assembly as the set of components A, and the kth component of A is denoted as 
either or Θk or Φk. These correspond to one of two analytic component types: Θ refers to com-
ponents that only have dependencies that are internal to A, while Φ refers to components that 
also exhibit dependencies on external periodic events (these symbols were chosen for their 
mnemonic value). A property of a component or assembly is denoted using ‘dot’ notation. 
A.latency is the end-to-end latency of an assembly. Each Φ component has two required prop-
erties that describe its latency information: ‘Φ.e’ and ‘Φ.p,’ while each Θ component has only 
the required property Θ.e, where e and p are defined as (also, refer to Figure 6):

• e: is the execution time of a component, exclusive of component blocking time.

• p: is the period of the external event on which a Φ depends and may block.

Eq. 1A.latency max Φj .e
Φj A∈
∑ Θj .e

Θj A∈
∑+ 

  max Φj A∈  Φj .p{ }( ), 
 =
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The function max returns the largest of its arguments. Note that this analytic model is not 
parameterized by invocation order or connections among components. Neither the summation 
nor max depend on the order of the components in A in Eq. 1.

A more precise specification of the COMTEK-λ component metatype in Figure 6 would have 
shown Θ and Φ as subtypes (UML subclasses) of ‘ComponentType.’ We have not done so 
only to avoid over-complicating the presentation. It is also worth noting that these component 
types only have meaning within an AΛ interpretation, i.e., within an analytic assembly.

4.2.2 Adapting COMTEK for Latency Prediction

For reasons of expediency, we chose to derive AΛ from COMTEK rather than begin with a 
more robust performance theory such as rate monotonic analysis (RMA). One of our goals was 
to modify COMTEK as little as possible, and derivation was a straightforward way of achiev-
ing this goal. We were not interested in re-engineering or extending COMTEK to address a 
realistic spectrum of soft real-time analysis issues.

Nonetheless, we found it necessary to impose new constraints on the use of COMTEK to sup-
port latency prediction. These constraints are above and beyond those that are imposed by 
COMTEK itself. In particular:

1. The value of ‘e’ for all components is constant over all executions of that component.

2. The value of ‘p’ is likewise constant for each external periodic event.

One question posed by these constraints is whether they should be documented as part of the 
constructive interface or analytic interface. On the one hand, they are meaningful only within 
the context of AΛ, and are therefore arguably part of the analytic interface of PECT-λ. On the 
other hand, it is conceivable that such constraints might be enforced by a component technol-
ogy, which would argue that they belong to the constructive interface. 

In this illustration, neither constraint can easily be enforced by the design or runtime environ-
ment; they must be enforced by engineering processes such as code inspection. We therefore 
assign them to the analytic interface. This is, perhaps, a minor point whose resolution will sur-
face with greater experience with PECT.

4.3 Association Validity

PECT will be of little value unless its users (application designers and engineers) trust the pre-
dictions. Trust is a complex social phenomena that balances many factors, only some of which 
can be addressed by technology. Nonetheless, we must provide a technical foundation for trust 
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so that other non-technical factors can be addressed. We provide the technical foundation for 
trust in a PECT prediction by validating the associations between a component technology and 
one or more prediction technologies. We referred to this in Figure 1 as association validity.

Association validity takes two forms: theoretical and empirical validity. Theoretical validity is 
concerned with the soundness of the analysis model and the way this model is integrated with 
a component technology. Empirical validity is concerned with the reliability and accuracy of 
the predictions made using the PECT. The following discussion provides a thumbnail sketch 
of how association validity was established for COMTEK-λ. A detailed exposition of theoret-
ical validity is provided in Appendix A, while Appendix B is concerned with the details of 
empirical validity. 

4.3.1 Theoretical Validity

How does one go about establishing the validity of a scientific theory? In an important sense, 
the ultimate arbiter of theoretical validity lies in predicting phenomena that are observed under 
experimental conditions; this validation corresponds to what we refer to as empirical validity.

Often, though, empirical validity is not of itself sufficient, and it is usually not the starting 
point for establishing the validity of a theory. This is certainly true of the established physical 
sciences, where a theory will undergo extensive scrutiny before it is tested experimentally. We 
believe this should also true of the theories underlying software engineering practice.

There appears to be two key questions that must be asked prior to investing the time and effort 
required to empirically validate a PECT:1

1. Is the property theory sound?

2. Can the theory be falsified?

We consider the first question to lie in the province of theoretical validation, while the second 
question lies in the province of empirical validation, although in the strict sense no theory can 
be validated but can rather only be falsified.

• Assumption validity establishes that any mathematics used to describe the theory are 
sound, and that if the theory purports to describe causality (not strictly necessary in a prop-
erty theory), there is a clear link between theory elements and mechanisms in the underly-
ing software system.

1. This may well be true in the physical sciences, too, although we make no strong claims on this
matter.
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• Interpretation validity establishes that each constructive assembly has an interpretation in 
the theory. This validation addresses the second two key questions by demonstrating the 
relationship between constructive assemblies and model theoretic assemblies (question 
two), and by providing a basis for theory falsification (question three).

We briefly describe how we demonstrated these forms of validity before turning to the ques-
tion of empirical validation.

Assumption Validity

As we noted earlier, AΛ was derived from COMTEK. That is, the latency theory AΛ emerged 
from a detailed understanding of the mechanisms that manifest the property—the COMTEK 
runtime environment. Demonstrating association validity therefore reduced to demonstrating 
the validity of this derivation. A demonstration of association validity has the dual effect of 
demonstrating the mathematical soundness of the derivation, and highlighting those qualities 
of COMTEK that AΛ depends upon, i.e., its assumptions.

To demonstrate COMTEK-λ association validity, we began by itemizing the assumptions that 
AΛ would likely depend upon, and by assigning names to and carefully defining these assump-
tions. These assumptions included scheduling policy, concurrency policy, how components 
and assemblies are defined, what it means for an assembly to be in steady state, and so forth. 
From these definitions we proceeded in stepwise fashion to derive AΛ. The entire derivation 
takes the form of a sequential argument, with the dependencies between later steps to earlier 
steps explicitly noted.

Of itself, assumption validity is not particularly useful for generating trust. In fact, our first 
latency theory was also derived from COMTEK, but proved to be inadequate during empirical 
validation. We had, in effect, missed a key phenomenon of COMTEK assemblies: that compo-
nents might block on periodic events external to COMTEK and its assemblies. However, 
assumption validity can significantly enhance trust when used in conjunction with empirical 
validation. In that situation, effective predictions are combined with an explanation of why the 
prediction theory holds. (This is true in natural science, too.)

Interpretation Validity

Recall that an analytic assembly is an interpretation, or mapping, of a constructive assembly 
under some property theory. For COMTEK-λ, interpretation validity results from demonstrat-
ing that this mapping is both complete and consistent:

• By complete, we mean that all constructive assemblies can be interpreted under the prop-
erty theory. Note that this does not refer to the completeness of a property theory with 
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respect to its assumptions about a component technology. It is the task of empirical valida-
tion to ferret out such missing assumptions.

• By consistent, we mean that all interpretations of a particular constructive assembly will 
result in the same prediction. Consistency is only an issue if there are several valid inter-
pretations of a constructive assembly under a property theory. Consistency means that all 
such interpretations form an equivalence class with respect to the property theory.

Demonstrating the completeness of AΛ was trivial, since there was a complete mapping of 
constructive component types to analytic component types, and since interactions among con-
structive components were not parameters of AΛ (see Eq. 1 in Section 4.2.1 on page 19), and 
hence need not be considered. Demonstrating the consistency of AΛ was likewise trivial. How-
ever, had AΛ not been specialized to deal only with steady state latency, execution order would 
have been significant (in non steady-state). In this case, demonstrating completeness and con-
sistency would have been slightly more involved.

4.3.2 Empirical Validity

Establishing empirical validity consists of demonstrating that the predictions made using an 
analytic model conform to observations. Thus, our confidence in the quality of a PECT is lim-
ited by the stability of measured assembly-level properties and their comparisons to predicted 
assembly-level properties. Our confidence in predictions is also bounded by our confidence in 
the measurements of component properties that parameterize property theories. It should not 
be surprising, then, that empirical validity rests on a foundation of measures and measurement. 
Nor should it be surprising that statistical analysis plays an important role in establishing 
empirical validity. All measurement processes introduce error, and the abstraction of complex 
phenomena into property theories invariably introduces additional error. We must use statistics 
to quantify both forms of error.

Empirical Validation and Formal Property Theories

Before continuing with a discussion of the use of statistics in establishing the empirical valid-
ity of COMTEK-λ, we digress to discuss the relevance of empirical validation of formal prop-
erty theories. We might argue that there is little (if any) use in empirically validating theories 
that are established by proof theoretic means. To examine this argument, we focus only on the 
proof of component properties. We consider the case where a particular component behavior 
has been specified, and we must establish that the implementation conforms to, or satisfies, 
this specification, using model checking [Clarke+99]. 

Suppose a model checking proof of satisfaction is constructed. This would be sufficient only if 
we had a similar proof that the component environment possesses and satisfies its own formal 
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specification. This argument will regress from the dependencies of that environment to some 
other environment, etc., but it will not regress forever. The ultimate environment is provided 
by a physical device such as a microprocessor. Notwithstanding formal verification of micro-
processor logic, all physical devices are subject to manufacturing defects and wear that can 
only be detected by empirical means. Thus, all proof demonstrations ultimately rely upon 
empirical demonstration.

This reasoning carries a whiff (or a strong odor?) of sophistry. Yet it does demonstrate the ten-
uous nature of formal demonstrations of software behavior. As observed by Messerschmitt and 
Szyperski, the boundary between software and hardware is virtually non-existent, as software 
can always simulate hardware, and hardware can always realize software [Messersch+01]; the 
choice of which to use (hardware or software) is an economic rather than theoretical question. 
From this perspective it may be more reasonable to consider the selection of logical (software) 
or empirical (hardware) theories likewise to be a matter of practicality. 

On a practical note, proving satisfaction is difficult and costly, and researchers are investigat-
ing how to use empirical methods to obtain a statistical proof of satisfaction of a formal speci-
fication [Giannak+01]. Such approaches rely upon comparing traces of program execution to 
traces produced by symbolic execution of a specification. In this way, demonstrating satisfac-
tion is reduced to demonstrating complete test coverage, or some statistical percentage of cov-
erage.

We do not argue against the utility of formal property theories. It is clear that where logical 
property theories exist and can be practically used, the burden of empirical validation may be 
significantly reduced. We are merely suggesting that empirical validation can probably never 
be eliminated in practice, even if software analysis and prediction becomes fully formal. Still, 
it remains a question for further research to demonstrate a seamless way of integrating and 
packaging a mix of formal and empirical property theories.

Statistical Approach to Validating COMTEK-λ

The use of statistics in empirical validation allows us to infer characteristics of the property 
theory from samples of its application. Confidence intervals and significance levels provide 
more insight in the analytic model, so that an application assembler can interpret the results of 
the analytic model, or compare the results from competing models. The number of samples 
that are used for empirical validation depends on how difficult or expensive it is to get a data 
point for the sample. This, in turn, depends on the kind of property that is being predicted. 
Therefore, it is expected that there will be tradeoffs between the accuracy of empirical and sta-
tistical analysis, and the cost of producing this analysis. This tradeoff must be quantified.
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We use the average of a set of measurements to estimate the population’s mean. By using an 
estimator, we incur an error that we want to quantify. To do so, we define a confidence interval 
for the estimation, as follows:

where  is the mean of the population;  and  are respectively the average and the standard 
deviation of the sample;  is the size of the sample; and  is the t-value from a t-distribu-
tion with degrees of freedom leaving a tail with an area of α/2 to the right [Wal-
pole+89]. With this formula, we calculate a (1 - α)100% confidence interval for the 
population’s mean. In other words, if α = 0.05, we can be 95% confident that  falls within 
that interval. This calculation assumes that the sample comes from a normal population (i.e., a 
population that has a normal distribution). When the sample is large ( ), we can use the 
following formula even when normality cannot be assumed:

where  is the z-value from a normal distribution that leaves a tail with an area of α/2 to 
the right. When the sample is not large and we cannot be sure about the normality of the popu-
lation, there are some procedures that can be applied both to test for normality and to normal-
ize the sample. An example of this can be found in Appendix B.

The core of establishing empirical validity is to demonstrate how accurate and repeatable the 
predictions are on average. Two methods we can use to do so are magnitude of relative error 
(MRE) and correlation analysis. These methods have been used in the empirical validation of 
other software related estimation models [Kemerer+87]. 

MRE is a measure of the percentage error of the predicted property, and it is defined as fol-
lows:

where A.p is the predicted property and A.p′ is the measured property. If we used absolute 
error, it would be difficult to compare the errors for different predictions. For example, an 
error of 0.3 would be relatively small for an actual value of 140 while it would be very large 
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for an actual value of 1.44. Therefore, we want to use relative error instead of absolute error so 
that we can compare and analyze the predictions for different assemblies. As we are concerned 
with the goodness of the model on average, we can compute the predictions for a sample of 
assemblies and use the average MRE to estimate the mean of the MREs for all possible assem-
blies. Again, following the same rationale and procedure as before, we can calculate a confi-
dence interval for this estimation.

The second method we can use for evaluating the goodness of a model is correlation analysis. 
This method measures the strength of the linear association between two variables [Wal-
pole+89]. The sample correlation coefficient R is calculated from a sample of observed pairs 
of values for the two variables X and Y. The former is called the independent variable, and the 
latter is called the dependent variable. For our purposes, we can use the predicted property as 
the independent variable, and the actual property as the dependent variable. 

In practice, the sample coefficient of determination R2 is used to evaluate the correlation. A 
value of R2 = 1 means that there is a perfect correlation between X and Y, (i.e., between the pre-
dictions and the actual property values), whereas an R2 = 0 indicates that there is no correla-
tion at all. In general, we can think of R2 as an indication of the amount of variability of Y that 
is accounted for by its linear relation with X. For instance, R2 = 0.9 indicates that the model 
explains 90% of the actual value of the property. 

When correlation analysis is used for empirical validation, it is also important to determine the 
significance of the correlation so that it can be shown that the linear relation in the sample did 
not happen by chance. This can be done by using the critical values for R, which can be found 
on tables or with computer software based on the size of the sample and the desired signifi-
cance level. If R is greater than the critical value, then the correlation is considered statistically 
significant.

Statistical Validation of COMTEK-λ

A summary of the statistical validity of COMTEK-λ is shown in Table 1. The MRE leads to a 
confidence interval that suggests that latency predictions are, on average, quite accurate. That 
is, if we create several sets of random assemblies, the average MRE of each set will fall within 
the confidence interval for 95% of the sets. The high R2 is also a strong indicator of the 
strength of correlation between observed data and predictions.

From the empirical (statistical) validation, it would seem that COMTEK-λ offers a promising 
solution to predicting latency of soft-realtime applications. But we are right to be skeptical and 
recall the old adage: “statistics don’t lie, but liars use statistics.” We offer the following cave-
ats not in the mode of self confession, but rather to pose the question: how should a PECT be 
packaged to expose the limitations of an analysis model and its validation?
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Caveats

The critical eye can, without too much effort, spot a variety of weaknesses of the COMTEK-λ 
latency theory and its empirical validation. 

First, how do we know that the assemblies used in empirical evaluation (see Appendix C) rep-
resent the set of all possible COMTEK assemblies? An examination will show that they are 
quite similar in the number of components, component interactions, and component latencies. 
A thorough empirical validation would characterize COMTEK assemblies. For example, the 
assemblies might be characterized by the number of components, their average latency, the 
number or ratio of input/output connections, and so forth. Extreme values for these parame-
ters, and parameter combinations, could be used to describe boundary cases with which to test 
empirical validity. The validity of the latency theory might well vary across these extremes.

Second, we did not parameterize the latency theory in Eq. 1 with a variety of environmental 
factors such as processor and memory speed, amount of free memory, resource contention, or 
other factors that may strongly influence latency. There is no doubt that we could extend the 
latency theory with such factors, and we may do so to incorporate sensitivity analysis and 
multi-regression analysis, and to further explore packaging PECTs and PECT-conformant 
components. While this serious deficiency in the empirical evaluation should be made explicit 
in the packaging of a PECT, the question remains: can any standard approach to PECT label-
ing reliably identify such limitations, whether they result from commission or merely omis-
sion?

Ultimately, the question devolves to developing standard labeling analogous to the nutritional 
labeling standards for foodstuffs. Backing up standard labeling will be the strictures of “truth 
in advertising” and the legal and economic consequences of violating these strictures.

Statistical Analysis

Latency Theory 

MRE 0.554%
95% Confidence 
Interval

Lower:
Upper:

0.010%
0.701%

R2 0.9999

Significance Level 0.01

MRE: measure of relative error

R2: coefficient of determination

Table 1: Empirical Validation of COMTEK-λ 
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5 Key Results, Open Questions

We described the elements of a PECT and their relationships. We also described several ways 
to validate a PECT. These validations are essential to generate trust in a PECT and the compo-
nents used in a PECT. We also described a number of concepts that are pertinent to document-
ing and packaging predictable assembly. Ultimately, we hope to provide guidelines for a 
standard approach to labeling components and prediction-enabled component technologies. 
We have, in most cases, demonstrated our ideas with the COMTEK-λ prototype.

Not surprisingly, given the immature state of this research, this work and report have resulted 
in a number of questions:

• How will more than one prediction technology be integrated in PECT? The constraints 
placed on a component technology by two prediction technologies may be incompatible or 
may interact in such a way as to perturb their individual or combined predictions.

• Assuming that more than one prediction technology can co-exist, can they be based in rad-
ically different theories? For example, can one theory rest in formal verification while 
another rests in a more empirical approach? Will the “seams” between these be visible?

• The PECT exemplar described in this report emphasized empirical measurement of 
resource consumption—time, in this case. This was well suited to empirical validation. 
How are non-resource attributes such as security to be empirically validated?

• What effect does PECT have on the feasibility of industrial certification of components? 
Would the same certification approach work for both resource and non-resource related 
component properties?

• At what time should component properties be evaluated and, possibly, certified? Proper-
ties can be evaluated in a component vendor environment, third-party environment, 
deployment environment, assembly environment, and end-execution environment.

These and many other questions will be addressed in upcoming research.
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Appendix A Theoretical Validity

In the following, A.λ and C.λ are sometimes used as shorthand for A.latency and C.latency, 
respectively. Also, the terms ‘assembly’ and ‘component’ refer to analytic assemblies and 
components unless otherwise noted.

A.1 Association Validity—Derivation of AΛ 

Definitions
The following definitions are used throughout the derivation.

1. Component C: The scheduled1 entity, C. 

2. Assembly A: The set of components A = {C1, C2, ...Ck}.

3. Schedule: The execution order of components in A.

4. Cycle An, Cnm: The nth execution of the schedule. Cnm denotes that a component has exe-
cuted m times; its last execution was in the nth cycle, denoted An. 

5. Component latency C.λ: The duration of time that begins when the COMTEK-λ execu-
tive calls the execute() method on a component, and ends when the component returns 
from the execute() method. 

6. Assembly latency A.λ: The latency of the assembly A, defined as the duration of time that 
begins when the COMTEK-λ executive calls C0

n.execute() on an arbitrary first com-
ponent C0 (i.e., ∀Cj ∈ A, n>0 • Cj

n-1 ∧ ¬Cj
n), and the time Ck

n returns from its Ck
n.exe-

cute(), where Ck is last component in An (i.e., n>0, Ck
n-1 ∧ ∀Cj ∈ A | Cj ≠ Ck • Cj

n).

7. Steady state: An assembly is said to be operating in steady state, when Aj.λ = Aj+1.λ for 
all , where Ak is the first steady state cycle. Prior to Ak, an assembly is in the initializ-
ing state. All assemblies eventually reach and remain in steady state. (This is not proven.)

1. The schedule-able entity is, in COMTEK-λ, a dynamic link library (DLL) that conforms to the COMTEK-λ API. The schedule-
ed entity is an instance of the schedule-able entity in a particular assembly.

j k≥
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Observations
8. C.λ has two constituents:1 the duration of time, e, that C executes, and the duration of 

time, b, that C waits (“blocks”) for resources that are required to complete its execution. 
That is, λ = e + b.

9. Different COMTEK-λ components can, and usually do, perform different functions, but 
each component must execute the same function in each cycle An. Further, the function 
must be independent of its data. Therefore, C.λ can be represented by a single time dura-
tion rather than a vector of durations, and e is constant in λ = e + b. This is constraint 1) 
on page 20. This constraint greatly simplifies AΛ.

10. COMTEK-λ uses round-robin scheduling, which ensures that each component in A is exe-
cuted exactly once per cycle. The schedule is determined by data dependencies derived 
from an analysis of pipeline connections among components. The subassembly Cj • Ck, 
where ‘•’ denotes an allowed interaction, or pipe, is interpreted by the scheduler as assert-
ing that Ck depends upon data produced by Cj. For Cj • Ck, the scheduler guarantees that 
Cj

n.execute() executes prior to Ck
n.execute() in An.

11. From 10, the COMTEK-λ scheduler guarantees that b = 0 in λ = e + b, for all components 
that depend only upon other components. 

12. Components may also exhibit dependencies on non-component resources, that is, 
resources external to A. These dependencies are opaque to COMTEK-λ: the scheduler 
does not take these external dependencies into consideration in scheduling, and 
COMTEK-λ makes no guarantees about b in λ = e + b when blocking on external 
resources.

13. From (11) and (12), we adduce two classes of component: one class (Θ) consists of those 
components that depend only upon other components, the other (Φ) consists of those com-
ponents that also exhibit external dependencies.2 That is:

a. Θ.λ = e

b. Φ.λ = e + b, where e is a known constant, and b is a variable that depends upon the 
interaction protocol with the external resource, e.g., blocking or non-blocking.

14. b must be bounded in Φ.λ. Since the COMTEK component technology is silent on exter-
nal dependencies, we must impose design constraints external to COMTEK that bound 
b for all external dependencies. This is constraint 2) on page 20. Again, this constraint 
greatly simplifies AΛ.

1. This definition is arguably true of latency in general.

2. As a mnemonic,Φ denotes pipes that extend beyond an assembly boundary, while Θ denotes pipes that are wholly contained
by an assembly boundary.
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a. We restrict Φ to dependencies on periodic events x, with a constant period, x.p. Both x 
and x.p are independent of COMTEK-λ. In the following, we usually care about the 
period and not the event, and so we will usually denote x.p as simply p. 

b. In steady state, for an assembly consisting of exactly one component Φk, Φk.λ = e + b 

= e + (p − e). That is, the amount of time Φk blocks on x (i.e., Φk.b), will be the period 
x.p less the amount of time Φk spent executing (i.e., Φk.e).

Derivation
AΛ predicts A.λ in steady state. We derive latency prediction functions for three classes of 
assemblies:

• fΘ for A consisting exclusively of Θ components.

• fΦ for A consisting exclusively of Φ components.

• fΘΦ for A consisting of arbitrary mixes of Θ and Φ.

Each are derived, in turn.

Class 1: Θ Assemblies (fΘ)

15. Base case: if A = {Θj}, then A.λ = Θj.e, by (5) and (13.a).

16. If A = {Θj, Θk}, then A.λ = Θj.e + Θk.e, where ‘+’ is arithmetic addition.

a. Intuition: Assume COMTEK-λ is infinitely fast so that scheduling overhead can be 
ignored. Since Θ has by definition no blocking time, assembly latency will consist 
only of component execution time.

b. Proof Scheme1: By (6), A.λ is the time elapsed between invocation of the execute 
method of the first component in an assembly, and the return from the execute method 
of the last component in that assembly. Figure 9 shows the execution timeline of an 

1. The vertical axis represents components, while the horizontal axis represents time. Time is divided into ticks. The
parenthetical subscript Θ(x) represents the execution duration x clock ticks for component Θ . The subscript Φ(x, y) represents
the execution duration x and period of external resource y for component Φ.
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assembly with two Θ components. As can be seen, the latency of the assembly is the 
sum of the latencies of the two components.

Figure 9: Execution Timeline for an Assembly with Two Θ Components

17. The previous case can be extended to an assembly with any number of components. If A = 
{Θ0, Θ1, ... Θj}, then A.λ = fΘ(A) = Θ0.e + Θ1.e + ... + Θj.e = 

Class 2: Φ Assemblies (fΦ)

18. Base case: if A = {Φj}, then A.λ = max(Φj.e, Φj.p), where max is the larger value of Φj.e 
and Φj.p.

a. Intuition: We might expect Φj.e ≤ Φj.p, but this need not be so. It is true that if Φj.e > 
Φj.p, then Φj will miss at least one periodic event x. The significance of this, however, 

will depend upon the semantics of the application.1

b. Proof Scheme: Figure 10 shows the timeline for the three possible cases: where Φj.e < 
Φj.p, where Φj.e = Φj.p, and where Φj.e > Φj.p.

1. In some applications, for example audio playback, all external events must be met. In other applications, for example radar
position, only the “last” event must be met; in this situation, we may only need to put a bound on the number of periodic
events missed per unit of time.

Θ(2)

Θ(3)

A.λ = 5 time

Θj.e

Θj A∈
∑
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Figure 10: Timeline for Φ Components with e < p, e = p, and e < p

19. If A = {Φj, Φk}, then A.λ = max( (Φj.e + Φk.e ), max( Φj.p, Φk.p) )

a. Case 1, where Φj.p = Φk.p: A.λ = max( (Φj.e + Φk.e ), p) . Figure 11 depicts this sit-
uation.

Figure 11: Timeline for Two Φ Components with the Same Period
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b. Case 2, where Φj.p ≠ Φk.p: This case can be considered as a special case of Case 1, 
with the term p in Case 1 replaced by max(Φj.p, Φk.p). Figure 12 shows how the larg-
est period dominates the latency of the assembly. 

Figure 12: Timeline for Two Φ Components with Different Periods

20. If A = {Φ0, Φ1, ... Φj}, then 
A.λ= fΦ(A) 
= max( (Φ0.e + Φ1.e + ... + Φj.e ), max (Φ0.p, Φ1.p,...,Φj.p) )
= max( , ).

Class 3: ΘΦ Assemblies (fΘΦ)

21. We observe that if e ≥ p in some Φ′.(e, p), then Φ′ will never block on the periodic event 
x.p. A Φ component that never blocks is, for the purpose of latency computation, indistin-
guishable from a Θ component whose latency is Θ.e. We can also view this from the other 
direction, and in a more specialized form. Specifically, a Θ component is indistinguishable 
from a Φ component with Φ.e = Θ.e and Φ.p = 0.

22. Using (21), we can apply (20) to the general case where A consists of a set of Θ and Φ 
components:

where the term ΣΘj.e reflects the relation Θj.e = Φ.(e, 0). Naturally, since p = 0 for the Θ 
components, we need not introduce an additional term into the set of component periods.

Eq. 5

Φ(2,3)

Φ(1,4)

Φj.e + Φk.e

A.λ = 4
time

Φj.e

Φj A∈
∑ max Φj A∈  Φj.p{ }( )

A.latency f A( ) max Φj.e

Φj A∈
∑ Θj.e

Θj A∈
∑+

 
 
 

max Φj A ∈  Φj.p{ }( ),
 
 
 

= =
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23. Although it may be useful for other purposes to distinguish between Θ and Φ components, 
this distinction can be represented implicitly using (21). That is, we might dispense with 
the distinction between Θ and Φ. If all components C possess two attributes, C.e execution 
time, and C.p the period of an external dependency, then Θ components would be repre-
sented implicitly by letting C.p = 0. 

24. Under the convention in (23), Eq. 5 can be simplified as follows:

A.2 Interpretation Validity
We must demonstrate that every constructive assembly can be expressed as an analytic assem-
bly (completeness), and that there is a unique latency prediction for each constructive assem-
bly (consistency).

A.2.1 Completeness

Each component C ∈ A is converted to an analytic component of one of two types, based on 
these rules:

• If C interacts with a periodic component C’ external to A, then it is represented by an ana-

lytic component of type Φ, where the latency property is denoted as Φ.(e, p), where ‘e’ 

denotes the execution time of C and ‘p’ denotes the period of C’. 

• If C interacts only with other components in A, then it is represented by an analytic com-
ponent of type Θ, where the latency property is denoted as Θ.e, where ‘e’ denotes the exe-
cution time of C.

Since interactions in A (that is, pipes) are ignored, we need not consider ordering. We there-
fore treat A as the set of components {a1, a2, a3, ..., aj}. So constructed, it is clear that every 
possible COMTEK-λ constructive assembly can be represented as an analytic assembly in AΛ.

The analytic assembly can also be ordered using the operator ‘•’:Γ × Γ → Γ, where Γ = Φ ∪ Θ. 
Informally, ‘•’ is a left-associative concatenation operator that expresses the temporal relation, 
‘before’. That is, a1 • a2 means ‘a1 executes before a2’. In this case, the analytic assembly 
would be represented as the string Aλ = a1 • a2 • a3 • ... • aj, for j ≥ 1, where a1, a2, a3 ... aj ∈ Γ. 
This temporal ordering would be appropriate and necessary should AΛ be extended to address 
non-steady state latency. 

Eq. 6A.latency f A( ) max Cj.e

Cj A∈
∑ max Cj A ∈   Cj.p{ }( ),

 
 
 

= =
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A.2.2 Consistency

Since Eq. 5 and Eq. 6 involve operations (Σ and max) that do not depend on the order of their 
arguments, all analytic assemblies produced using the interpretation in Section A.2.1 will be 
mathematically equivalent, regardless of the order in which components are considered. 

QED
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Appendix B Empirical Validity

Empirical validity consists in quantifying the accuracy and repeatability of predictions made 
using an analytic model by statistically comparing those predictions with actual measurements 
of assembly properties. The process of empirically validating a PECT can be summarized in 
the following steps:

1. Measure components.

2. Design assemblies with the components and predict the property of interest.

3. Build the assemblies and measure the property of interest.

4. Statistically analyze the results.

To empirically validate COMTEK-λ, we selected the Audio Playback (APB) application. This 
simple application was conducive to studying end-to-end latency, the property that we wanted 
to predict. APB is comprised of the following components:

• Audio Input—reads digital audio data from devices within the host operating system and 
makes that data available to other components. It has two outputs, left and right audio 
channels.

• Generator—generates a digital audio signal (frequency and amplitude). It has one output.

• Adder—produces a digital audio signal from two input signals (additive). It has two inputs 
and one output.

• Subtractor—produces a digital audio signal from two input signals (subtractive). It has 
two inputs and one output.

• Audio Out—outputs digital audio data to devices within the host operating system to pro-
duce sound. It has two inputs, left and right audio channels.

• Audio View—outputs a graphical representation of input digital audio data. It has one 
input.

The following sections describe how the experiments to empirically validate COMTEK-λ 
were conducted.
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B.1 Measuring the Latency of Individual Components

Latency for an individual component is defined as the duration of time starting from the invo-
cation of its execute() method to its return from that method (see Figure 13). The execute 
method is required by COMTEK-λ; it is the method in which the component performs its 
work.

Figure 13: Latency of a COMTEK-λ Component

Measuring the latency of an individual component was not straightforward. First, a 
COMTEK-λ assembly cannot execute until it is “fully connected” (see Figure 7 on page 17). 
Which means, in short, that components in a COMTEK-λ application having required inputs 
(‘InputPort’) must be connected to a source (‘OutputPort’) before the COMTEK-λ executive 
will run the application. A COMTEK-λ component can have zero or more InputPorts and zero 
or more OutputPorts, but must have at least one port; it may not have zero of both. Therefore, 
we would have to have at least two components in a COMTEK-λ application to calculate the 
latency of the component we wanted to measure. Lastly, we wanted to measure the latency of 
a component in an external environment to better simulate the role of a component property 
certifier.

For these reasons, we created a test harness to measure the latency of single components. The 
test harness supplied the services of COMTEK-λ sufficient to execute the component, and no 
more. A useful analogy is an engine placed in a dynamometer to measure its performance. To 
run the test, we put oil in the engine, hook up a battery and fuel line (input), attach it to a wir-
ing harness (for control), hook up a transmission and exhaust (output), and conduct the perfor-
mance test. This is essentially what the COMTEK-λ test harness does for COMTEK-λ 
components.

The test harness, shown in Figure 14, supported loading and executing one COMTEK-λ com-
ponent at a time. A component in the test harness could be executed any number of times 
while the test harness measured and recorded the time the component spent in its execute() 
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method. The test harness computed several parameters for a component depending on its set-
tings, but the most useful were the average execution time and the standard deviation of the 
execution times.

Figure 14: COMTEK-λ Component Test Harness

Input and output (I/O) from a component in the test harness were handled in precisely the 
same manner as I/O within the COMTEK-λ run-time environment, as memory streams. 
Because the test harness mimicked the precise behavior of the memory input and output 
streams, we not only established a suitable environment for testing components (with actual 
test data), we also achieved a very close approximation of the individual component latencies 
we would expect in the actual COMTEK-λ runtime.

Measuring the time spent in the execute() method gives the latency of a Θ component, but 
for Φ components we also need the period of the event that Φ components depend on. To mea-
sure the actual execution time of a Φ component, exclusive of any blocking, we inserted a 
timed delay that was longer than the external period before dispatching the execute(). In 

number of executions
delay before executing

execution statistics execution options
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this way, only the time spent performing work was measured, not time waiting for the period 
to expire. The length of this timed delay can be set in the test harness, as can be seen in Figure 
14.

In addition to the components that were used in the original APB application, we created vari-
ations of two of them to have a broader palette. One variation was a delayed adder that per-
formed the same operation as the original adder but also had a forced delay that would make 
its execution take roughly 60ms. The other variation was a Φ version of the subtractor compo-
nent. This new subtractor would depend on a periodic event of 80ms in addition to its 20ms 
required to perform its computation.

The COMTEK-λ framework is implemented on the Microsoft Windows™ platforms. We ran 
the empirical validation experiments in one workstation running Windows 2000 Professional 
operating on a DELL Dimension 4100 comprised of a Pentium™ III 1GHz processor, 512Mb 
of system RAM, ATI Rage Pro graphics adapter with 16Mb RAM, and a Creative Sound 
Blaster AudioPCI audio device. To minimize the effects of other processes on the measure-
ments, the test harness sets itself to high priority while running the benchmarks. 

Table 2 shows the results of the measurements for all the components. What we consider to be 
the certified latency of a component is the average of a large sample of measurements. In our 
empirical validation, we took 20,000 measurements for each component. We have included in 
Table 2 the maximum latency estimate error at 95% confidence. For example, for the compo-
nent Generator, we can be 95% confident that the average of the sample (i.e., what we use as 
latency) is off by less than 9.61655E-07 from the true mean of the latency.

Table 2: Latency of Individual Componentsa

a. The latencies shown in the table are the average of 20,000 measurements taken for each component.

Component Execution (e)
(in seconds)

Period (p)
(in seconds)

Average Std. Dev. Max. error Average Std. Dev. Max. error

Audio Input 0.000161557 0.000371361 5.1468E-06 0.046409895 0.002502847 3.46877E-05

Generator 0.000250372 0.000069387 9.61655E-07

Adder 0.000030612 0.000037586 5.20915E-07

Subtractor 0.000030488 0.000037678 5.2219E-07

Audio Out 0.000185987 0.000050028 6.93353E-07 0.046400214 0.009928901 0.000137608

Audio View 0.001159573 0.000206997 2.86883E-06

Delayed Adder 0.060077160 0.000370087 5.12914E-06

Dependent Subtractor 0.020026375 0.000174137 2.41342E-06 0.080112472 0.000530736 7.35563E-06
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B.2 Predicting the Latency of an Assembly

Having measured all the components we were going to use, we were ready to predict the 
latency of the different assemblies that would constitute our empirical validation. In addition 
to the APB application shown in Figure 15, we created eight more assemblies. Figure 15 
shows one APB assembly as it is displayed in the COMTEK-λ assembly environment.

Figure 15: Audio Playback Application Assembly

For each assembly, we calculated the predicted latency using the analytic model (Eq. 6 on 
page 37):

Eq. 6

Audio Input

Generator

Generator

Adder

Substractor

Audio Out

Audio View

A.latency f A( ) max Cj.e

Cj A∈
∑ max Cj A ∈   Cj.p{ }( ),

 
 
 

= =
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Table 3 shows the components used in the APB assembly with their analytic interfaces. In the 
table, we have highlighted the sum of the execution times, and the largest period.

Filling in the values in the previous formula, we obtained the predicted assembly latency:

Following the same procedure for all the assemblies in our experiment, we obtained the pre-
dicted latencies shown in Table 4. The rest of the assemblies can be found in Appendix C.

B.3 Measuring the Latency of an Assembly

As described earlier, the COMTEK-λ framework pre-computes the schedule (order of execu-
tion) of components for a COMTEK-λ assembly at assembly time. This schedule is simply a 
fixed list; component X goes first, then Y, and so on until the last component is dispatched—at 
which time the scheduler reverts back to the first component in the ordered list and continues 
in a cyclic fashion. We defined assembly latency as the elapsed time between two consecutive 
invocations of the execute() method of some component Ck ∈ A.

There is a slight difference between this definition of measured assembly latency and the 
assembly latency as defined in the analytic model. Figure 16 depicts this difference. Since the 
COMTEK-λ assembly environment pre-computes the schedule, there is little or no scheduling 
overhead at run time. Therefore, we assume ∆ to be negligible.

Table 3: Components Used in the APB Assembly

Component Execution (e)
(in seconds)

Period (p)
(in seconds)

Audio Input 0.000161557 0.046409895

Generator 1 0.000250372

Generator 2 0.000250372

Adder 0.000030612

Subtractor 0.000030488

Audio Out 0.000185987 0.046400214

Audio View 0.001159573

Sum 0.002068961

A.latency max 0.00206896 0.0464099,( ) 0.0464099==
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Figure 16: Measured vs. Theoretical End-to-End Latency for an Assembly

In addition to instrumenting the COMTEK-λ run-time environment to measure the cycle time 
of an assembly, we also instrumented it to compute and record the total number of cycles actu-
ally executed (i.e., number of samples taken) along with average and standard deviation of the 
cycle times. For both the test harness and the COMTEK-λ executive, the overhead of instru-
menting and calculating component latency was taken into consideration when measuring A.λ 
and C.λ. Table 4 shows the measured latency for all the assemblies in the experiment.

Table 4: Predicted and Measured Latency for the Assemblies in the Experiment

Assembly Predicted 
Latency

Measured Latency

Average Samples Std. Dev.

1 0.046409895 0.046432115 15000 0.005848142

2 0.080451079 0.080130336 15000 0.000491377

3 0.141687812 0.140204650 15000 0.000603960

4 0.060675076 0.060083619 15000 0.000278201

5 0.046400214 0.046401125 15000 0.009964861

6 0.046400214 0.046404150 15000 0.035717654

7 0.003131486 0.003206257 15000 0.000310752

8 0.046400214 0.046401195 15000 0.009883773

9 0.001440557 0.001442853 15000 0.000242908
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B.4 Statistical Analysis of the Results

Although just by looking at the predicted and measured latencies in Table 4 we could see that 
the analytic model produced useful predictions, we needed to establish credibility in the model 
by backing it with statistical evidence. We used the magnitude of relative error (MRE) and 
correlation, two methods that have been used in the empirical validation of other software 
related estimation models [Kemerer+87]. 

MRE is a measure of the percentage error of the predicted latency, and it is defined as follows:

where A.λ is the predicted latency and A.λ′ is the measured latency. If we used absolute error, 
it would be difficult to compare the errors for different predictions. For example, an error of 
0.3 ms would be relatively small for a latency of 140 ms while it would be very large for a 
latency of 1.44 ms. Therefore, we want to use relative error instead of absolute error so that we 
can compare and analyze the predictions for different assemblies together. In addition, using 
the absolute value of the relative error prevents errors with opposite signs to cancel out when 
the average of them is taken. Table 5 shows the MRE for all sample predictions.

For the nine assemblies in our experiment, the average magnitude of relative error was about 
0.5%. To infer how the model would behave when used in other situations, we wanted to 
define a confidence interval for the expected value of MRE. In other words, we wanted to cal-
culate a range within which the mean of all the MREs is most likely to fall. The statistical 

Eq. 7

Table 5: MRE for the Predicted Latency

Assembly MRE log MRE

1 0.000479 -3.320074412

2 0.004003 -2.397639777

3 0.010579 -1.975573828

4 0.009844 -2.006832907

5 0.000020 -4.707010133

6 0.000085 -4.071501732

7 0.023320 -1.632265142

8 0.000021 -4.674860158

9 0.001591 -2.798250203

Average 0.005549 -3.064890

MRE A.λ A.λ′–
A.λ′

---------------------------=
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methods to do this required either that data be normally distributed or that the sample size be 
greater than or equal to 30. We only had a sample size of 9, so we checked whether the data 
was normally distributed or not. 

We used the Shapiro-Wilk test for normality. The results were W = 0.7621 and p-value = 
0.007482, where W is the statistic used in the test. The p-value is used to decide whether to 
reject or accept the null hypothesis that the data is normally distributed. When the p-value is 
less than or equal to the level of significance used, then the null hypothesis of normality is 
rejected. Using a level of significance1 α = 0.05, we concluded that the sample data was not 
normally distributed.

We applied a log transformation to the sample data intending to make it normally distributed. 
The values of the transformation are also shown in Table 5. We again used the Shapiro-Wilk 
test on the transformed values, with the result that W = 0.9 and p-value = 0.2522. Since the p-
value was greater than the level of significance, we accepted the hypothesis of the transformed 
data being normally distributed. With this, we defined a 95% confidence interval for the 
expected value of the transformed MRE:

Applying anti-logarithm to revert the transformation, we obtained the confidence interval for 
the MRE:

This means that there is a probability of 95% that the average MRE for all the predictions (i.e., 
the population of the predictions) will fall within this interval. To be clear, this does not mean 
that every single MRE value will fall within this range; we are estimating the average.

The second method we used for evaluating the empirical validity of this PECT was the corre-
lation. We used the predicted latency as the independent variable, and the actual latency as the 
dependent variable. We obtained a sample coefficient of determination R2 = 0.999965721, 
meaning that there is an almost perfect correlation between the predictions and the actual 
latencies of the assemblies. In other words, we can say that the analytic model accounts for 
99.99% of the variations in the actual latency. Since the sample size we were using was not too 
large, we wanted to be sure that this correlation could not have happened by chance. The criti-
cal value of R for 7 degrees of freedom (N-2) at a 1% significance level (α = 0.01) is 0.798. 
The correlation coefficient for our sample is R = 0.99998286, which is greater than the critical 
value. Therefore, we conclude that the correlation is statistically significant.

1. The significance level α is the probability of rejecting the null hypothesis when it is true.

3.976083– E MRElog( ) 2.1537–< <

0.000106 E MRE( ) 0.007019< <
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In light of these results, we believe that the association between the constructive and analytic 
models in our exemplar PECT is valid. In addition, the fact that the analytic model explains or 
predicts 99.99% of the latency and that its predictions have a relative error less than 1% on 
average shows strong evidence that the predictions made by the analytic model are accurate.
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Appendix C Assemblies Used for 
Empirical Validation

The following diagrams show the nine assemblies that were used for the empirical validation 
of this PECT.

Figure 17: Assembly 1

Figure 18: Assembly 2
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Figure 19: Assembly 3

Figure 20: Assembly 4

Figure 21: Assembly 5
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Figure 22: Assembly 6

Figure 23: Assembly 7
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Figure 24: Assembly 8

Figure 25: Assembly 9
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