Skip to main content
Article
Effect of N-(Phosphonomethyl)glycine on Carbon Assimilation and Metabolism during a Simulated Natural Day
Plant Physiology
  • Wen-Jang Shieh
  • Donald R. Geiger, University of Dayton
  • Jerome C. Servaites
Document Type
Article
Publication Date
11-1-1991
Abstract

The effects of N-(phosphonomethyl)glycine (glyphosate) on the regulation of carbon assimilation, metabolism, and translocation were studied in leaves of sugar beet (Beta vulgaris L., Klein E-type multigerm) under a light regimen that began with gradually increasing irradiance as generally occurs on a natural day. Soon after application, glyphosate caused a marked increase in ribulose bisphosphate and a Dec.rease in phosphoglyceric acid. The response is most simply explained by direct inhibition of ribulose bisphosphate carboxylase activity. The extent of inhibition was small, and the carbon assimilation rate did not Dec.rease. As predicted, photosynthesis Dec.lined within an hour after glyphosate was applied to leaves under gradually increasing light. Inhibition resulted from a Dec.rease in ribulose bisphosphate due to depletion of carbon from the photosynthetic carbon reduction cycle. Photoinhibition, a light-dependent limitation of photosynthetic capacity, appeared to be necessary for marked glyphosate-induced inhibition of photosynthesis. As a result, photosynthesis rate increased with irradiance until it exceeded 400 micromoles per square meter per second but then Dec.lined as the light level increased beyond 500 micromoles per square meter per second. Glyphosate changed the allocation of newly fixed carbon between starch and sucrose for export. Changes in the levels of ribulose bisphosphate and phosphoglyceric acid produced important effects on the regulation of carbon assimilation and metabolism.

Inclusive pages
1109-1114
ISBN/ISSN
0032-0889
Publisher
American Society of Plant Biologists
Peer Reviewed
Yes
Disciplines
Citation Information
Wen-Jang Shieh, Donald R. Geiger and Jerome C. Servaites. "Effect of N-(Phosphonomethyl)glycine on Carbon Assimilation and Metabolism during a Simulated Natural Day" Plant Physiology Vol. 97 (1991)
Available at: http://works.bepress.com/donald_geiger/77/