
Georgia Southern University

From the SelectedWorks of John N. Dyer

Fall 2010

Desk-Top Software Development Using HTML
Applications
John N. Dyer, Georgia Southern University

Available at: https://works.bepress.com/dr_john_n_dyer/10/

http://www.georgiasouthern.edu
https://works.bepress.com/dr_john_n_dyer/
https://works.bepress.com/dr_john_n_dyer/10/

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

11

Desk-Top Software Development Using HTML

Applications

John N. Dyer, Department of Information Systems, College of IT, Georgia

Southern University, P.O. Box 7998, Statesboro, GA 30459

Abstract

While many business managers today have experience with office productivity

software, internet browsing, and html development, few outside of the I.T.

field have the knowledge, skills and experience in developing desk-top

applications. The purpose of this article is to provide a relatively simple (but

little known) method of developing and deploying Windows client-side

applications, called html applications (HTA), using html, Windows Scripting

Languages (WSL), and Windows COM and Objects. Few standard

programming courses (with the exception of Visual Basic (VB)) include topics

directly related to Windows application development. A recent literature

review found no textbooks or journal articles, and few websites referencing

the use of HTA in the development of Windows applications. The goal of this

article is to increase the manager’s programming knowledge base, thus

adding greater value to applications development, regardless of the skill of

the programmer. As such, this article provides an extensive overview of HTA

development, including a description of HTA and related components,

terminology, source references, example applications, sample code, and

screen shots of working HTAs.

Keywords

HTA, HTML, Scripting, Programming, Client-Side Applications

Introduction

In laymen’s terms, an HTA is a software application in which basic

programming is contained inside a standard HTML web page, and converted

to an HTA using the .hta file extension. In essence, an HTA is an easily

programmable web page that allows development of desk-top, applications

that can interact with both the operating system and other desk-top

applications. Similar to software developed with Visual Basic (VB), HTAs

are developed as true Windows applications, programmable with basic web

scripting languages (Jscript, VB Script, JavaScript), and interacting with the

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

12

Window’s Component Object Model (COM) and ActiveX technology.

Additionally, the HTA’s user interface is presented using a GUI style browser

design that allows all the features and tools of standard Window’s software.

As such, both seasoned and amateur programmers have the ability to build

full-bodied applications that operate seamlessly with the Windows OS.

An HTA is also a fully trusted application complete with client-side read/write

access to the OS file system, access to system objects and other applications,

e.g. Excel, Notepad, etc, and the system registry. An HTA can run embedded

Microsoft ActiveX controls and Java applets and interact with the OS with no

warning displays before such objects are run within the HTA. (Introduction to

HTML Applications (HTAs) (n.d.)).

HTA Applicability

HTA programming is applicable for simple applications or full-scale

Windows applications. HTA can include forms, multimedia, Web

applications, browsers, and much more. (Introduction to HTML Applications

(HTAs) (n.d.)). The implementation of HTA is limited to Windows-based

computers running IE 5 and later. Programming languages like C++ and VB

are typically used for Window’s application software, since the languages

have access to Windows system resources and the object within the Windows

OS. With HTAs, HTML with script can be used as an alternative to higher

level programming languages, with the same access to Windows system

resources. Just as a web browser, HTAs support HTML, Cascading Style

Sheets (CSS), scripting languages, and also include HTA-specific

functionality, thus providing control over user interface design and access to

the OS. The HTA runs like any executable (.exe) written in C++ or VB.

Other features of HTA that make it suitable for client-side applications

(Introduction to HTML Applications (HTAs) (n.d.)) include OS file

manipulation capabilities, Windows Scripting Host support, database access,

access to Microsoft Office applications, and FTP.

HTA CODING APPLICABILITY

Although an HTA can be written in a text editor, it is suggested that an editor

similar to one used to create Web pages. Suitable editors include Microsoft

FrontPage and Visual Studio. Since the HTA application is script wrapped in

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

13

HTML elements, it is suggested that the reader review the HTML tutorial

available online (W3Schools (n.d.)), and in particular become familiar with

the HTML Document Object Model (HTML DOM (n.d.)).

HTA PROGRAMMING WITH BASIC JAVASCRIPT

An HTA consists of three sections, that together provide the desktop

application. The sections include the head section, the script section and the

body section. The head section consists of the standard HTML tags, <html>

and <head>. To make the file run as an HTA, an additional tag must be

included inside the <head> tag, specifically, <HTA: APPLICATION>, and

the file must be saved with the .hta extension. Where the .hta extension tells

the operating system how to run the application, the HTA tag tells the window

how to behave as an application. This tag also exposes a limited set of HTA

specific attributes that control everything from border style to a program icon

and a menu. Most attributes have default values optimized for the average

application and need not be specified. The available attributes and properties

specific to the tag are shown in Appendix A. The following example shows

the required HTA head, script (using JavaScript) and body sections, with no

attributes or properties set for the HTA tag.

<html><head><HTA: APPLICATION><title> optional </title></head>

<script type="text/javascript"> script goes here </script>

<body> html elements go here </body>

</html>

An HTA is executed by double-clicking the program icon, running it from the

Windows Start menu, opening it through a URL, or starting it from the

Windows command line (Run). When executed, the HTA window title bar

displays any text contained in the title tag, renders html elements and text

contained in the body, and executes scripts automatically or by user

interaction.

Example 1: Simple Text Display

Example 1 shows the markup of a file saved as Example1.hta, while Figure

1.1 shows a screen-shot of the HTA. After executing the HTA, the result is a

window with “Example 1” displayed in the blue title bar at top beside a

default system icon, the text “This is Example 1” displayed in the application

active window, and the usual navigation buttons displayed on the right end of

the title bar used for minimizing, restoring, and closing the application. The

keyboard combination ALT+F4 will also close the application.

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

14

Figure 1.1

Code: Simple Text Display

<html><head><HTA: APPLICATION><title> Example 1 </title></head>

<script type="text/javascript"></script>

<body> This is Example 1</body>

</html>

Example 1 is limited in scope but shows the required structure for an HTA.

The subsequent examples provide the code and code comments for various

HTA programs involving html elements and controls, scripting, and COM

interaction.

Example 2: Loan Payment Calculator

Figure 2.1 displays an HTA loan payment calculator, using JavaScript to

calculate and display results. The user enters the loan amount, loan term, and

interest rate in the text boxes, then clicks the “Calculate Payment.” The

monthly payment is then calculated and displayed in a text box. The code

below reflects the markup for the required sections. The code comments are

also provided. After writing the markup it should be saved as “Payment.hta.”

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

15

Figure 2.1

Code: Loan Payment Calculator

1 <html><head><HTA: APPLICATION><title>Payment

Calculator</title></head>

2 <body>

3 <form name="frmInput">

4 Loan Amount

5 <input type="text" name="txtAmount" size="12">

6 Term (Months)

7 <input type="text" name="txtTerm" size="12">

8 Interest Rate

9 <input type="text" name="txtRate" size="12">

10 <input type="button" value="Calculate Payment"

name="btnCalculate"

 onclick="calcPayment()”>

11 <input type="text" name="txtPmt" size="12">

12 </form>

13 <SCRIPT type="text/javascript">

14 function calcPayment()

15 {

16 varAmount = document.frmInput.txtAmount.value;

17 varTerm = document.frmInput.txtTerm.value;

18 varRate = document.frmInput.txtRate.value;

19 varAdjRate = (varRate/12)/100;

20 varNumCalc =varAdjRate* Math.pow((1+varAdjRate),varTerm);

21 varDenomCalc= Math.pow((1+varAdjRate),varTerm)-1;

22 varPayment = (varAmount*varNumCalc/varDenomCalc).toFixed(2);

23 document.frmInput.txtPmt.value = "$"+varPayment;

24 }

25 </SCRIPT>

26 </body></html>

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

16

Code Comments: Loan Payment Calculator
1 Head section opening tags with HTA tag and optional title tag, enclosing

the application title.

2 Body section opening tag.

3 Form element opening tag with optional form name attribute set to

“frmInput.”

4 Text “Loan Amount” displayed in the application window, and a line

break.

5 Input element (text box) tag for loan amount, with name attribute set to

“txtAmount” and size attribute set to “12”, and a line break.

6 Text “Term (Months)” displayed in the application window, and a line

break

7 Input element (text box) tag for loan term, with name attribute set to

“txtTerm” and size attribute set to “12”, and a line break.

8 “Interest Rate” displayed in the application window, and a line break.

9 Input element (text box) tag for loan interest rate, with name attribute set

to “txtRate” and size attribute set to “12”, and a line break.

10 Input element (button) tag for button control, with value attribute (button

text) set to “Calculate Payment,” name attribute set to “btnCalculate,”

and onClick attribute set to the function name “calcPayment(),” which

binds the function to the button control.

11 Input element (text box) tag for loan payment, with name attribute set to

“txtPmt” and size attribute set to “12.”

12 Form element closing tag.

13 Script section opening tag with type attribute set to "text/javascript."

14 Function declaration “function” and required function name

“calcPayment().”

15 JavaScript character “{“, indicating the opening of script.

16 Variable declaration for “varAmount” set equal to the value entered by

user into the “txtAmount” textbox control (line 5). The value is assigned

using the HTML DOM Object.Property.Method specification,

document.Object(FormName).Object(ControlName).Property(value)

Note that each line of script is ended with the character “;”

17 Variable declaration for “varTerm” set equal to the value entered by user

into the “txtTerm” textbox control (line 7).

18 Variable declaration for “varRate” set equal to the value entered by user

into the “txtRate” text box control (line 9).

19 Variable declaration for “varAdjRate” set equal to the constant calculated

as (varRate/12)/100;

20 declaration for “varNumCalc” set equal to the numerator of the payment

equation (Appendix xx). Note the use of the JavaScript Math Object

“Math.pow”

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

17

21 Variable declaration for “varDenomCalc” set equal to the denominator of

the payment equation.

22 Variable declaration for “varPayment” set equal to a function of previous

variables of the payment equation. Note the use of the JavaScript

Number Object “to.Fixed” used to convert the calculated payment value

to two decimal places.

23 Sets and displays the value of “varPayment” in the textbox control (line

11) using the HTML DOM specification for data binding. Note the “$”+,

that concatenates (+) the dollar symbol “$” with the payment value

variable.

24 Required JavaScript character “}“, indicating the end of script.

25 Script section closing tag.

26 Body and Head section closing tags</body></html>

HTA PROGRAMMING USING FOS, COM AND ACTIVEX

OBJECTS

The true value of an HTA is its ability to interact with COM technology

(What is COM? (n.d.)), (COM Objects (n.d.). Within the Windows OS, COM

allows software applications to communicate, and enables an application to

use system objects. COM is often used by developers to link components

together to build applications, and to take advantage of Windows OS services.

For example, COM OLE technology allows applications to manipulate

Microsoft Excel and other Office applications, and COM Automation allows

users to build scripts in their applications to control one application from

another. COM technologies also include ActiveX Controls.

The COM platform provides a standard way for an HTA to make system

objects available to any COM-compliant application. In laymen’s terms, COM

makes it possible for nonprogrammers to write applications within the

Windows OS. COM provides a translation of simple scripts into commands

that can be acted on by the OS. Effectively, COM allows Windows Desk-top

programming for those who have no high-level programming experience.

COM components are files that contain definitions of the objects the

components have available for use. When a COM object is created in a HTA

script a copy of one of the classes contained within the COM component is

created. After the instance has been created, the HTA can take advantage of

the properties, methods, and events exposed by the object.

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

18

Scripting languages work with a large subset of objects known as Automation

objects, but not all. One important subset of COM is ActiveX, which consists

of objects representing a particular function, a set of functions, and control

objects that can be used to create HTAs that work over the Internet through

web browsers. ActiveX components are only compatible with IE and the

Windows OS. ActiveX controls are granted a much higher level of control

over the Windows OS than Java applets. An HTA can use both ActiveX

components and Java applets.

Example 3: Write/Read Application

An important object displayed in Example 3 is the FileSystemObject (FSO),

which allows use of the object.property.method syntax with a large set of

properties, methods, and events used to gain read/write access to system

folders and files. The FSO exposes the objects necessary to add, move,

change, create, or delete folders (directories) and files on the client computer.

It also enables retrieval of information and manipulation of client drives

(FileSystemObject Sample Code (n.d.)). Example 3 demonstrates using the

FileSystemObject (FSO) COM (FileSystemObject Basics (n.d.)) to write to

and read from the OS file system. Figure 3.1 is a screen-shot of the HTA.

Figure 3.1

When user types text into the textbox and clicks the “Write” button, the HTA

creates, names and writes the user’s text into a text file on the desk-top host.

When the “Read” button is clicked the text file is opened and the contents are

displayed in the HTA window. Both operations result in an alert box relating

a custom message to the user, as shown in Figures 3.2 and 3.3.

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

19

Figure 3.2

Figure 3.3

Although the complete code markup is provided the subsequent code

comments relate only to the two functions whose script manipulates the FSO

COM, an ActiveX COM, and several system objects.

Code: Write/Read Application

1

 <html><head><HTA:APPLICATION><title>Write/Read</title></h

ead>

2 <script type="text/javascript">

3 function WriteNewFile()

4 {

5 var myText = document.frmInput.txtInput.value;

6 var newFSO, cMyFile, myFileName;

7 myFileName = "myText.txt";

8 newFSO = new ActiveXObject("Scripting.FileSystemObject");

9 cMyFile = newFSO.CreateTextFile(myFileName, true);

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

20

10 cMyFile.WriteLine(myText);

11 cMyFile.Close();

12 alert("You Wrote: "+myText);

13 }

14 function ReadNewFile()

15 {

16 var newFSO, oMyFile, myFileName;

17 myFileName = "myText.txt";

18 ForReading = 1;

19 newFSO = new ActiveXObject("Scripting.FileSystemObject");

20 oMyFile = newFSO.OpenTextFile (myFileName, ForReading);

21 alert("Reading : "+oMyFile.ReadLine());

22 oMyFile.Close();

23 }

24 </script>

25 <body><form name="frmInput">Type Text Here

26 <input type="text" name="txtInput" size="12">

27 <input type="submit" value="Write" name="btnWrite"

onclick="WriteNewFile()">

28 <input type="submit" value="Read" name="btnRead"

onclick="ReadNewFile()">

29 </form></body></html>

Code Comments: Write/Read Application
5 Variable declaration for “myText” set equal to the value entered by user

into the “txtInput” textbox control (line 26).

6 Variable declarations for object holders.

7 Sets variable “myFileName” equal to "myText.txt", which is the name of

the text file.

8 Creates a new ActiveX Object of the "Scripting.FileSystemObject" type

and assigns it to variable “newFSO.”

9 Uses the “CreateTextFile” method to physically create a text file with the

name assigned to variable “myFileName,” and hold it in the variable

“cMyFile.”

10 Uses the “WriteLine” method to write the text string assigned to variable

“myText.”

11 Uses the “Close” method to close the text file.

12 Uses the system “alert” object to write a screen message concatenating

the text string "You Wrote: " with the variable “myText.”

…..

16 Variable declarations for object holders.

17 Sets variable “myFileName” equal to "myText.txt", which is the name of

the text file.

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

21

18 Declares a variable named “ForReading” and sets it to the value 1, which

is a required property value of the “OpenTextFile” method.

19 Creates a new ActiveX Object of the "Scripting.FileSystemObject" type

and assigns it to variable “newFSO.”

20 Uses the “OpenTextFile” method to open the text file for reading.

21 Uses the system “alert” object to write a screen message concatenating

the text string "Reading: " with the contents of the text file returned using

the “ReadLine()” method.

22 Uses the “Close” method to close the text file.

Example 4: Excel Loan Amortization

Examples 4 used an ActiveXObject to interact with Excel, an Automation

Object. Figure 4 is a screen-shot of the HTA. The HTA calculates of a

complete loan amortization. When the HTA is executed, it automatically

opens a hidden instance of Excel 2007, binds to the built-in loan amortization

template, and binds default values for the first five text boxes in the first

column. The path for the template is typically located in

C:/Program Files (x86)/Microsoft

Office/Templates/1033/LoanAmortization.xltx.

The user clicks the “Calculate Amortization” button to complete the

amortization; the output from the Excel template is bound to the HTA and

displayed. The user can also print the results, reset the amortization, enter

new inputs, and run as many times as desired. The HTA also checks for the

appropriate versions of Excel and I.E. and warns if the incorrect versions are

detected. Although the complete code markup is provided, no comments are

provided. The HTA embeds the following four function scripts.

1. versionCheck() – validates the correct versions of Excel and I.E. when

HTA is loaded.

2. showAmort() – opens the Excel template and binds default values to the

appropriate cells; completes amortization using the “Calculate

Amortization” button.

3. resetPage() – resets the amortization schedule using the “Reset” button.

4. printPage() – prints the results using the “Print Page” button.

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

22

Figure 4

Code: Excel Loan Amortization
<html><head><HTA:APPLICATION>

<title>Excel Loan Amortization</title></head>

<body onload="versionCheck()">
<div align="center">

<table border="1" width="80%" bordercolor="#000080" id="tableLoanSummary">

<tr id="T1Row1" >
<td id="cellTextLoanAmount" width="200">Loan Amount</td>

<td id="cellInputTextboxLoanAmount" width="75"><input type="text"

name="textboxLoanAmount" size="11"
 value="150000"></td>

<td id="cellTextScheduledPayment" width="200">Scheduled Payment</td>

<td id="cellPmt" width="75"></td>
</tr>

<tr id="T1Row2" >

<td id="cellTextAnnualInterestRate" >Annual Interest Rate</td>
<td id="cellTextboxIntRate"><input type="text" name="textboxIntRate" size="11"

value="6.5"></td>

<td id="cellTextScheduledNumberof Payments">Scheduled Number of
Payments</td>

<td id="cellNumPmtsSch"></td>

</tr>
<tr id="T1Row3" >

<td id="cellTextLoanPeriodinYear">Loan Period in Years</td>

<td id="cellTextboxLoanYears"><input type="text" name="textboxLoanYears"
size="11" value="1"></td>

<td id="cellTextActualNumberofPayments" >Actual Number of Payments</td>

<td id="cellNumPmtsAct"></td>

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

23

</tr>

<tr id="T1Row4" >

<td id="cellTextPaymentsPerYear">Payments Per Year</td>

<td id="cellTextboxPaymentsPerYear"><input type="text"

name="textboxPmtsPerYear" size="11" value="12"></td>

<td id="cellTextTotalEarlyPayments" >Total Early Payments</td>

<td id="cellErlyPmts"></td>

</tr>

<tr id="Row5" >

<td id="cellTextLoanStartingDate" >Loan Starting Date</td>

<td id="cellTextboxStartDate"><input type="text" name="textboxStartDate"

size="11" value="01/01/2010"></td>

<td id="cellTextTotalInterestPaid" >Total Interest Paid</td>

<td id="cellIntPmts"></td>

</tr>

<tr id="Row6" >

<td id="cellTextOptionalExtraPayments" >Optional Extra Payments</td>

<td id="cellTextboxExtraPmts" ><input type="text"

name="textboxExtraPmts" size="11" value="0"></td>

<td id="cellButtons" colspan="2">

<input type="submit" value="Calculate Amortization"

name="buttonAmortization" id = "buttonAmortization"

onclick="showAmort()">

<input type="submit" value="Reset" name="buttonReset" id = "buttonReset"

onclick="resetPage()">

<input type="submit" value="Print Page" name="buttonPrint"

id="buttonPrint" onclick="printPage()"></td>

</tr>

</table><table border="1" width="80%" bordercolor="#800000"

id="tableAmortization">

<tr id="T2Row1" >

<td id="cellTextPaymentNumber" width="50" align="center">Payment

Number</td>

<td id="cellTextPaymentDate" width="90" align="center">Paymemt

Date</td>

<td id="cellTextBeginningBalance" width="80" align="center">Beginning

Balance</td>

<td id="cellTextScheduledPayment" width="70" align="center">Scheduled

Payment</td>

<td id="cellTextExtraPayment" width="70" align="center">Extra

Payment</td>

<td id="cellTextTotalPayment" width="70" align="center">Total

Payment</td>

<td id="cellTextAmountToPrincipal" width="70" align="center">Amount to

Principal</td>

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

24

<td id="cellTextAmountToInterest" width="70" align="center">Amount to

Interest</td>

<td id="cellTextEndingBalance" width="80" align="center" >Ending

Balance</td>

</tr></table>

</div>

</body>

<SCRIPT type="text/javascript" >

 function showAmort()

{

 document.getElementById("buttonAmortization").disabled=true;

document.getElementById("buttonReset").disabled=false;

document.getElementById("buttonPrint").disabled=false;

 var objExcel = new ActiveXObject("Excel.Application");

 objExcel.Visible = false;

 var excelPath ="C:/Program Files (x86)/Microsoft

Office/Templates/1033/LoanAmortization.xltx";

 objExcel.Workbooks.open(excelPath);

 var excelApp = objExcel.ActiveSheet;

 excelApp.Cells(5,4).Value=

textboxLoanAmount.value;

 excelApp.Cells(6,4).Value =

textboxIntRate.value/100;

 excelApp.Cells(7,4).Value =

textboxLoanYears.value;

 excelApp.Cells(8,4).Value =

textboxPmtsPerYear.value;

 excelApp.Cells(9,4).Value =

textboxStartDate.value;

 excelApp.Cells(10,4).Value =

textboxExtraPmts.value;

 document.getElementById('cellPmt').innerHTML=

"$"+excelApp.Cells(5,10).value.toFixed(2);

 document.getElementById('cellNumPmtsSch').innerHT

ML=excelApp.Cells(6,10).value;

 document.getElementById('cellNumPmtsAct').innerHT

ML=excelApp.Cells(7,10).value;

 document.getElementById('cellErlyPmts').inne

rHTML="$"+excelApp.Cells(8,10).value.toFixed(2);

document.getElementById('cellIntPmts').innerHTML="$

"+excelApp.Cells(9,10).value.

toFixed(2);

var StartRow = 18

var StartCol = 1

var NumPmtsAct = excelApp.Cells(7,10).value;

var myAmortArr = new Array(NumPmtsAct);

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

25

var myReplaceArr = new

Array("Mon","Tue","Wed","Thu","Fri","Sat","Sun","00:00:00","EDT","EST

");

 for (var j = 0; j< myAmortArr.length; j++)

 {

 var

x=document.getElementById('tableAmortization').insertRow(j+1);

 for (var i = 0; i<9; i++)

 {

 var y=x.insertCell(i);

 myAmortArr[j]=excelApp.Cells(StartRow+j,StartCol+i).value;

 if (i>1)

 {

 myAmortArr[j] = myAmortArr[j].toFixed(2);

 }

 y.innerHTML=myAmortArr[j];

 if (i==1)

 {

for (var k = 0; k < myReplaceArr.length;k++)

 {

 y.innerHTML=y.innerHTML.replace(myRepla

ceArr[k],"");

 }

 }

 }

}

objExcel.ActiveWorkBook.Close(false);

objExcel.Quit();

}

</SCRIPT>

<SCRIPT type="text/javascript" >

function versionCheck()

{

document.getElementById("buttonAmortization").disabled=false;

document.getElementById("buttonReset").disabled=true;

document.getElementById("buttonPrint").disabled=true;

var browserType=navigator.appName;

var browserVersion=navigator.appVersion;

var parseVersion=parseFloat(browserVersion);

var objExcel;

objExcel = new ActiveXObject("Excel.Application");

var excelVersion = objExcel.version;

objExcel.Quit();

if (excelVersion < 12)

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

26

{

alert("This Program Requires Excel 2007. Code

Modifications Required for Earlier Versions - Please Close

 Program");

 document.getElementById("buttonAmortization").

disabled=true;

 }

else if (browserType!="Microsoft Internet Explorer"||parseVersion <

4)

 {

 alert("This Program Requires MicroSoft I.E. 5.0 or Newer

Browser- Please Close Program");

 document.getElementById("buttonAmortization").

disabled=true;

 }

}

</SCRIPT>

<SCRIPT type="text/javascript">

function resetPage()

{

window.location.reload();

}

</SCRIPT>

<SCRIPT type="text/javascript">

function printPage()

{

window.print();

}

</SCRIPT>

</html>

Conclusions

Although there are few published examples available for programming within

the HTA environment, this paper provides several examples of simple and

more advanced HTAs using basic JavaScripting, FOS and COM technology.

The interested reader is encouraged to visit the web sites referenced in this

article as well as search the web for key words like “HTA example” and

document relevant sights. Microsoft provides an extensive example of using

HTA with COM and ActiveX Objects to build a web page editor (Introduction

to HTML Applications (HTAs) (n.d.)).

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

27

References

COM Objects (n.d.). Microsoft® Windows® 2000 Scripting Guide.

Retrieved from

http://www.microsoft.com/technet/scriptcenter/guide/sas_vbs_wcmr.mspx?mf

r=true

External Object (n.d.). MSDN Library. Retrieved from

http://msdn.microsoft.com/en-us/library/ms535246(VS.85).aspx

FileSystemObject Basics (n.d.). MSDN Library. Retrieved from

http://msdn.microsoft.com/en-us/library/d6dw7aeh(VS.85).aspx

FileSystemObject Sample Code (n.d.). MSDN Library. Retrieved from

http://msdn.microsoft.com/en-us/library/ebkhfaaz%28VS.85%29.aspx

HTML Applications Reference (n.d.). MSDN Library. Retrieved from

http://msdn.microsoft.com/en-us/library/ms536473(v=VS.85).aspx

HTML DOM (n.d.). W3Schools. Retrieved from

http://www.w3schools.com/HTMLDOM/default.asp

IDispatch (n.d.). Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/IDispatch

IDispatch Interface [Automation], (n.d.). MSDN Library. Retrieved from

http://msdn.microsoft.com/en-us/library/ms221608.aspx

IntelliSense (n.d.). MSDN Library. Retrieved from

http://msdn.microsoft.com/en-us/library/hcw1s69b.aspx

Introduction to HTML Applications (HTAs) (n.d.). MSDN Library.

Retrieved from http://msdn.microsoft.com/en-

us/library/ms536496(VS.85).aspx

What is COM? (n.d.). Microsoft. Retrieved from

http://www.microsoft.com/com/default.mspx

W3Schools (n.d.). W3Schools. Retrieved from

http://www.w3schools.com/html/DEFAULT.asp

Journal of Business, Industry and Economics

Volume 15, Fall 2010 John N. Dyer

28

Appendix A

HTML Applications Reference (n.d.)

ELEMENT (tag)

 <HTA: APPLICATION> - Enables running of HTA.

ATTRIBUTES/PROPERTIES
 APPLICATION - Indicates whether the content of the object is an HTA, which

is exempt from the browser security model.

 applicationName - Sets or gets the name of the HTA.

 Border - Sets or gets the type of window border for the HTA.

 borderStyle - Sets or gets the style set for the content border in the HTA window.

 caption - Sets or gets a Boolean value that indicates whether the window is set to

display a title bar or a caption, for the HTA.

 commandLine - Gets the argument used to launch the HTA.

 contextMenu - Sets or gets a string value that indicates whether the context menu

is displayed when the right mouse button is clicked.

 Icon - Sets or gets the name and location of the icon specified in the HTA.

 innerBorder - Sets or gets a string value that indicates whether the inside 3-D

border is displayed.

 maximizeButton - Sets or gets a Boolean value that indicates whether a

Maximize button is displayed in the title bar of the HTA window.

 minimizeButton - Sets or gets a Boolean value that indicates whether a Minimize

button is displayed in the title bar of the HTA window.

 navigable - Sets or gets a string value that indicates whether linked documents are

loaded in the main HTA window or in a new browser window.

 Scroll - Sets or gets a string value that indicates whether the scroll bars are

displayed.

 scrollFlat - Sets or gets a string value that indicates whether the scroll bar is 3-D

or flat.

 Selection - Sets or gets a string value that indicates whether the content can be

selected with the mouse or keyboard.

 showInTaskBar - Sets or gets a value that indicates whether the HTA is

displayed in the Microsoft Windows taskbar.

 singleInstance - Sets or gets a value that indicates whether only one instance of

the specified HTA can run at a time.

 sysMenu - Sets or gets a Boolean value that indicates whether a system menu is

displayed in the HTA.

 Version - Sets or gets the version number of the HTA.

 windowState - Sets or gets the initial size of the HTA window.

	Georgia Southern University
	From the SelectedWorks of John N. Dyer
	Fall 2010

	Desk-Top Software Development Using HTML Applications
	Building HTA Client-Side Applications

