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Ehsan Khatami,1 Joel S. Helton,2 and Marcos Rigol1 

1Department of Physics, Georgetown University, Washington, DC 20057, USA 
2NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA 

(Received 3 February 2011; revised manuscript received 20 June 2011; published 1 February 2012) 

We study the thermodynamic properties of the clinoatacamite compound, Cu2(OH)3Cl, by considering several 
approximate models. They include the Heisenberg model on (i) the uniform pyrochlore lattice, (ii) a very 
anisotropic pyrochlore lattice, and (iii) a kagome lattice weakly coupled to spins that sit on a triangular lattice. 
We utilize the exact diagonalization of small clusters with periodic boundary conditions and implement a 
numerical linked-cluster expansion approach for quantum lattice models with reduced symmetries, which allows 
us to solve model (iii) in the thermodynamic limit. We find a very good agreement between the experimental 
uniform susceptibility and the numerical results for models (ii) and (iii), which suggests a weak ferromagnetic 
coupling between the kagome and triangular layers in clinoatacamite. We also study thermodynamic properties 
in a geometrical transition between a planar pyrochlore lattice and the kagome lattice. 
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I. INTRODUCTION 

The kagome and pyrochlore lattices are among the 
archetype systems for highly frustrated magnetism, with both 
lattices displaying corner-sharing frustrated plaquettes (trian­
gles for the two-dimensional kagome lattice and tetrahedra 
for the three-dimensional pyrochlore lattice). There is also 
a geometric connection between the two lattices, as the 
pyrochlore lattice is composed of alternating kagome and 
triangular lattice planes stacked on top of each other (along 
the (111) body diagonal in typical cubic spinels that display 
a pyrochlore lattice). This leads to the possibility of structural 
pyrochlore lattices where magnetic interactions differ within 
kagome planes and between the kagome and triangular planes. 

Several three-dimensional (3D) pyrochlore lattice materials 
have been shown to decouple into kagome planes ordered 
antiferromagnetically1,2 or ferromagnetically3,4 that are fairly 
well isolated from the neighboring triangular plane spins. 
The Zn-paratacamite mineral family, ZnxCu4−x(OH)6Cl2, 
with x � 0.3 features spin- 1 Cu2+ ions arranged on an2 
antiferromagnetically coupled kagome lattice alternating with 
triangular lattice layers occupied by either Cu or nonmagnetic 
Zn ions. The x = 1 end member of this family, herbert­
smithite, has attracted interest as a strong candidate to display 
a spin-liquid ground state on almost perfectly decoupled 
two-dimensional (2D) kagome layers.5–7 However, the best 
available samples are likely not stoichiometric,8 with a small 
fraction of Cu ions on the triangular lattice planes weakly (of 
the order of 1 K) coupled to the kagome planes.9 Materials such 
as YBaCo4O7 (Ref. 10) and Y0.5Ca0.5BaCo4O7 (Ref. 11) also  
feature alternating kagome and triangular layers, but with a 
stacking that is structurally distinct from the pyrochlore lattice. 

Here, we are interested in the properties of the mineral 
clinoatacamite,12 a monoclinic polymorph of Cu2(OH)3Cl that 
crystallizes in the P 21/n space group and features spin- 1 Cu2+ 

2 
ions decorated on a distorted pyrochlore lattice. The mineral is 
the extension of the Zn-paratacamite family to x = 0, with the 
monoclinic distortion that occurs for x < 0.3. Clinoatacamite 
has drawn attention in recent years,13–18 in part due to its unique 
pyrochlore structure and in part due to the still unexplained 
nature of successive phase transitions. Some studies15,18 have 

described the lattice as consisting of distorted kagome layers 
coupled weakly through triangular layers of out-of-plane spins. 
Others have suggested a pyrochlore structure with significant 
couplings of all Cu spins.13,17 Susceptibility and specific-heat 
measurements display two transitions upon cooling, at Tc2 = 
18 K and Tc1 ≈ 6.4 K. Long-range magnetic order16,19 and a 
weak ferromagnetic moment are present below Tc1. For  tem­
peratures Tc1 < T  < Tc2, muon oscillations are observed14 

suggesting a static local moment, which was originally 
attributed to N ́eel order, while neutron diffraction experiments 
find no sign of ordering in this temperature range, and the spe­
cific heat anomaly at Tc2 is too small for the entropy change ex­
pected at an ordering transition. Further analysis of this unusual 
phase between 6.4 and 18 K would be aided by a complete 
knowledge of the local bond strengths in this distorted lattice. 

In this work, we study the thermodynamic properties of 
the clinoatacamite compound by considering, as approximate 
descriptions, the antiferromagnetic Heisenberg model on (i) a 
uniform pyrochlore lattice, (ii) a very anisotropic pyrochlore 
lattice, which can be seen as a quasi-two-dimensional model, 
and (iii) a kagome lattice with weak ferromagnetic coupling 
to (otherwise disconnected) spins sitting on a triangular 
lattice, i.e., a two-dimensional model. We calculate the spin 
susceptibility, specific heat, and entropy for these models 
using the exact diagonalization (ED) of small clusters with 
periodic boundary conditions and, only for model (iii), by 
means of an implementation of the numerical linked-cluster 
expansions (NLCEs)20,21 on an anisotropic checkerboard 
lattice that displays the required geometry. NLCEs yield exact 
results in the thermodynamic limit and, therefore, enable 
more accurate comparisons with experiments, while also 
helping us gauge finite-size effects in the exact diagonalization 
calculations. Using this method, we compare the experimental 
spin susceptibility from magnetization measurements with the 
numerical results and find very good agreement in a wide range 
of temperatures. Using ED, we also examine models (i) and (ii) 
and find that results from (i) are inconsistent with experimental 
data for the susceptibility. 

Furthermore, we apply the NLCE method to a more general 
anisotropic-checkerboard-lattice Heisenberg model, and tune 
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the ratio of certain exchange constants to capture the evolution 
of thermodynamic quantities in a transition from the planar 
pyrochlore lattice to the kagome lattice. These results provide 
further insight on the nature of the spin interactions in the 
clinoatacamite material and on the effect of frustration in the 
kagome and pyrochlore lattices. 

The paper is organized as follows: In Sec. II, we introduce 
the different models utilized to describe the clinoatacamite 
compound. Section II A presents the pyrochlore lattice and 
its very anisotropic, quasi-two-dimensional version, which 
we use to model clinoatacamite. Section II B is devoted 
to the two-dimensional model used. We show how it can 
be seen as a Heisenberg model on an anisotropic checker­
board lattice, and discuss its relationship to the uniform 
kagome lattice and the planar pyrochlore lattice. We also 
describe how NLCEs can be generalized to solve quantum 
lattice models with reduced symmetries, and in particular 
to solve our two-dimensional model for clinoatacamite. In 
Sec. III, we report the uniform susceptibility of clinoatacamite 
as measured experimentally and our numerical results for 
the uniform susceptibility, specific heat, and entropy obtained 
within the different theoretical models by means of ED and/or 
NLCE. Finally, our results are summarized in Sec. IV. 

II. APPROXIMATE MODELS FOR CLINOATACAMITE 

A. The isotropic and quasi-two-dimensional pyrochlore lattices 

Clinoatacamite contains three crystallographically distinct 
Cu sites, such that the crystal structure consists of kagome 
planes of Cu2 and Cu3 sites alternating with triangular planes 
of Cu1 sites.13 These sites are distinguished primarily through 
the Cu-O-Cu bond angle, with an average angle of about 96◦ 
for bonds involving a Cu1 site and an average angle of about 
118◦ for bonds within the Cu2-Cu3 distorted kagome plane. 
(While the distorted lattice structure leads to some further 
variation within these averages, the differences are small 
compared to the difference in average angles for the in-plane 
and between-plane cases.) On the basis of these differences, it 
has been suggested that clinoatacamite should be thought of 
as a very-anisotropic pyrochlore (quasi-2D)-lattice Heisenberg 
model with antiferromagnetic kagome planes weakly coupled 
to triangular planes.15 Within this scenario, and based on bond 
angle considerations, the exchange interaction between layers 
is likely ferromagnetic and about one order of magnitude 
smaller than the antiferromagnetic in-plane one. 

Other works have emphasized the μ3-OH bridging geom­
etry of clinoatacamite, and suggested that the material is best 
thought of as a distorted pyrochlore magnet with exchange 
interactions that are comparable in the kagome planes as well 
as between the kagome and triangular planes.13,17 In Fig. 1, 
we show the 16-site periodic cluster of the pyrochlore lattice 
that we will use in the ED. 

B. The two-dimensional model 

The study of the thermodynamic properties of the 3D sys­
tems in Sec. II A in the thermodynamic limit is very demanding 
using linked-cluster expansions. Hence, we will also model 
this material using a two-dimensional geometry consisting 
of a two-layer system of kagome and triangular planes, as 

FIG. 1. The 16-site periodic cluster of the pyrochlore lattice. 

depicted in Fig. 2. For such a model, we can straightforwardly 
implement a numerical linked-cluster expansion, as explained 
below. We will show that this simple approximation leads 
to a very good agreement between the experimental uniform 
susceptibility and the theoretical results. 

In order to perform a NLCE study of such a two-
dimensional model, we start with the Heisenberg Hamiltonian 
on the checkerboard lattice, 

H = Jij Ŝi · Ŝj , (1) 
i,j 

where Ŝi is the spin- 1 vector at site i, and Jij is the strength of 2 
the exchange interaction on each bond that connects sites i and 
j . Throughout the paper, the largest exchange interaction in 
each case study sets the unit of energy. We consider three 
different types of bonds on the lattice, as seen in Fig. 3. 
There, the red (shaded) areas make apparent the presence of an 
embedded kagome lattice in the checkerboard lattice. One can 
immediately see that by tuning the strength of the blue (thick) 
bonds, J P, and black (thin) bonds, J PP, to zero, one captures a 
kagome lattice plus extra decoupled sites. Moreover, if we set 
J PP to zero and choose J P ( = J ) to be nonzero, then the structure 
will be that of the kagome lattice coupled to sites sitting on a 

P = J PPtriangular lattice, as depicted in Fig. 2. Finally, if J = J , 
then one has the planar pyrochlore lattice. Because of the 
anisotropies in the Hamiltonian of Eq. (1), the usual NLCEs for 
the isotropic case23 cannot be used here. Therefore, in the fol­
lowing, we implement a NLCE that properly deals with the 
model presented here, in which some of the symmetries of the 
lattice are broken. 

The numerical linked-cluster expansion 

In linked-cluster expansions,22 an extensive property of 
the model per lattice site in the thermodynamic limit (P ) is  

FIG. 2. (Color online) The 16-site periodic cluster of the kagome 
lattice with extra sites inside down triangles. Pink (thin) bonds 
represent the coupling between the kagome layer and the sites sitting 
on a triangular layer in a 2D model for clinoatacamite. 
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FIG. 3. (Color online) The anisotropic checkerboard lattice (left) 
and the eight realizations of the building block used in the square 
expansion NLCE (right). The shaded area represents the kagome 
lattice in the limit where the red bonds (sides of the shaded triangles) 
have the same strength, J , and all other bonds are zero. If the strength 
of the blue (thick) bonds, J P, is nonzero, and the interaction on 
the black (thin) bonds, J PP, is zero, then the resulting structure can 
represent a kagome lattice coupled to sites sitting on a triangular 
lattice. 

expressed in terms of contributions from all of the clusters, up 
to a certain size, that can be embedded in the lattice: 

P = L(c)wp(c). (2) 
c 

The contribution from each cluster (c) in Eq.  (2) is proportional 
to the weight of the cluster for that property (wp), and to 
its multiplicity (L). The weight is defined recursively as the 
property for each cluster (P), minus the weights of all of its 
subclusters, 

wp(c) = P(c) − wp(s), (3) 
s⊂c 

and the multiplicity is defined as the number of ways that 
particular cluster can be embedded in the infinite lattice, per 
site. Symmetries of the lattice are often used in identifying 
topologically distinct clusters and in computing their multi­
plicities. This results in major simplifications of the algorithm 
and usually allows for access to larger clusters in the series. 
Here, we implement NLCEs, where P(c) is computed by 
means of full exact diagonalization,20,21 for lattice models that 
break some of the point-group and/or translational symmetries 
of the underlying lattice. In what follows, we discuss how 
essentially the same expansion as for the symmetric case can 
be used for the latter cases. 

As an example, let us consider the uniform checkerboard 
lattice. In the first order of the square expansion, a single 
crossed square has a multiplicity of 1/2 (Refs. 21 and 23) 
since the number of ways it can be embedded in the lattice is 
half the number of sites. In the second order, the only distinct 
cluster consists of two corner-sharing crossed squares. This 
cluster has a multiplicity of 2 × 1/2, where the extra factor 
of two comes from the two possibilities for its orientation 
on the lattice (related by a 90◦ rotation), and so on.23 Now, 
consider the anisotropic lattice of Fig. 3 where, in general, 
J PP = J P = J . In this case, the translational symmetries are 
reduced by a factor of two, and the point-group symmetries 
are reduced by a factor of four, from those of the isotropic 

checkerboard lattice. So, the square expansion basis used for 
the isotropic case cannot be used for this lattice anymore, 
since the topological clusters and the multiplicities have 
changed. 

The goal is to rearrange the terms in the series to be 
able to use the square expansion basis of the isotropic lattice 
without having to redefine the topological clusters and their 
subclusters. Examining the problem more carefully reveals 
that the new lattice can still be tiled by considering two 
different building blocks, as opposed to one crossed square 
for the uniform lattice, which is a direct consequence of the 
factor-of-two reduction in translational symmetries. These two 
blocks are numbered 2 and 5 in Fig. 3. So, in the first order, one 
has two distinct clusters in the sum, each with a multiplicity 
that is half of that of the single block in the first order of 
the isotropic case. This trend continues in higher orders as, for 
example, in the second order there will be four distinct clusters, 
as opposed to one in the isotropic case, with subclusters that 
are the two blocks in the first order. But, just like in the first 
order, the multiplicities for each cluster are reduced by a factor 
proportional to the increasing factor in the number of clusters 
(four for the second order). Moreover, the pool of subclusters 
of these four clusters contains the same number of clusters of 
each type in the first order, namely, four from each of the two 
building blocks. 

The above argument implies that in the expansion for the 
less symmetric checkerboard lattice, we will have different 
realizations of clusters that existed in the expansion for the 
symmetric lattice, and that the latter expansion is applicable to 
the anisotropic case if the weight of each cluster is replaced by 
the average weight of those realizations. It is easy to see that 
the maximum number of topologically distinct realizations of 
clusters in the isotropic square expansion for the lattice of 
Fig. 3 will be eight. This number is the same factor by which 
the point-group and translational symmetries are reduced from 
that of the isotropic checkerboard lattice. In Fig. 3, we have  
generated the eight realizations in the first order (among which 
only two are topologically distinct). Each of these building 
blocks can serve as the starting block in the same algorithm 
that generates all of the clusters in the expansion for the 
isotropic case. In fact, this guarantees the generation of the 
eight realizations for every cluster in the expansion. 

The applications of this averaging scheme in NLCEs are not 
limited to the example described here. In principle, this method 
can be used in any other expansion (e.g., site expansion, 
triangle expansion, etc.), and for any other model with a 
Hamiltonian that breaks some symmetries of the underlying 
lattice. In the following section, we use this implementation 
of the NLCE method to calculate the properties of the lattice 
in Fig. 3 for values of the exchange constant that transform its 
symmetry from a uniform planar pyrochlore lattice to near a 
kagome lattice, believed to be the appropriate model for the 
clinoatacamite compound. 

III. RESULTS 

A. Thermodynamics of clinoatacamite 

We calculate the thermodynamic properties, such as the 
specific heat, entropy, and uniform spin susceptibility for the 
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Hamiltonian (1) on the lattice in Fig. 3, when J P = −0.1J 

and J PP = 0, to represent clinoatacamite. A 16-site periodic 
cluster of the resulting lattice is depicted in Fig. 2 with thick 
(thin) bonds representing J (J P). Note, however, that NLCE 
computes these properties directly for the infinite system 
and does not have any statistical or systematic errors (such 
as finite-size effects) within its region of convergence in 
temperature. We carry out the NLCE calculations to the sixth 
order (six building blocks with maximum 19 sites) of the 
square expansion. 

In Fig. 4, we show the spin susceptibility per site from 
the last two orders of NLCE for this system. There, we have 
also included the experimental data for this material. The 
magnetic susceptibility of a polycrystalline clinoatacamite 
sample was measured with a SQUID magnetometer under 
an applied field of 500 Oe. The susceptibility was measured 
while warming from 2 to 400 K after field cooling. Consistent 
with previously published susceptibility results,13 a weak 
ferromagnetic moment is observed below Tc1 ≈ 6.4 K (not 
shown) and a subtle kink is observed in the susceptibility 
at Tc2 = 18 K. We will focus on the susceptibility above 
10 K, where the experimental data can be compared with 
the numerical results. The experimental molar susceptibility 
in cgs units is related to the numerical one by χexp = Cχ , 
where the constant C = NAg 2μ2 /kJ = 0.3752g 2/J . We use  B 

J = 193 K from the Curie-Weiss formula, and take g = 2.14 
so that the numerical and experimental susceptibilities match 
at the highest temperature available experimentally (T ∼ 2.1). 
There is a remarkable agreement between the experiment 
and this approximate model for all of the temperatures 
above the convergence temperature of the NLCE (∼0.2, 

indicated by the arrow in Fig. 4). To have a better idea about 
the effect of the extra sites of the triangular layer on the 
susceptibility of the kagome lattice, we also show results from 
a triangle-based NLCE on the kagome lattice with up to eight 
triangles.20,21 

It is clear that the extra sites with weak ferromagnetic 
couplings are responsible for the enhancement of the uniform 
susceptibility at low temperatures. To understand this, we 
consider the limiting case where the sites on the triangular 
layer are completely decoupled from the ones on the kagome 
layer (J P = 0). In the thermodynamic limit, since the kagome 
layer contains only 3/4 of the sites, any property per site can 

1 3be written as P = P0 + Pkgm, where P0 is the property 4 4 
for a single site and Pkgm is the property per site for the 
kagome lattice. Therefore, in the case of susceptibility, a zero-
temperature divergence will emerge from the susceptibility 

1of an isolated spin, χ0 = . In fact, if we take χkgm to4T 

be the NLCE results for the kagome lattice and calculate 
1 3χ = χ0 + χkgm, then the resulting curve lies very close, 4 4 

but slightly below, that of the NLCE with J P = −0.1 (see 
Fig. 6), i.e., the divergence in the uniform susceptibility of 
clinoatacamite is mostly due to the nearly isolated interlayer 
spins. However, a small negative J P presumably produces a 
finite-temperature ordering transition in the three-dimensional 
material, which is observed in the experiments at ∼6 K.  

The results from ED on finite clusters with periodic 
boundary condition further support these findings. In Fig. 4, we  
show the spin susceptibility for the 16-site cluster of Fig. 2, and 
the quasi-2D model, with J P = −0.1. They both agree with the 
experimental results very well in the entire temperature range. 
We also show the ED results for the corresponding 12-site 
cluster on the kagome lattice [which is the same cluster as in 
Fig. 2, but without the extra sites inside down triangles] and the 
uniform pyrochlore lattice of Fig. 1. The latter largely disagrees 
with the experimental results, invalidating the proposals that 
clinoatacamite has such uniformity in exchange constants.13,17 

At this time, the lack of a nonmagnetic isostructural 
compound has made it impossible to accurately determine the 
lattice contribution to the specific heat over the temperature 
range where NLCEs are valid. Therefore, we cannot currently 
compare the magnetic specific heat of clinoatacamite with the 
results of numerical calculations the way we have with the 
susceptibility. Nevertheless, in Fig. 5, we show the numerical 
results for the entropy and the specific heat for the models of 
clinoatacamite and the other systems discussed above, which 
could be used to compare with future experiments. Since 
the specific heat for an isolated spin is zero, the values for 

3the J P = −0.1 case in Fig. 5(a) are roughly of those for 4 
the kagome lattice, at least for T 2 |J P| [see also the inset 
of Fig. 5(a)]. The position of one of the peaks, captured 
in the ED calculations both for the pure kagome and the 
model for clinoatacamite at T ∼ 0.1, approximately coincides 
with the 18 K peak observed in the experiments, considering 
J ∼ 193 K.13,14,18 The existence of such a peak in the specific 
heat of the kagome-lattice Heisenberg model has been a topic 
of discussion for a long time,21,24–26 and the experiments with 
the clinoatacamite compound may have provided a proof 
of its existence. On the other hand, the only peak of the 
specific heat for the finite-size pyrochlore lattice from ED is at 
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The entropies per site for the 2D and quasi-2D models of 
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specific heat, we show, in the inset of Fig. 5(b), the  low­

clinoatacamite, the kagome-lattice and the pyrochlore-lattice 
Heisenberg models, are shown in Fig. 5(b). Just like for the 

temperature entropy of different models from the ED, which 
give us an idea of what may happen at lower temperatures. 
There, we have multiplied the entropy of the 12-site kagome 
lattice by 3 and added the contribution from the isolated spins 4
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( ln 2 
4 ) to be able to properly compare it to the entropy of the 

16-site clusters. We note that above T = 0.01, all entropies 
but the one for the pyrochlore lattice agree with each other. 
Also, as inferred from the specific-heat plots, a finite J P seems 
to bring about a phase transition at a very low temperature, 
after which the entropy drops to zero. 

B. Transition between planar pyrochlore and kagome lattices 

To gain further insights about how thermodynamic proper­
ties change in transitions between different frustrated models, 
and its implications for the research on future materials, we 
study here the uniform susceptibility, and the specific heat in 
the transition between the planar pyrochlore lattice and the 
kagome lattice, using the implementation of NLCE described 
in Sec. II B. We start with the former lattice (J PP = J P = J ). 
To approach the kagome lattice, we simultaneously decrease 
J P and J PP from 1 to 0. As discussed above, the latter limit 
represents the kagome-lattice Heisenberg model plus an extra 

0.2 isolated spin for every three spins in the kagome lattice, which 
is closely related to the 2D model for clinoatacamite. 

As can be seen in Fig. 6, the spin susceptibility of the planar 
FIG. 5. (Color online) NLCE and ED results for (a) the specific pyrochlore lattice can even provide a good estimate for that of 

heat and (b) the entropy per site of the Heisenberg model for 
clinoatacamite as well as on the kagome and pyrochlore lattices. 
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T ∼ 0.3. This is inconsistent with the experimental results for 
clinoatacamite and is yet another evidence that this material 0.1 
is not well described by the uniform (or nearly uniform) 
pyrochlore Heisenberg model. 

In the inset of Fig. 5(a), we show the specific heat from ED 
on a logarithmic temperature scale and down to T = 0.001. 
The specific heat of the kagome or the pyrochlore lattice 
vanishes below T ∼ 0.01, whereas a third peak emerges at T <  

0.001 for the 2D model of clinoatacamite [the cluster of Fig. 2]. 
A similar feature also exists in the corresponding quasi-2D 
model with J P = −0.1. The peak moves to higher temperatures 
by increasing |J P|. Although finite-size effects often prevent 
ED from predicting, even qualitatively, the correct features of 
such models with long-range order at low temperatures, the 
appearance of this low-temperature peak due to the finite J P 
may signal a possible very-low-temperature phase transition 
in the thermodynamic limit, perhaps associated with the one 
observed experimentally for clinoatacamite at T ∼ 6 K.  

0
 

T
 

FIG. 6. (Color online) NLCE results for the uniform susceptibil­
ity per site of the Heisenberg model in the transition between the 
planar pyrochlore lattice (J PP = J P = J in the lattice of Fig. 3) and  
the kagome lattice with extra decoupled sites (J PP = J P = 0). The 
thin dashed (dotted-dashed) line is the ED result for the 2D model 
of clinoatacamite (uniform pyrochlore lattice). For J P = 0 and  0.25, 
black (thin) solid lines and color (thick) lines are the fifth and sixth 
orders of the bare sums in the expansion, respectively. For all other 
values of J P, we have used Wynn extrapolation with one cycle of 
improvement,21 for which the thin solid and thick lines are the last 
two orders. The inset compares the uniform susceptibility per site for 
the planar pyrochlore lattice and the kagome lattice. 

064401-5 



EHSAN KHATAMI, JOEL S. HELTON, AND MARCOS RIGOL PHYSICAL REVIEW B 85, 064401 (2012) 

0 0.5 1 1.5 2 2.5
0 

0.1 

0.2 

0.3 

C
 v 0 

0.1 

0.2 

C
 v 

0 0.5 1 1.5 2 
T 

0.4 

0.6 

S
 

T 

FIG. 7. (Color online) NLCE results for the specific heat and 
entropy per site of the Heisenberg model on the anisotropic checker­
board lattice of Fig. 3, with 0  � J PP = J P � J . The inset compares 
the specific heat and the entropy per site of the planar pyrochlore and 
the kagome lattices. The lines are the same as in Fig. 6 

the 3D pyrochlore lattice (from ED), as the difference between 
the two remains relatively small for temperatures accessible 
to NLCE (T > 0.3). To show the proximity of the results on 
the other side of the transition to the model for clinoatacamite 

PP(J P = −0.1 and J = 0), we plot in Fig. 6 results from the lat­
ter from ED. As the spins on the triangular layer decouple from 

1those on the kagome layer by decreasing J P, the  divergent 
T 

signature of the susceptibility of isolated spins, similar to what 
has been seen in the experiments on clinoatacamite, becomes 
apparent. 

It is now interesting to compare the uniform susceptibility 
for the planar pyrochlore lattice and the pure kagome lattice. 
Within the present NLCE calculation, the latter can be obtained 

PPby subtracting the contribution of isolated spins in the J = 
PJ = 0 case. The results are shown in the inset of Fig. 6. 

One can clearly see there that the kagome lattice has a higher 
uniform susceptibility than the planar pyrochlore lattice for all 
temperatures accessible within our NLCE. 

The planar pyrochlore lattice and the pure kagome lattice 
are two of the most frustrated lattices known. In Fig. 7, we  
show how the specific heat evolves in the transition between 
them for the same parameters depicted in Fig. 6. Unlike for 
the case of the spin susceptibilities, the specific heat of the 

planar pyrochlore lattice is different from the pyrochlore lattice 
Pat high temperatures. In the two-dimensional model, as J

PPand J decrease, the high-temperature peak is suppressed. 
However, this is largely due to the fact that one-fourth of the 
spins in the system are decoupled from the lattice in the limit 

PP Pof J = J = 0 and, therefore, have vanishing specific heat. 
Consequently, if one compares the entropy and specific heat 
per site of the planar-pyrochlore-lattice and the kagome-lattice 
Heisenberg models (inset in Fig. 7), one sees that their values 
are in fact very close for all of the temperatures calculated 
here. Interestingly, this shows that both lattices have a very 
similar degree of frustration. 

IV. CONCLUSIONS 

We have presented a numerical study of the thermodynamic 
properties for models of the clinoatacamite compound. In 
particular, we computed the spin susceptibility, entropy, and 
specific heat, using the ED of finite periodic clusters and an 
implementation of the NLCEs that properly deals with the 
breaking of lattice symmetries introduced by the particular 
model Hamiltonian of interest. We find an excellent agreement 
between the experimental uniform susceptibility of clinoat­
acamite from magnetic measurements and our numerical 
results for the Heisenberg model on a lattice that consists 
of a kagome layer, coupled weakly to a triangular layer. 
Together with a study of the entropy and the specific heat 
of the kagome and pyrochlore lattices, we provide strong 
evidence that clinoatacamite has a pyrochlore structure with 
only weak ferromagnetic coupling between its kagome layers. 
Employing our generalized NLCE, we also studied the above 
thermodynamic quantities in a transition between the planar 
pyrochlore lattice, which has a uniform susceptibility similar 
to that of the pyrochlore lattice, and the kagome lattice 
plus isolated spins, closely related to the model for the 
clinoatacamite compound. 
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