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Abstract— In this paper, a general regression neural network 
(GRNN) based controller is used to control the speed and thrust 
output of the linear induction motor drive. The field orientation 
principle is used to asymptotically decouple the motor speed from 
the secondary flux. The idea of model predictive control technique 
is used for the training of the proposed controller. The motivation 
for using this control strategy for training the GRNN based 
controller is to reduce the effect of the uncertainty due to motor 
parameters variation and load disturbance. This newly developed 
design strategy combines the advantage of the neural networks 
and MPC control techniques to provide robust performance and 
leads to a flexible controller with simple structure that is easy to 
implement. Digital simulations have been carried out to validate 
the effectiveness of the proposed scheme. The results of the 
proposed controller are compared with the corresponding one 
using the traditional PI controller. The results show that, the 
proposed technique has the ability to control successfully the 
speed and thrust of the linear induction drive in face of the motor 
parameters variation or load force disturbance. 

    Keywords- Linear induction motor – Field orientation – 
Electrical elevator - model predictive control. 

1. INTRODUCTION  

        Due to its several advantages such as high starting thrust, 
alleviation of gears between motor and the motion devices, 
simple mechanical construction, no backlash and less friction, 
and suitability for low speed and high speed applications [1-4]. 
Linear induction motor (LIM) has been widely used in a 
variety of applications like as transportation, conveyor systems, 
actuators, material handling, pumping of liquid metal, sliding 
door closers, curtain pullers, robot base movers, office 
automation, drop towers, elevators,..etc.  

 LIM and traditional rotary induction motor have similar 
driving principles. However, the control characteristics of the 
LIM are more complicated. This is attributed to the time 
varying motor parameters as a result of   change in operating 
conditions such as mover speed, temperature, and rail 
configuration. Moreover, there are uncertainties existed in 
practical applications of the LIM [5-7] which usually 
composed of unpredictable plant parameter variations, 
external load disturbance, and un-modeled and nonlinear 
dynamics. Furthermore, since the operation of LIM involves 
two contact bodies, friction force is inevitably among the 
forces of motion and results in steady state error, limit cycle 

and low bandwidth. In addition, the friction characteristics 
may be easily varied due to the change of normal forces in 
contact, temperature and humidity. Therefore, the LIM drive 
system must provide high tracking performance, and high 
dynamic stiffness to overcome the above difficulties.  
Because of the rapid improvements in power electronic 
devices and microelectronics, the field oriented control 
technique has made possible the high performance 
applications of induction motor drives [9-10]. Therefore, it can 
be applied to the LIM by aligning the d-axis of the primary 
current with the secondary flux linkage. However, the 
sensitivity to parameters variation is considered the main 
drawback of this method. 

 In the past few years, modern control techniques have been 
used to control the speed and/or position of the induction 
motor drives: direct torque control (DTC) technique [11], 
sliding mode control method [12-13], linear quadratic 
Gaussian (LQG) method [14], also, Intelligent methods such 
as neural, fuzzy and genetic algorithm have been employed for 
this purpose [15-17]. However, an induction motor is a highly 
coupled, nonlinear dynamic plant. It is difficult to obtain good 
performance for an entire speed range and transient states 
using previous methods. 

On the other hand, MPC appears to be an efficient strategy to 
control many applications in industry, it has many advantages 
such as very fast response, robustness against load disturbance 
and parameters uncertainty, also, it can efficiently control a 
great variety of processes, including systems with long delay 
times, non-minimum phase systems, unstable systems, 
multivariable systems, constrained system[18-19].  

There has been considerable interest in the past few years in 
exploring the applications of neural network NN to deal with 
nonlinearities and uncertainties of the control systems [16].  

Because the NN can be used for a universal approximator like 
fuzzy and neural systems [23], it has been introduced as a 
possible solution to the real multivariate interpolation problem. 
However, there must inevitably be a reconstruction error if the 
structure of the NN (the number of activation functions in the 
hidden layer) is not infinitely rich. These errors are introduced 
into the closed-loop system and deteriorate the stability. To 

.
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compensate for the reconstruction error, [24]. 
In this paper, a GRNN speed control of the field oriented LIM 
drive has been presented. The field orientation principle is 
used to decouple the mover speed from the secondary flux 
amplitude. 

The idea of MPC control technique is being used for training 
the proposed GRNN based controller. The motivation for 
using this control technique for training the GRNN is to take 
large modeling uncertainties into account, and minimize the 
effects of load disturbances. To achieve the desired level of 
robust performance, the training data is obtained by designing 
MPC controller for various operating conditions and applying 
them to the restructured power system in the presence of plant 
parameter changes and load disturbance. The proposed 
controller is then reconstructed using the learning capability of 
neural networks. Moreover, the proposed control strategy has 
simple structure, Thus, its implementation is fairly easy and 
can be used in the real world system. The proposed control 
strategy is tested under the motor parameters variation and 
load disturbance. A comparison has been made between the 
response of the GRNN, MPC , and the traditional PI 
controllers. Simulation results proved that the proposed 
controller can be applied successfully to control the speed of 
the LIM drive and provide the best performance.  
The paper is organized as follows: Section 2   presents the 
dynamic model of the linear induction motor. Indirect field 
oriented technique is described in section 3. General 
consideration about MPC and its cost function are presented in 
section 4. The methodology of the GRNN is presented in 
section 5.The implementation scheme of the LIM drive 
together with the GRNN controller is described in section 6. 
Simulation results and general remarks are presented in 
section 7. Finally, the conclusions and future work are given in 
section 8. 

2. LIM DYNAMIC MODEL 

     The electrical dynamic model of the LIM is modified from 
the traditional model of a three phase, Y-connected induction 
motor in ߙ െ  stationary frame and can be described by the ߚ 
following differential equations [20]: 
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మ
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௥ܶ     : Secondary time constant, 
 ,௥ : Secondary inductance per phaseܮ
ܴ௥ : Secondary resistance per phase, 
 ,௠ : Magnetizing inductance per phaseܮ
ܴ௦       : Primary winding resistance per phase, 
 ௦       : Primary inductance per phaseܮ
 ,Mover linear velocity :        ݒ
, ఈ௥ߣ ߙ :ఉ௥ߣ െ   ,secondary flux components   ߚ 
݅ఈ௦ , ݅ఉ௦  : ߙ െ   ,primary current components   ߚ 

ఈܸ௦ , ఉܸ௦ : ߙ െ  ,primary voltage components   ߚ 
 ,Leakage coefficient :            ߪ
h          : Pole pitch, 
݊௣         : Number of pole pairs. 
 .Differential operator :           ݌
 ,௘         : electromagnetic forceܨ
 ,௅         : external force disturbanceܨ
  ,total mass of the moving element :         ܯ
 viscous friction and iron-loss coefficient :          ܦ
 

3. INDIRECT FIELD ORIENTED LIM 
     In the field oriented control method, the dynamics of the 
highly coupled nonlinear structure of the induction machine 
becomes linearized and decoupled. The decoupled relationship 
is obtained by proper selection of state coordinates, under the 
hypothesis  that the rotor flux is kept constant [17]. Therefore, 
the rotor speed is only asymptotically decoupled from the 
rotor flux, and is linearly related to the torque current only 
after the rotor flux becomes in the steady state. 
The flux model of the LIM can be described in the d-q 
synchronous frame as: 
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Where: 
 
, ௗ௥ߣ ݀ :     ௤௥ߣ െ   ,secondary flux components  ݍ
 ݅ௗ௦ , ݅௤௦      : ݀ െ   ,primary current components  ݍ
௘ݒ ൌ 2݄݂     : synchronous linear velocity , 
݂                :supply frequency.      
 
In an ideally decoupled induction motor, the secondary flux 
linkage axis is forced to be aligned with the d-axis, and the 
field orientation conditions can be applied. It follows that: 
 
௤௥ߣ      ൌ 0         ,      and           ߣ݌ௗ௥ ൌ ௤௥ߣ݌  ൌ 0                (8) 
 
Using (8),  the desired secondary flux linkage in terms of  ݅ௗ௦ 
can be found from (6) as 
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ௗ௥ߣ ൌ                              ௠݅ௗ௦                                                                         (9)ܮ 
 
 
Moreover, (7) can be combined with (8) and (9) to give the 
feedforward slip velocity signal as follows: 
 

௦௟ݒ ൌ  
గ

௛
௘ݒ െ 

௡೛గ

௛
ݒ  ൌ  

௜೜ೞ

ೝ் ௜೏ೞ
                                     (10) 

 
The electromagnetic force can be described in the d-q 
synchronous frame as [17]: 
 

௘ܨ ൌ  ݇௙൫ߣௗ௥݅௤௦ െ ߣ௤௥݅ௗ௦൯                                          (11) 
 
Where ݇௙     is the force constant which is equal to: 
 

௙݇ ൌ  
3݊௣ܮ௠ߨ

௥݄ܮ2
 

 
With the implementation of the field oriented control, (11) can 
be rewritten using (8) and (9) as: 
 

௘ܨ ൌ  ி݅௤௦                                               (12)ܭ 
 
Where 
 
ிܭ ൌ  ݇௙ܮ௠݅ௗ௦ 
   
If the d-axis primary current (flux current component) is kept 
constant at the rated value,  therefore the electromagnetic force 
is directly proportional to the q-axis current; which can be 
realized via closed loop control. In this case, if the q-axis 
current (load current component) is rapidly changed in 
response to the load variation, this will be followed by a rapid 
change in the motor developed force and the LIM will exhibit 
a high dynamic performance. 
 

4. MODEL PREDICTIVE CONTROL 
 
 Due to it is considered as simple and effective control 
technique. MPC has proved to efficiently control a wide range 
of applications in industry such as : chemical process, petrol 
industry, electromechanical systems and many other 
applications. The MPC scheme is based on an explicit use of a 
prediction model of the system response to obtain the control 
actions by minimizing an objective function. Optimization 
objectives include minimization of the difference between the 
predicted and reference response, and the control effort 
subjected to prescribed constraints. The effectiveness of MPC 
is demonstrated to be equivalent to the optimal control. It 
displays its main strength in its computational expediency, 
real-time applications, intrinsic compensation for time delays, 
treatment of constraints, and potential for future extensions of 
the methodology. At each control interval, the first input in the 
optimal sequence is sent into the plant, and the entire 
calculation is repeated at subsequent control intervals. The 
purpose of taking new measurements at each time step is to 

compensate for unmeasured disturbances and model 
inaccuracy, both of which cause the system output to be 
different from the one predicted by the model[18-19].  
Figure 1 shows a simple structure of the MPC controller. An 
internal model is used to predict the future plant outputs based 
on the past and current values of the inputs and outputs and on 
the proposed optimal future control actions.  the prediction has 
two main components : The free response which being 
expected behavior of the output assuming zero future control 
actions, and the forced response which being the additional 
component of the output response due to the candidate set of 
future controls. For linear systems, the total prediction can be 
calculated by summing both of free and forced responses, 
reference trajectory signal is the target values the output 
should attain. The optimizer is used to calculate the best set of 
future control action by minimizing the cost function J, the 
optimization is subject to constraints on both manipulated and 
controlled variables [21,22]. 
The general object is to tighten the future output error to zero, 
with minimum input effort. The cost function to be minimized 
is generally a weighted sum of square predicted errors and 
square future control values, e.g. in the Generalized Predictive 
Control (GPC) : 
 

,ሺܰ1ܬ ܰ2, ܰ3ሻ ൌ ∑ ሺ݆ሻேమߚ
௝ୀேభ

ሾݕොሺ݇ ൅ ݆|݇ሻ െ ሺ݇ݓ ൅ ݆ሻሿଶ ൅

෌ ሺ݇ݑሺ݆ሻሾߣ ൅ ݆ െ 1ሻሿଶேೠ

௝ୀଵ
                 (13) 

 
Where ଵܰ , ଶܰ  are the lower and upper prediction horizons 
over the output, ௨ܰ is the control horizon, ߚሺ݆ሻ, ሺ݆ሻߣ are 
weighting factors. The control horizon permits to decrease the 
number of calculated future control according to the relation: 
ሺ݇ݑ∆ ൅ ݆ሻ ൌ 0  for  ݆ ൒ ௨ܰ.  
ሺ݇ݓ ൅ ݆ሻ represents the reference trajectory over the future 
horizon  ܰ. 
Constraints over the control signal, the outputs and the control 
signal changing can be added to the cost function: 
 
௠௜௡ݑ            ൑ ሺ݇ሻݑ ൑  ௠௔௫ݑ

௠௜௡ݑ∆ ൑ ሺ݇ሻݑ∆ ൑  ௠௔௫         (14)ݑ∆
௠௜௡ݕ            ൑ ሺ݇ሻݕ ൑  ௠௔௫ݕ
 



Figsimple structure of the MPC controller.
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Solution of (13) gives the optimal sequence of control signal 
over the horizon ܰ while respecting the given constraints of 
(14). 
Model Predictive Control have many advantages, in 
particularly it can pilot a big variety of process, being simple 
to apply in the case of multivariable system, can compensate 
the effect of pure delay by the prediction, inducing the 
anticipate effect in closed loop, being a simple technique of 
control to be applied and  also offer optimal solution while 
respecting the given constraints. On the other hand, this type 
of restructure required the knowledge of model for the system, 
and in the present of constraints it becomes a relatively more 
complex regulator than the PID for example, and it takes more 
time for on-line calculations 

DAPTIVE PREDICTION MODEL BY GRNN

     The generalized regression neural network (GRNN) [26] is 
a feed-forward neural network based on non-linear regression 
theory consisting of four layers: the input layer, the pattern 
layer, the summation layer, and the output layer (see Fig. 2). 
Regression can be thought of as the least-mean-squares 
estimation of the value of a variable based on available data.  
The GRNN is principally a normalized Radial Basis Function 
RBF network for which a hidden unit is centered at every 
training sample and a special linear layer. The RBF units of 
the GRNN architecture are generally characterized by the 
Gaussian kernels.  The hidden layer to output layer weights 
are just the target values, so that the output is simply a 
weighted average of the target values of training cases close to 
the given input case.  The first layer is just like of an RBF 
network with as many neurons as there are input/target 

vectors. Choosing the spread parameters  of the radial basis 
function determines the width of an area in the input space, to 
which each basis function responds [27]. Adaptation is 
important to fine-tune the predicted performance of LIM 
drive. The applied GRNN predictor has major dynamic 
features which are:- fast training, modeling of non-linear 
functions, good performance in noisy environments given 
enough data or even in a changing environment data. The 
targets of each of the nodes are constantly updated, which can 
improve if there is any error during the training phase. It also 
helps to adapt the model accordingly to environmental 
changes. The idea is to merge the existing target with the feed 
in training target within a certain ratio.  Finally, the gradient 
descent back-error propagation learning method based on the 
prediction error is continuously applied to further fine-tune the 
GRNN performance. The gradient of the prediction error of 
the GRNN can be computed by using partial differentiation 
method, and updated as in [25,26]. Training of a GRNN is 
performed in one pass of the training data through the 
network. The training of the GRNN is completed after 
presentation of each input-output vector pair from the training 
set to the GRNN input layer only once; that is, both the centers 
of the radial basis functions of the pattern units and the 
weights in connections of the pattern units and the processing 
units in the summation layer are assigned simultaneously. The 

training of the pattern units is unsupervised, but employs a 
special clustering algorithm, which makes it unnecessary to 
define the number of pattern units in advance. Instead, it is the 
radius of the clusters that needs to be specified before the 
training starts. The GRNN computes the predicted values “on 
the fly” from the training values, using the basis functions 
defined below[30] 
The outputs of the hidden layer units are of the form 
 

   φ୩ሺXሻ ൌ exp ቈെ
൫XିVౡ

X൯
T

.൫XିVౡ
X൯

ଶమ ቉                         (15) 

 
When V୩

X are the corresponding clusters for the inputs and V୩
୷ 

are the corresponding clusters for the outputs obtained by 
applying a clustering technique of the input/output data that 
produces K cluster centers [29]. 
Where: 
 
V୩

୷ ൌ ෌ yሺpሻ
୷ሺ୮ሻאୡ୪୳ୱ୲ୣ୰ୱ ୩

                                                   (16) 

 
While  Nk is the number of input data in the cluster center k, 
and 
 
dሺX, V୩

୶ሻ ൌ ሺX െ V୩
୶ሻTሺX െ V୩

୶ሻ                                            (17) 
with   
V୩

X ൌ ෌ Xሺpሻ
Xሺ୮ሻאୡ୪୳ୱ୲ୣ୰ୱ ୩

                                                  (18) 

                                           
The outputs of the hidden layer nodes are multiplied with 
appropriate interconnection weights to produce the output of 
the GRNN. The weight for the hidden node k (i.e wk ) is equal 
to : 

௞ݓ     ൌ  
Vౡ

౮

∑ ேೖୣ୶୮቎ି
ౚቀX,Vౡ

౮ቁ
మ

మమ ቏಼
ೖసభ

                                  (19) 

The selection of an adequate set of training examples is very 
important in order to achieve good generalization properties. 
The set of all available data is separated in two disjoint sets: 
training set and test set. The test set is not involved in the 
learning phase of the networks and it is used to evaluate the 
performances of the models [31]. 
The configuration of the neural network model is determined 
by the nature of the problem to be solved. The dimension of 
the input vector used defines the number of inputs neurons. 
 

 
Fig. 2 General Regression Neural Network (GRNN) [29] 
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In summary, the design procedure for the GRNN based 
controller has the following steps: 
1: applying the model predictive control technique to control 
the speed of the indirect  field oriented linear induction motor 
IFOLIM drive. 
2: Obtaining the performance of the MPC controller in 
different operating condition for obtaining training and test 
data . 
3: Training the neural network according to Fig. 3 (off-line 
training) and testing it. 
The design strategy includes enough flexibility to set the 
desired robust performance and gives a flexible controller with 
simple structure. Due to its practical merit, the proposed 
method easy and can be used in the real world LIM drive. 
 

6. SYSTEM CONFIGURATION 
 

Figure (4) shows the block diagram of an indirect field 
oriented LIM drive. It consists of  LIM, current controlled 
voltage source inverter, hysteresis current controller, field 
orientation mechanism, and coordinate translators.  A linear 
speed sensor has been employed for measuring and providing 
the speed signal necessary for closed loop control. The 
measured speed is compared to the reference speed, and their 
difference is fed to the GRNN controller in order to obtain the 
force current command ݅௤

כ . The flux current command ݅ௗ
כ   is set 

at  rated value. The force and flux current commands are used 
to obtain the slip command using (10). This latter is added to 
the actual speed, and the sum is integrated to obtain the field 
angle  ߠ௘ .  Therefore the commanded phase currents are 
obtained using coordinate translation of  ݅ௗ

כ  , and ݅௤
כ  . The 3-

phase primary currents are measured and fed to hysteresis 
current controller. The current controlled pulse width 
modulation with hysteresis controller regulates the actual 
primary phase currents to closely follow the sinusoidal 
commanded currents.  Using indirect field oriented technique, 
the transfer function of the motor can be deduced using (5) as: 
 

Transfer function ൌ  ௩

ி೐ିிಽ
ൌ ଵ

ெ௦ା஽
                             (20) 

 
For easy implantation, the simplified linearized model of the 
LIM described by (20) is employed in the structure of the 
MPC controller which used for the off-line training for the 
proposed GRNN controller as shown in Fig. 3. 

 
Fig. 3. GRNN control design problem based on MPC 

technique. 

 
 
 

 
Fig. 4   Block diagram of the indirect field oriented Linear 

induction  motor drive 
 

7. RESULTS AND DISCUSSIONS 
 

Computer simulations have been carried out in order to 
validate the effectiveness of the proposed scheme. The Matlab 
/ Simulink software package has been used for this purpose. 
The data of the LIM  used for simulation procedure are [17]: 
3-phase, Y-connected, 8-pole, 3-kW, 60-Hz, 180-V, 14.2 A. 
The motor detailed parameters are listed in table .1. 
The parameters of the MPC controller are set as follows: 
Prediction horizon = 60,  
control horizon = 40, 
Weights on manipulated variables = 0 , 
Weights on manipulated variable rates = 0.1 ,  
Weights on the output signals = 100, 
Sampling interval = 0.0001 sec. 
Constraints are imposed over the developed force, and motor 
speed as : 
Max. developed force = 1000 N. 
Min. developed force = 0 N. 
Max. mover speed = 1.5 m/sec. 
Min. mover speed = -1 m/sec. 
The parameters of the proposed GRNN controller are: 
Input    speed error (ev = reference speed – actual speed ) 
Output    the force current command i୯

כ  . 
Mean square error of the GRNN = 1 * 10-7. 
According the off-line training and testing data, the GRNN 
controller has enough neurons in the hidden layer.  
 
Firstly, the dynamic response of the system is investigated 
under the condition of load disturbance effect. Figure (5)  
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Table. 1 Parameters and data of the LIM 

ܴ௦(Ω) 5.3685 Pole pitch,  ݄ሺ݉ሻ  0.027 

ܴ௥  Ω) 3.5315 
Total  mass of the 

mover,ܯሺ݇݃ሻ                 
2.78 

 ௦(H) 0.02846ܮ 
viscous friction and iron-loss 

coefficient, ܦሺ݇݃ ⁄ݏ ሻ 36.045 

௥ܮ  (H) 0.02846 Force constant, ݇௙(ܰ ⁄ܾݓ .  593.35 (ܣ

 ௠ܮ
(H) 

0.02419 Rated secondary flux, (ܾݓ) 0.056 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
                                                    Fig. (5)   Dynamic responses of the proposed system at load disturbance. 

 
Fig. (6)   Dynamic responses of the proposed system under parameters mismatch condition  
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shows the simulation results of the proposed scheme in this 
case assuming nominal motor parameters. The LIM is 
assumed to start at t=0 and accelerated up to 1 m/sec in the 
first 0.1 second, then the motor speed is kept constant at this 
value during the next 0.8 second, and decelerated till zero 
speed is reached during the next 0.1 sec (short acceleration 
and deceleration times are suitable for the used small LIM ). 
The results from the top to the bottom are: the reference and 
actual speeds, d-q secondary flux components, 3-phase 
primary currents, developed force and the load force.   
 
The load force is assumed to be stepped from 350 N to 700 N 
at t = 0.5 second.  It has been noticed that the reference and 
actual speeds are aligned and good tracking performance has 
been achieved in spite of the load disturbance. Also the figure 
indicates that the actual d-axis secondary flux is equal to the 
set value (0.0568 wb) while the actual q-axis flux is kept zero 
during the simulation period. This means that the field 
orientation condition has been realized which leads to high 
dynamic performance drive. The figure reports also that the 
developed force follows the increase of the load disturbance. 
Similarly, the primary phase currents respond quickly to the 
speed and load variations. 
 
Secondly, the robustness of the LIM with the GRNN 
controller is investigated during parameters uncertainty. In this 
case, the secondary resistance is increased by 25% in the LIM 
model, while it is kept at its nominal value in both of the 
controller and the slip calculator. Also, the mover mass is 
increased by 50% only in the motor model. 
Figure. (6)  depicts the response of the GRNN controller in 
this case of parameters uncertainty at constant load ( ௅ܨ ൌ
300ܰ). It has been indicated that very fast response has been 
achieved using the GRNN controller. Also, the waveforms of 
the primary currents are free of any ripples. In addition, the 
actual q-axis and d-axis indicate that the field orientation 
condition has been realized. 
Thirdly, the tracking performance of the GRNN controller is 
compared with the response of  PI controllers. The load force 
is assumed to stepped from 350 N to 700N at t = 0.5 second. 
Figure (7-a) shows the GRNN response as well as the MPC 
and PI responses under such case of study.  It has been noticed 
that with the MPC controller, the reference and actual speeds 
are aligned and good tracking performance has been achieved 
even at the instant of load disturbance. This is because  the 
MPC provides feedback compensation for the load 
disturbance. With the GRNN gives good tracking even after 
the change of the  load . In contrast, with PI controller  needs a 
period of time (≈.15 sec.) in order to attain the steady state 
value either  after the load disturbance took place as obtained 
clearly in Fig. 7-b .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7:  a)  GRNN response versus MPC and PI responses at 
load disturbance. 

b) speed error (solid line) for PI and (dashed line) for GRNN. 
 

8. CONCLUSIONS 

In this paper, a GRNN based controller is used to control the 
speed and thrust output of the linear induction motor drive. 
The speed control problem first is formulated as an 
optimization control problem via a model predictive control 
technique and the proposed GRNN controller is then trained 
based on samples obtained from applying the MPC controller 
to the indirect field oriented LIM drive system in different 
operating conditions under load variations. This control 
strategy includes enough flexibility to set the desired level of 
robust performance.  The proposed controller has been tested 
through mismatched parameters and load force disturbance. 
Simulation results show that the proposed GRNN controller 
has the advantages of the MPC controller such as; very fast 
response, robustness against parameter uncertainties and load 
changes, well tracking of speed trajectory at all speeds and has 
almost no current and force ripples. In additional, the proposed 
controller has a simple structure that is easy to implement.  A 
performance comparison between the proposed controller and 
a conventional integral control scheme is carried out 
confirming the superiority of the proposed GRNN controller. 
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