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Abstract
We have little knowledge of how climatic variation (and by proxy, habitat variation) influ-

ences the phylogenetic structure of tropical communities. Here, we quantified the phyloge-

netic structure of mammal communities in Africa to investigate how community structure

varies with respect to climate and species richness variation across the continent. In addi-

tion, we investigated how phylogenetic patterns vary across carnivores, primates, and un-

gulates. We predicted that climate would differentially affect the structure of communities

from different clades due to between-clade biological variation. We examined 203 commu-

nities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We

used simultaneous autoregressive models to predict community phylogenetic structure

from climate variables and species richness. We found that most individual communities ex-

hibited a phylogenetic structure consistent with a null model, but both climate and species

richness significantly predicted variation in community phylogenetic metrics. Using NTI,

species rich communities were composed of more distantly related taxa for all mammal

communities, as well as for communities of carnivorans or ungulates. Temperature season-

ality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communi-

ties, and annual rainfall predicted primate community structure. Additional climate variables

related to temperature and rainfall also predicted the phylogenetic structure of ungulate

communities. We suggest that both past interspecific competition and habitat filtering have

shaped variation in tropical mammal communities. The significant effect of climatic factors

on community structure has important implications for the diversity of mammal communities

given current models of future climate change.
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Introduction
A core goal of community ecology is to identify the processes that shape community structure,
which refers to the richness and composition of species at a specific site and time. Assessing the
relative importance of chance (stochastic processes) and ecological rules (deterministic pro-
cesses) in shaping community structure is central to this goal [1–5]. Phylogenetic analyses have
been used to quantify the structure of communities and help understand whether past interspe-
cific competition or environmental filtering have played important roles in shaping communi-
ty composition [6–10]. In particular, phylogenetic null model approaches can elucidate
whether a community contains many closely or distantly related species relative to a random
expectation from a larger assemblage of communities [6, 11–13]. If closely related species ex-
hibit similar biological traits, and competition is strong among closely related species, then in-
terspecific competition among closely related species that occupy similar niches may result in
communities that are phylogenetically even (i.e. overdispersed). Alternatively, environmental
filtering can result in communities that are phylogenetically clustered, which represents the co-
occurrence of closely related species expected to share traits that are well suited for a
given habitat.

While some research has examined the factors affecting the structure of tropical communi-
ties, much of this research has focused on plants (for review, see [14]). By comparison, we have
limited understanding of tropical animal communities, and the processes that structure plant
communities may or may not operate for faunal assemblages. Studies focusing on the phyloge-
netic structure of mammal communities have been relatively limited in terms of taxonomic
and geographic sampling. Kamilar and Guidi [15] examined phylogenetic structure of primate
communities and found that most communities were phylogenetically random, though Mala-
gasy communities were phylogenetically even compared to those on other continents. Cardillo
and Meijaard [16] focused on island mammal communities and also found that most exhibited
a random phylogenetic structure, though there were some differences among taxonomic
groups. In particular, many terrestrial ungulate communities on land-bridge islands showed
significant levels of phylogenetic evenness. Another study examined a limited number of Neo-
tropical monkey, possum, and squirrel communities and found a significant number of com-
munities that were phylogenetically even at the Class level, though only the monkey and
squirrel communities showed a similar pattern at the Order level [17].

In recent years, some studies have more explicitly investigated how environmental variation
affects the phylogenetic structure of communities. For example, Graham and colleagues [13,
18] clearly demonstrated that community phylogenetic metrics (e.g. net relatedness index and
nearest taxon index) are informative and biologically meaningful even in cases where many
communities exhibit a phylogenetic structure that does not significantly differ from the null ex-
pectation. Both of these studies found that the phylogenetic structure of hummingbird commu-
nities varied along environmental gradients. In particular, hummingbird assemblages were
phylogenetically clustered in high elevation sites and seasonally dry lowlands. In contrast, com-
munities were more phylogenetically even in wet lowlands. This suggests that closely related
species with similar biological characteristics likely have some adaptations to more challenging
environments, such as those found at high elevations and seasonally dry sites.

Although previous studies have generally found that most mammal communities exhibit a
phylogenetic structure that is not statistically different from random, new research has found
that the phylogenetic structure of some mammal communities does vary in response to envi-
ronmental factors. Cardillo [19] used 102 terrestrial ecoregions as his sampling units (as op-
posed to study sites, parks, etc.) in a study focused on the phylogenetic structure of African
carnivore assemblages. He also grouped the ecoregions into biomes, which essentially reflect
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different habitat types (e.g. tropical and subtropical moist broad leaf forests, deserts and xeric
shrublands, etc.). Although a direct test of the relationship between habitat type and communi-
ty structure was not performed, there was variation in the phylogenetic structure of carnivore
assemblages across biomes. In addition, a recent paper by Cantalapiedra et al. [20] found that a
global distribution of ruminant assemblages were most phylogenetically clustered in three rela-
tively extreme climate domains, the Sahara Desert, the Arabian Desert, and southwestern
Arabian savannas. They argue that this may be evidence that ruminants living in these environ-
ments require specialized adaptations. It is interesting to note that they did not find significant
phylogenetic clustering of ruminant assemblages in other habitats that may be considered ex-
treme, such as cold deserts or tundra.

Our knowledge of how climatic variation influences the phylogenetic structure of vertebrate
communities and whether these effects are consistent across taxonomic groups is still quite
limited. Thus, the goal of this paper is to quantify the phylogenetic structure of mammal com-
munities in Africa and more importantly, to examine how this structure varies in response to
the significant climatic variation across the continent. In addition, we test the stress gradient
hypothesis [21], which suggests that competitive interactions are stronger where conditions are
less harsh. We expect environmental filtering to result in clustering in harsh environments and
competition to result in overdispersion in tropical environments where resources are abun-
dant. Therefore, we predict that mammal communities will be more phylogenetically clustered
(i.e. contain more closely related species) in harsher environments, i.e. habitats with overall low
rainfall, and high rain and/or temperature seasonality. Coping with harsh environments likely
requires specific biological traits that are likely to be shared among closely related taxa. In con-
trast, phylogenetically even communities (i.e. communities with a relatively high proportion of
distantly related species) are likely more common in high quality habitats. Overdispersion may
be due to past interspecific competition and competitive exclusion among closely related spe-
cies, resulting in modern communities comprised of more distantly related taxa. In addition,
these habitats are more complex in terms of vertical stratification and in the number of plant
species, which provide the context for a wide range of mammalian niches [22, 23]. If distantly
related species occupy disparate niches, then this will likely result in phylogenetically even
communities. Examining this question in Africa is well suited to the goals of comparing com-
munity structure with climatic influences because of the diverse habitats found across the con-
tinent. Relatively dry, xeric habitats are found in discontinuous distributions in the south, east,
and northern portions of the continent. This provides a test of whether similar habitats pro-
duce convergent community structure. Finally, we expect that communities with higher species
richness will exhibit more phylogenetically even structures. This pattern was found in a recent
analysis of African haplorhine primates [9]. The authors argued that increased interspecific
competition in larger communities may produce this result. Alternatively, larger communities
are typically found in more productive and diverse habitats (e.g. rainforests) that may contain
a wider variety of niches and subsequently more diverse mammal taxa.

In addition, important biological differences among mammal orders related to their trophic
level may have implications for variation in community structure and macroecology across or-
ders [24–27]. For instance, dietary differences among orders may influence how communities
vary with respect to environmental variation. African ungulates rely solely on a plant diet,
whereas invertebrates and vertebrates comprise an important part of many primate and carni-
voran species diets, respectively [28–30]. Therefore, we expect that ungulate community struc-
ture will be more affected by environmental variation, because environmental factors likely
shape plant abundance and diversity more directly than influencing invertebrate and vertebrate
prey species.
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Methods

Data Collection
We compiled mammal lists from information on African national parks, game reserves, and
protected areas, rather than extracting assumed presence/absence data from species range
maps, which often overestimate presences [31, 32]. For each site, we recorded species presence-
absence data (i.e. species lists for each mammal community) from a variety of sources, includ-
ing: 1) existing species locality databases [15, 33], 2) published research articles that examined
mammal distributions and/or communities, and 3) published field surveys. All mammal Or-
ders were included in our database except Chiroptera. A species within an Order was only in-
cluded if it had a body mass of greater than 500 grams because reliable presence-absence data
for smaller mammals often requires different sampling effort. Also, we conducted additional
analyses on the three most species rich clades in our dataset: Primates, Carnivora and terrestrial
Artiodactyla/Perrisodactyla (hereafter called ungulates). Our total dataset contains 243 mam-
mal species, of which 57 are primates, 69 are carnivorans and 89 are ungulates at 203 sites
across Africa (S1 Dataset). While we acknowledge that some regions within Africa are better
sampled than others, our dataset contains representative communities from all major environ-
ments/habitats within the continent. Therefore, our tests examining the climatic predictors of
community phylogenetic structure should be robust.

Each locality was recorded with centralized geospatial coordinates (i.e., the center of the
site’s latitude and longitude). We also associated each site with high-resolution climate data
from the WorldClim database [34], which has been extensively used in macroecological re-
search of mammals and other vertebrates [18, 35–37]. In particular, we used six of the 19 “bio-
clim” variables available from the database, as these variables well characterized the local
climate and were not highly correlated. These variables included: 1) annual mean temperature,
2) temperature seasonality, 3) minimum temperature of coldest month, 4) annual precipita-
tion, 5) precipitation of driest month, and 6) precipitation seasonality. In addition to quantify-
ing the abiotic environment, these variables serve as proxies of habitat structure [35, 38, 39].

Data Analysis
Most commonly, community phylogenetic structure has been quantified using two metrics, the
net relatedness index (NRI) and the nearest taxon index (NTI) [6, 40]. The former is a measure
of the mean phylogenetic distance among all species in a community relative to that found in
the species pool (i.e. all possible species found in all communities in the dataset). The latter
metric quantifies the phylogenetic distance among the most closely related species in a commu-
nity, relative to the species pool. Thus, NTI measures the phylogenetic distance between species
at the tips of the phylogeny. Assuming that closely related species exhibit similar biological
characteristics, significantly low net relatedness index (NRI) and nearest taxon index (NTI)
values (i.e. phylogenetic evenness) can indicate past interspecific competition, resulting in
closely related species not found in the same community. Alternatively, significantly high NRI/
NTI values (i.e. phylogenetic clustering) suggest that environmental filtering is important for
influencing community composition because closely related species tend to have similar eco-
logical requirements. Because NRI and NTI are measuring two different aspects of community
phylogenetic structure, it is possible that they produce somewhat different results. Importantly,
NTI is likely better to capture interspecific competition because it focuses on the most closely
related species in a community, whereas NRI are more likely to detect the effects of environ-
mental filtering [41]. Importantly, NTI values may reflect possible interspecific competition be-
cause there is good evidence supporting the idea that closely related (e.g. within a genus)
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mammal species exhibit similar biological characteristics [42–44]. Communities may also ex-
hibit phylogenetically random species compositions, yielding NRI/NTI scores not significantly
different from zero [40]. NRI and NTI scores are also informative and biologically relevant
even if they do not significantly differ from zero [18]. For example, a community with a NRI
value of -1.5 contains more distantly related species than a community was a value of -0.5, even
if neither community yields a statistically significant p value.

These metrics were quantified with the PHYLOCOM software package [40]. We used 4999
randomizations to calculate statistical significance. We employed the independent swap null
model [40, 45, 46]. This null model has important advantages over other models. In particular,
phylogenetic structure is not influenced by phylogenetic signal in species prevalence [47].

We used the mammal supertree presented in Bininda-Emonds et al. [48, 49] as the basis for
our phylogeny because it contains all of the taxa in our dataset and is regularly used in broad
scale comparative analyses of mammals [19, 50, 51]. There were some cases where “old” data
sources reported a taxonomic name that was not found in Bininda-Emonds et al. [48,49]. In
these cases we synonymized the species in the original data source to the Bininda-Emonds
et al. [48,49] phylogeny. We modified the primate portion of the supertree by using a primate
consensus tree obtained from the 10K Trees Project Version 3 [52]. This primate phylogeny
was an improvement because it contained many nodes that were better resolved (i.e. contained
fewer polytomies) than those found in the Bininda-Emonds et al. [48, 49] tree. When incorpo-
rating the primate portion of the phylogeny with the remaining mammals, we increased the
branch length leading to primates by ~18 my to insure that the tips of the tree
were contemporaneous.

We utilized Kruskal-Wallis tests with Monte Carlo simulation to test for differences in the
NRI and NTI values among the three clades of mammals for which we obtained the most data:
carnivores, primates, and terrestrial ungulates. We used 9999 randomizations to generate p val-
ues. We conducted these analyses using the coin package [53] for R [54].

We used simultaneous autoregressive models (SAR) [55] to test the effects of species richness
and climate for predicting our measures of community phylogenetic structure. This method is
advantageous over a typical linear regression because it accounts for spatial autocorrelation in
the residuals of the model. All variables were log transformed prior to analysis.

We calculated NRI and NTI values for our total mammal dataset (i.e. all mammals in the
Orders found in our 203 communities), as well as for three mammal subsets: primate commu-
nities (135), carnivoran communities (199), and ungulate communities (183) that we analyzed
separately. At least four species were required in a community for the site to be included in the
analysis. In addition, we conducted separate SAR analyses for each of the aforementioned data-
sets. We used the Spatial Analysis in Macroecology software package [56] to conduct all
SAR analyses.

Results
Results for all groupings are presented in Table 1 and visualized in Figs. 1 and 2. When using
the NRI metric, we found that 89.7% (182) of the 203 mammal communities exhibited a ran-
dom phylogenetic structure, 5.9% (12) were significantly phylogenetically even, and 5.4% (11)
were significantly clustered. When using the NTI metric, 90.2% of mammal communities were
randomly structured, 5.4% (11) were significantly phylogenetically even, and 4.4% (9) were sig-
nificantly clustered (Table 1 and Figs. 1 and 2).

These patterns differed when examining finer taxonomic scales individually. At this level of
analysis, a greater proportion of communities exhibited a random phylogenetic structure based
on the NRI metric. Specifically, 94.8% (128) of primate, 98.0% (195) of carnivoran, and 94.5%
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(173) of ungulate communities had a random phylogenetic structure. Significant phylogenetic
evenness was observed in 3.0% (4) of primate, 0% of carnivoran, and 1.7% (3) of ungulate com-
munities, while phylogenetic clustering accounted for 2.2% (3) of primate, 2.0% (4) of carni-
voran, and 3.9% (7) of ungulate communities. In contrast, a lower proportion of communities
were phylogenetically random using the NTI metric, especially for carnivores and ungulates. A
random phylogenetic structure was found in 95.6% (129) of primate, 93.7% (186) of carnivore,
and 89.6% (164) of ungulate communities. A statistically significant degree of phylogenetic

Table 1. The phylogenetic structure of Africanmammal communities. The number of communities followed by the frequency and percentage of signifi-
cantly structured communities are specified.

Dataset # Communities # Low NRI % Low NRI # High NRI % High NRI # Low NTI % Low NTI # High NTI % High NTI

All mammals 203 12 5.91 11 5.42 11 5.42 9 4.43

Primates 135 4 2.96 3 2.22 5 3.70 1 0.74

Carnivora 198 0 0.00 4 2.02 8 4.04 5 2.53

Ungulates 182 3 1.65 7 3.85 6 3.30 13 7.14

NRI = Net relatedness index. NTI = Nearest taxon index.

doi:10.1371/journal.pone.0121808.t001

Fig 1. Rank order of Nearest Taxon Index values for the four community datasets examined: A) All mammals, B) Carnivores only, C) Primates only,
D) Ungulates only. Vertical dashed lines indicates 50th percentile.

doi:10.1371/journal.pone.0121808.g001
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evenness was observed for 3.7% (5) of primate, 4.0% (8) of carnivore, and 3.3% (6) of ungulate
communities. Phylogenetically clustered patterns were present in 0.7% (1) of primate, 2.5% (5)
of carnivore and 7.1% (13) of ungulate communities.

The results of our Kruskal-Wallis tests with Monte Carlo simulation yielded a statistically
significant difference in NRI values across mammal clades (p = 0.012) (Fig. 3A). Primate com-
munities, on average, exhibited lower values than carnivores and ungulates. In contrast, NTI
values did not significantly differ across mammal groups (p = 0.448) (Fig. 3B).

Using simultaneous autoregressive models, the phylogenetic structure of mammal commu-
nities was significantly predicted by community species richness and climatic variables, though
the relationship between these variables and community structure varied across taxonomic
scale and across Orders (see Tables 2 and 3 and Figs. 4 and 5). Two variables, species richness
and temperature seasonality, best predicted the NTI phylogenetic structure of mammal com-
munities. As community size and temperature seasonality increased, mammal communities
became increasingly phylogenetically even (i.e. more negative NTI values). These two variables
also predicted carnivoran community structure, yet temperature seasonality was related in the
opposite direction. Increases in community size and decreases in temperature seasonality re-
sulted in increasing phylogenetic evenness in carnivoran communities. For primate

Fig 2. Rank order of Net Relatedness Index values for the four community datasets examined: A) All mammals, B) Carnivores only, C) Primates
only, D) Ungulates only. Vertical dashed lines indicates 50th percentile.

doi:10.1371/journal.pone.0121808.g002

Predicting the Phylogenetic Structure of African Mammal Communities

PLOS ONE | DOI:10.1371/journal.pone.0121808 April 15, 2015 7 / 16



communities, only one variable, mean annual rainfall was a significant negative predictor of
NTI values, thus communities in high mean annual rainfall were more phylogenetically even
and communities in dry sites were phylogenetically clustered. The NTI values of ungulate com-
munities were best predicted by five variables. Community species richness (-), annual mean
temperature (+), temperature seasonality (-), minimum temperature of coldest month (-), and
annual rainfall (+), were all significant predictors of the NTI values of ungulate communities.

The models predicting the phylogenetic structure of communities based on NRI values
produced different results (Table 3). First, the total mammal dataset was best predicted by tem-
perature seasonality, though in the opposite direction of NTI. In this model, increasing temper-
ature seasonality resulted in mammal communities that were phylogenetically clustered. For
carnivoran communities, temperature seasonality and mean annual rainfall were positively re-
lated to NRI values (i.e. phylogenetic clustering). The NRI values of primate communities were
significantly predicted by species richness only (p = 0.030). Finally, species richness (-) and an-
nual mean temperature (+) were the strongest predictors of ungulate community NRI values.
Additional detailed results are presented in S1 Dataset.

Fig 3. Boxplot of A) Net Relatedness Index and B) Nearest Taxon Index values of communities acrossmammal clades.

doi:10.1371/journal.pone.0121808.g003

Table 2. Results of simultaneous autoregressive models predicting the nearest taxon index of mammal communities from species richness and
climate data.

All Mammals Carnivora Primates Ungulates

Predictors Std. Coeff. p value Std. Coeff. p value Std. Coeff. p value Std. Coeff. p value

Species richness -0.374 <0.001 -0.198 0.009 -0.194 0.072 -0.459 <0.001

Ann. mean temp 0.104 0.519 0.183 0.255 -0.095 0.663 0.539 <0.001

Temp. seasonality -0.453 0.004 0.331 0.039 -0.109 0.521 -0.384 0.008

Min. temp. coldest month -0.049 0.796 -0.194 0.316 -0.080 0.700 -0.495 0.005

Ann. precipitation 0.053 0.589 -0.079 0.382 -0.252 0.026 0.253 0.005

Precip. of driest month -0.040 0.742 0.144 0.244 0.202 0.197 0.060 0.611

Precip. seasonality -0.116 0.295 0.146 0.199 0.167 0.279 0.015 0.895

Total Model Results F = 5.892, r² = 0.309, p
<0.001, n = 203

F = 7.241, r² = 0.275,
p<0.001, n = 198

F = 4.931, r² = 0.285,
p<0.001, n = 135

F = 13.294, r² = 0.435,
p<0.001, n = 182

All variables were log transformed prior to analysis.

doi:10.1371/journal.pone.0121808.t002
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Discussion
We found a strong effect of both local climate (and therefore, habitat) and species richness on
the phylogenetic structure of mammal communities. This supports the idea that African mam-
mal communities have converged on a similar phylogenetic structure when found in similar
climatic contexts, even when these communities are found in geographically distinct parts of

Table 3. Results of simultaneous autoregressive models predicting the net relatedness index of mammal communities from species richness and
climate data.

All Mammals Carnivora Primates Ungulates

Predictors Std. Coeff. p value Std. Coeff. p value Std. Coeff. p value Std. Coeff. p value

Species richness 0.155 0.070 -0.031 0.699 -0.257 0.030 -0.364 <0.001

Ann. mean temp 0.132 0.366 0.031 0.857 0.184 0.445 0.472 0.006

Temp. seasonality 0.341 0.017 0.379 0.029 -0.322 0.087 -0.187 0.251

Min. temp. coldest month -0.136 0.425 0.096 0.646 -0.055 0.810 -0.375 0.060

Ann. precipitation -0.120 0.170 0.228 0.020 0.047 0.704 0.190 0.058

Precip. of driest month -0.112 0.310 -0.045 0.734 0.117 0.493 -0.038 0.778

Precip. seasonality 0.034 0.732 -0.05 0.684 0.066 0.696 0.068 0.602

Total Model Results F = 9.801, r² = 0.355, p
<0.001, n = 203

F = 1.424, r² = 0.142,
p = 0.198; n = 198

F = 2.201, r² = 0.254,
p = 0.038, n = 135

F = 7.773, r² = 0.274,
p<0.001, n = 182

All variables were log transformed prior to analysis.

doi:10.1371/journal.pone.0121808.t003

Fig 4. The relationship between climatic factors and the phylogenetic structure of mammal, carnivore,
primate, and ungulate communities based on the Nearest Taxon Index.

doi:10.1371/journal.pone.0121808.g004
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the continent. In addition, the specific climatic factors influencing community structure varied
across mammalian clades, suggesting that differences in the biological traits of these orders
plays an important role in their community ecology and evolution, specifically dietary niche.
Ungulates are solely primary consumers, whereas other clades, such as carnivorans and pri-
mates, comprise species that consume both plant and animal matter [30, 42, 57, 58].

The Phylogenetic Structure of Individual Communities
Most individual communities did not exhibit significant phylogenetic structure. This supports
prior studies examining mammal community structure in other regions of the world, as well as
studies using smaller African datasets [15, 17, 59]. Interestingly, the proportion of mammal
communities that were significantly phylogenetically structured depended on the dataset. For
instance, including all mammal species resulted in the highest proportion of both significantly
low and high net relatedness index (NRI) values and low nearest taxon index (NTI) values. Ter-
restrial ungulate communities yielded the highest proportion of significantly high NTI values,
indicating that communities contained species that were closely related relative to the null
model. Further differences in the phylogenetic community structure of our three mammal
clades of interest were detected, for the NRI metric in particular. Primate communities had
lower NRI values compared to carnivorans and ungulates. NRI values are based on the phylo-
genetic distance among all members of a community and lower values indicate that members
of primate communities are more distantly related than other mammal clades. This is likely
due to the fact that many primate communities in the analysis contained multiple species from

Fig 5. The relationship between climatic factors and the phylogenetic structure of mammal, carnivore,
primate, and ungulate communities based on the Net Relatedness Index.

doi:10.1371/journal.pone.0121808.g005
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the primate suborders Strepsirrhini and Haplorrhini, which diverged about ~70mya [48, 49].
In contrast, many carnivoran communities are comprised of several species from the families
Felidae, Herpestidae, and Viverridae (which diverged at ~40mya), but only one or few repre-
sentatives of the Canidae (which diverged from the aforementioned families at ~60mya).
Therefore, many primate communities often contain more distantly related species compared
to other mammal communities. These results strongly suggest that a clade’s evolutionary histo-
ry and pattern of diversification can have an important impact on the phylogenetic structure of
modern communities.

An important assumption of the community phylogenetic framework is the idea that species
traits relevant for interspecific competition have strong phylogenetic signal. If this assumption
does not hold (e.g. when there are numerous instance of convergent evolution among distantly
related species), then competition may actually be stronger between distantly related species,
rather than closely related ones. In addition, some traits may exhibit weak phylogenetic signal,
being randomly distributed across the phylogeny [42]. If true, then this may help to explain the
relatively high proportion of communities with a phylogenetic structure no different from a
null expectation. In addition, other confounding factors, such as shared predators, may pro-
duce similar patterns expected under an interspecific competition rationale.

Species Richness and the Phylogenetic Structure of Communities
Species richness was a consistently negative predictor of the net relatedness index (NRI) of
communities, i.e. increasingly large communities were associated with more distantly related
species. These results are similar to those found in a recent study focused solely on African hap-
lorhine primate communities [9]. One interpretation is that interspecific competition among
closely related species in the past may have resulted in more distantly related congeners in spe-
cies rich communities, particularly if past interspecific competition has resulted in niche differ-
entiation and resource specialization. Communities with the greatest numbers of species occur
in the Congo Basin and nearby regions. Rainforest habitats likely support numerous herbivo-
rous and omnivorous species because of relatively consistent availability of high plant and in-
sect biomass and diversity [60, 61], which can in turn support numerous carnivorous species
(preying on vertebrates). The complex forest structure allows for both horizontal and vertical
stratification of resources, including potential dietary items, sleeping sites, etc. [22]. Additional-
ly, rainforests have likely had the least contact from humans, which may have influenced lower
diversity in higher contact regions [62]. These results also support the stress gradient hypothe-
sis [21], with high productivity environments (as defined by high species richness only) being
associated with phylogenetically even communities.

The relationship between species richness and community phylogenetic structure may be
consistent across a wide array of organisms. This same pattern was found in a recent study by
Qian et al. [63] that examined North American angiosperm trees. Interestingly, their analyses
treated community structure as the predictor variable and species richness as the dependent
variable. The authors argue that this is evidence for species richness being driven by evolution-
ary time and niche conservatism. Considering our work and the study by Qian et al. [63], we
suggest that the causal direction of the relationship between richness and community structure
requires further investigation.

Climate and the Phylogenetic Structure of Communities
The importance of climate for predicting community structure varied across mammalian
clades. When all mammals were considered together, temperature seasonality was negatively
related to NTI values, indicating that more seasonal sites contained communities with
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relatively distantly related species. Conversely, mammal communities contained more closely
related species in sites with low levels of temperature seasonality. This result suggests that
closely related mammal species may be unable to coexist in seasonal habitats due to limited re-
sources, which may have resulted in competitive exclusion in these areas. Alternatively, an evo-
lutionary explanation may be rooted in the idea that taxa inhabiting seasonal habitats may
have lower speciation rates than those in regions with higher productivity and climate stability
(e.g. equatorial rainforests) [63, 64]. In addition, this finding does not support the stress gradi-
ent hypothesis [21], which predicts that competitive interactions will be stronger in less harsh,
less seasonal environments. Phylogenetic overdispersion/evenness in sites with high tempera-
ture seasonality contradicts the support for the stress gradient hypothesis based on the results
of species richness and community NTI values in which phylogenetic overdispersion was
higher in species rich communities. Since the models examined all predictor variables simulta-
neously, the temperature seasonality effect on community structure is independent of species
richness and thus the combination of these results can be considered as mixed support for the
stress gradient hypothesis when all mammals in this study were considered.

Temperature seasonality was the most consistent predictor of community phylogenetic
structure, yet the direction of the relationship differed across orders. Increased temperature
seasonality resulted in more phylogenetically even communities across all mammals and with-
in ungulates. Terrestrial ungulate communities were best predicted by environmental variables
when using the NTI metric (and generally similar results when using NRI). This supports the
idea that ungulate communities may be more affected by environmental factors as primary
consumers, compared to primates and carnivorans, which consume both invertebrate and ver-
tebrate prey. The herbivorous ungulates divide their diets into grazers, browsers, and mixed
feeders, with browsers also sometimes consuming fruit and mixed feeders usually preferring
grass or leaves while eating the other seasonally [65–67]. The biomass of their preferred plant
food sources may be reduced in areas with increased temperature seasonality, suggesting that
the species in the communities handle food shortages with differing functional traits. This may
restrict the number of closely related species that can live in the same community, as they tend
to have the same dietary strategies [68].

In contrast, increased temperature seasonality was related to more phylogenetically clus-
tered carnivoran communities based on both NTI and NRI values. Carnivoran species living in
more seasonal habitats may require specific adaptations, which are common in closely related
species, to either cope with the seasonal variation in temperature itself, or to manage the chal-
lenges in acquiring proper nutrition.

Interestingly, there was only a single predictor of NTI variation in primate communities,
mean annual precipitation. As precipitation increased, primate communities contained more
distantly related species. Primates are typically regarded as forest adapted mammals [29] and
our results quantitatively confirm this idea that the most phylogenetically diverse primate as-
semblages are found in rainforest sites. This finding suggests that past interspecific competition
may have driven the absence of closely related taxa in rainforest habitats. An alternative expla-
nation (but not mutually exclusive) relies on the idea that rainforests contain a diverse array of
niches [22]. If distantly related primate species occupy distinct niches, then we would expect
phylogenetically diverse communities in these habitats.

Mammal Communities, Species Traits, and Climate Change
Explaining the patterns of community phylogenetic structure relies somewhat on the assump-
tion that closely related species have similar biological characteristics (and therefore, occupy
similar niches) and this similarity declines with increasing phylogenetic distance. In fact,
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a recent study by Kamilar and Cooper [42] showed that a wide array of primate traits exhibited
a significant amount of phylogenetic signal. This finding supports the use of phylogeny as a
surrogate for biological similarity. To our knowledge, similar studies of carnivorans and ungu-
lates have not been performed. Future studies quantifying the degree of phylogenetic signal in
traits for these clades can further refine our predictions of community phylogenetic structure.
If functional traits exhibit weak phylogenetic signal, there is less of an expectation that commu-
nities will be phylogenetically clustered or even. Also, future studies may provide more detailed
information about the mechanisms driving community structure by examining species traits in
a community context [69, 70]. In particular, investigating the relationship between the phylo-
genetic structure of communities, functional trait variation and the degree of phylogenetic sig-
nal in these traits has recently begun [8, 18, 69] and is an important future direction.

Finally, our results have important implications for future mammal diversity, especially at
the community level. Many of the communities in our dataset are found in the tropics, which
are among the most diverse ecosystems in the world. These areas are among the world’s biodi-
versity hotspots, which are critically important for conservation [71, 72], and contribute to
climate stability [73]. Models predicting future climate change show noticeable shifts in tem-
perature and rainfall patterns, especially if current anthropogenic impacts continue unabated
[74]. The significant relationships we found between the phylogenetic structure of mammal
communities and climatic variation strongly suggest that future climate change will result in al-
tered mammal community structure.
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