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A sense of proportion:
 

Commentary on Opfer, Siegler, & Young
 

A	growing	 body	of	evidence	(Barth	&	Paladino,	2011;	 Cohen	&	Blanc‐Goldhammer,	 

2011;	Sullivan,	Juhasz,	Slattery,	 &	 Barth,	2011)	shows	that	“linear”	estimation 	patterns	in	 

published	number‐line	data	actually	follow	a	cyclic	power	function,	a	 signature	of	 

proportional	reasoning	(Hollands	 &	Dyre,	2000;	Spence,	1990).	Opfer, Siegler,	 & 	Young	 

argue	that	 fitting	a	cyclic	power	function	to	 number‐line	data	 is	tantamount	to	capitalizing	 

on	chance.	 We	claim,	in	contrast,	that	the	cyclic	power	function	 is	(1) 	theoretically	 

motivated,	 (2)	mathematically	sensitive 	to	important	 fluctuations	 in	 the	data,	 and	(3)	 

highly	unlikely	to	be	fitting	noise	 in	 these	data.	 We	caution	 OS&Y	that	linear	 functions	are	 

insensitive	 to	the	systematic	fluctuations	 in	the	data	 that	 describe	the	observer’s	 

estimation	 bias	in	the bounded	number‐line	task.		 

The	bulk	of	OS&Y’s	substantive	critique	rests	on 	analyses	 of	previous	 datasets.	But	 

OS&Y’s	compiled	studies	were	 explicitly	designed	to	distinguish 	between	logarithmic	and	 

linear 	models.	The	observations	 in 	their	datasets	are	sparsely	 distributed	near	the	upper	 

endpoint,	where	proportion‐judgment	(PJ)	models	make	specific	 predictions. Therefore	 

those	datasets	are 	biased	against	 PJ	hypotheses	and	 toward	the	 logarithmic	and	linear	 

hypotheses	they	were 	designed	to	capture.	We	 also	note	that	B&P found	support	for	the	PJ	 

account	in	analyses	of 	individuals’	estimates,	not	just	group	analyses	 as	implied	 by	OS&Y.	 

The	PJ	account	explains 	changes	in	number‐line	estimation	in	at least	3	ways.	First,	 

values	of	Stevens	exponents	(β)	for	numerical magnitude	 might	gradually	approach	1	with	 

age,	leading 	to	more	accurate	estimates.	Second,	older	children 	might use	more	reference	 
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points,	an 	independent source	of 	increased	accuracy.	Third,	accuracy	requires	 evaluating	 

the	upper	endpoint	appropriately	 when	deciding	where	to place	a 	target	 number	(see	also	 

Cantlon,	Cordes,	Libertus,	&	Brannon,	2009).	Implicit	also	in	B&P	 is	the	possibility	that	very	 

young	children	might	 not	recognize	the	bounded	nature	of 	the	task	at	all,	instead	treating	it	 

as	an	open‐ended	magnitude	judgment;	if	so	their	estimates	should	be	well	characterized	 

by	an	unbounded	power	function. 

OS&Y	misinterpret	the	 PJ	account	when	they	 model	microgenetic	changes	 in	 

children’s	estimates	as	 changes	 in	 β.	They	report	abrupt	changes	in	β	after	local	feedback,	 

claiming	that	this	 finding	supports	the	log‐to‐linear‐shift	 hypothesis.		But	in	our	view,	local	 

feedback	probably	improves	accuracy	by	providing	children	with	 a	new	reference	point	 

(predicting	 broad,	not	just	local,	improvements	in	estimation	accuracy;	see	Hollands	&	 

Dyre	Figure	3).	Adoption 	of	a	reference	point	can,	of	course,	occur	abruptly.	OS&Y	 

unfortunately	did	not	 test	this	hypothesis. 

Finally,	OS&Y	raised	the	concern	 that	while	power	models	may	provide	the	best	 fits,	 

they	are	not necessarily	the	best	 predicting 	models.	They	 applied	leave‐one‐out	cross‐

validation	(LOOCV)	techniques	to their	compiled	dataset,	 finding	support	for	the	log‐to‐

linear	shift.	We	conducted	LOOCV	 analyses	on	 B&P’s	dataset	(one 	better	suited	to	 testing	 

alternative	 hypotheses).	We	calculated	mean	squared	error	(MSE) as	the	cross‐validation	 

error	 index, 	instead	of	 using	the	mean	absolute	percent	error	(MAPE)	as	OS&Y	did	(MAPE	 

is	at	times	appropriate	 for	evaluating	time‐dependent	series	data,	but	it	is	not	appropriate	 

for	datasets	discussed	 here	 1).	We	also	did	not	 separate	children	with	 “logarithmic”	vs.	 

1 By	dividing	the	error	(estimated 	value	minus	the	 actual	value)	 by	the	actual	value,	this	calculation	weighs	
errors	from	predictions	on	the	upper	 end	 of the	scale	 less than 	those	 on	the	lower	end.	For	example,	if	an	 
estimated value	is	4	and 	the 	actual	value	is	3,	the	absolute	percent	error	is	.33.		 However,	if	an	estimated	value	 



	

	

	

	

	

	

																																																																																																																																																																																			
	 	 	 	 	 	

		 	
	

	
	
	

A	sense	of	proportion			4 

“linear”	estimation	patterns,	a	serious	problem 	with	OS&Y’s	analysis	 (because	pre‐

assigning	 these	groups	essentially	circumvents	the	very safeguards	 that	cross‐validation	 

techniques	 impart,	inserting	an	 additional	level	of	model	complexity	and	bias	that	aren’t	 

accounted	for	by	these	 analyses).	Our	LOOCV	results	supported	the	PJ	account.	For	5‐year‐

olds,	an	unbounded	power	model	 yielded	 the	 lowest	MSE	(26.356), 	followed	by	 the	 

adapted	 1‐cycle	model	(27.884)	and	then	the	logarithmic	 model	(34.397).		The	linear,	 1‐

cycle,	and	2‐cycle	models	yielded	much	larger	MSEs	(51.278,	66.297,	and 210.943	 

respectively).	For	7‐year‐olds,	the	2‐cycle	model	yielded	 the	lowest	 MSE	(13.645),	followed	 

by	the	linear	model	(15.475)	and 	the	1‐cycle	model	(19.484;	19.622	for	the	 adapted	 

version),	and	unbounded	power	and	logarithmic	models	produced	large	MSEs	(118.908	 

and	236.527	respectively).	Unsurprisingly	(see	Stone,	1977)	the LOOCV	analysis	describes	 

the	models	in	much	the	same	way	 as	a	comparison	of	AICc scores	 (Akaike’s	 information	 

criterion,	used	in	B&P’s 	original	analyses).		 

“The	choice	of	a	model	may	be	influenced	by	measures	of	fit	but the	final	decision	 

concerning	 which	model	to	use	must	involve	human	judgment,”	(Browne,	2000). We	agree.	 

Our	intent	 is	not	to	quibble	about	model	selection,	but	to	present	theoretical	and empirical	 

support	for	an	alternative	account	 of	number‐line	 estimation	and	related	paradigms.	Given	 

growing	 evidence	that	 bounded	number‐line	tasks	produce	the	signature	ogival	functions	 

that	indicate	proportion 	estimation,	we	urge	 researchers	 to	do	 the	following.	First,	sample	 

is 	91 and the actual	value is 90 (again,	 a	 discrepancy	 of only	 one	point),	the	[M]APE	is	 .01.		MSE,	 on 	the	other	 
hand,	weights	each	of	these	values	equally.		
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where	 E 	refers	to	the	estimated	value	and	 A 	refers	to	the	actual	value.	
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a	sufficient	 number	of	points	along 	the	number	line 	to	identify the	cyclic	function	if	it	is	 

present.	Second,	model	both	the	cyclic	function	and	linearity	to	determine	relative	 fits	of	 

each	model	 2.	Limiting	 analyses	 to	logarithmic	 and	linear	 models	may	be	sufficient	for	those	 

who	simply	need	 a 	useful	heuristic	for	classifying	children.	But	for	researchers	using	these	 

tasks	to	assess	the	nature	of	numerical	representation,	failure 	to	adequately	assess	and	fit	 

proportion	models	in	a	bounded	number‐line	task	would	be	a	serious	omission.	 

2 	A	Microsoft	Excel	worksheet	for 	performing	simple	versions	of	 these	analyses	(Slusser	&	 
Barth,	n.d.)	is	freely	available	 at	http://hbarth.faculty.wesleyan.edu/publications/.	 
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