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Public Finance Solutions to Vehicle Emissions

Problems in California ∗

Don Fullerton and Sarah West

Abstract

All urban centers in California violate the Federal standard for ozone. So far, the
State has addressed vehicle emission problems with a variety of mandates. In contrast,
economic theory suggests that costs of achieving air quality can be minimized by the use
of incentive policies such as permits, taxes, or subsidies. The purpose of the research
described in this monograph is to explore incentive programs that might be added to the
State’s repertoire of effective vehicle pollution reduction policies. The monograph is not
very technical in nature, but it explains our theoretical approach, numerical simulation
model, and statistical estimation.

We find that a single rate of tax on emissions is most efficient. A vehicle-specific gas
tax or a miles-specific vehicle tax can attain the same efficient outcome. Uniform rates
that incorporate heterogeneity are “second-best”. A combination of three uniform rates
can attain 71 percent of the gain from the emissions tax. A gas tax alone can attain 62
percent of the emissions tax gain. A subsidy to new vehicles would be regressive. A tax on
gasoline is not regressive across the lowest incomes but is regressive from middle to high
incomes.

∗We are grateful for the support of our families, for helpful discussions of vehicle emission
policies with many economists and other professionals, and for the financial support of the
Public Policy Institute of California (PPIC). Special thanks go to Jon Caulkins, Dietrich
Earnhart, Jim Gale, Dan Gaynor, Larry Goulder, Michael Greenstone, Winston Harring-
ton, Robert Innes, David Kendrick, Suzi Kerr, Arik Levinson, Robert Pollack, Kevin Rask,
Raymond Robertson, Hilary Sigman, Dan Slesnick, Ken Small, Richard Wall, Margaret
Walls, Pete Wilcoxen, Rob Williams, Paul Wilson, Ann Wolverton, and anonymous ref-
erees. For help with data, we thank the California Air Resources Board, Satya Devesh,
Mary Hostak, and Raphael Susnowitz. We are solely responsible for any remaining errors.
The views expressed herein are those of the authors and not those of the PPIC.
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Summary 
 
Over the last few decades, air quality in California has improved.  Yet all urban 

centers and many other areas of the state still violate the Federal standard for ozone.  
Even more areas violate the stricter California State standard.  The San Joaquin and 
South Central Coast Air Basins are considered to be in “serious” nonattainment of the 
standard, while Sacramento and the Southeast Desert Modified Air Quality 
Management Area are in “severe” nonattainment.  As is well known, the Los Angles 
area is in “extreme” nonattainment of the national ozone standard. 
 So far, and with some success, the State of California has addressed vehicle 
emission problems with a variety of mandates and restrictions.  These command and 
control (CAC) regulations can guarantee vehicle emission reductions, but they do not 
provide much flexibility.  In contrast, economic theory suggests that costs of achieving 
any particular level of air quality can be minimized by the use of incentive policies such 
as permits, taxes, or subsidies.  If an individual has to pay the price of a permit or pay a 
tax per unit of emissions, then that individual has the incentive to find all of the 
cheapest and most convenient ways to reduce emissions.   

The purpose of the research described in this monograph is to explore incentive 
programs that might be added to the State’s repertoire of effective vehicle pollution 
reduction policies.  The monograph is not very technical in nature.  Rather, it is meant 
to explain fully and intuitively some recent results in academic research, with full 
citations to technical working papers and publications in academic journals.  After 
Chapter 1's introduction, Chapter 2 summarizes California's vehicle pollution trends 
over time, the attainment of standards, and the costs of doing so.  Then Chapter 3 
discusses actual vehicle pollution control policies in California, and Chapter 4 describes 
important criteria for the comparison of various CAC and incentive policies. 
 
Methodology and Data 
 
 Our own framework of analysis begins with Chapter 5.  Initially, we consider a 
world where an ideal emissions tax is available and perfectly enforceable, and we use it 
to calculate the theoretically-ideal set of driving behaviors that would minimize the 
costs of achieving a given air quality.  We then suppose that the ideal emissions tax is 
not available, and we consider alternative instruments.  

We take three approaches to this problem.  First, in Chapter 5, we build a 
theoretical model to identify the circumstances under which a set of taxes and subsidies 
on market transactions is logically identical to the emissions tax.  Second, in Chapter 6, 
we build a computer model to simulate the effects of alternative policy instruments that 
are not identical to the emissions tax.  We use a large set of data that captures 
considerable heterogeneity among households, and we use specific assumptions about 
costs and tastes.  Using this model, we then calculate the effects of each policy.  Third, 
in Chapter 7, we develop statistical models to estimate demands for car characteristics 
and fuels.  This estimation accounts for the simultaneity of these choices: the demand 
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for gasoline depends on the type of car, and the demand for each type of car depends on 
the price of gasoline.   

To conduct our simulations and estimation, we use data from the 1994 
Consumer Expenditure Survey (CEX) and the California Air Resources Board (CARB).  
The CEX includes each household’s income, gasoline expenditures, other expenditures, 
and automobile characteristics including make, model, vintage, and number of 
cylinders.  The CARB data contain information on the fuel efficiency and emissions of 
hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx) from 345 
cars tested in California between November 1995 and March 1997.  We match cars 
from the CEX with information on identical cars in the CARB data.   

 
Major Findings 
  
A single rate of tax on emissions is most efficient. 
 

In the model described in Chapter 5, we find that a single rate of tax on 
emissions of all different consumers will minimize the total cost of pollution abatement, 
even as it induces each consumer to change behavior to a different extent for each 
method of pollution abatement (such as buying a smaller car, newer car, better pollution 
control equipment, cleaner gas, or less gas).  But emissions are not a market transaction 
and are easy to hide.  Next, therefore, we rule out the emissions tax and consider 
alternatives.   

  
A vehicle-specific gas tax or a miles-specific vehicle tax can attain the same efficient 
outcome.  

 
The same efficient outcome attained by an emissions tax can be achieved by 

other policies.  In each case, such a policy must affect all the same behaviors in the 
same way.  The second policy we consider is a complicated gas tax, one that depends on 
the characteristics of the vehicle at the pump.  If purchasers realize how their payments 
depend on these choices, then the gas tax itself can present them with incentives to buy 
smaller cars, newer cars, more pollution control equipment, and less gasoline.  On the 
other hand, for this tax to be assessed, cars would need to be equipped with tamper-
resistant computer chips.   

A tax on the vehicle that depends upon the characteristics of the vehicle and the 
miles driven each year also achieves the same efficient outcome.  If vehicle size and age 
were the determinants of emissions per mile (EPM), then a tax rate per mile for that 
vehicle could be calculated on the basis of its size and age, and then multiplied by the 
year’s miles to calculate the tax due.  On the other hand, this policy requires yearly 
odometer readings, and it is thus subject to tampering.  Thus we turn to other policies 
that might be more feasible and enforceable but that might not achieve the first-best 
efficient outcome. 
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Uniform rates that incorporate heterogeneity are “second-best”.  
 

More-realistic alternatives might be limited to charging the same uniform rate 
for all consumers — one tax rate per unit of engine size, one tax rate that depends on 
vehicle age, and one tax rate on each grade of gasoline, no matter who buys it.  
Therefore the fourth policy we consider is a simple use of our formulas that were 
derived for individual-specific optimal tax rates.  Policymakers could just insert into 
those formulas the average engine size, average vehicle age, and average mileage.  This 
single set of tax rates based on those average characteristics could then be applied to 
everybody’s engine size, vehicle age, and use of gasoline.  This procedure does not take 
advantage of available information other than those simple averages.   

In general, available data can be used to calculate not only average size, age, and 
mileage, but also the correlations among these variables.  If individuals with bigger cars 
also tend to choose more than average mileage, or conversely, then that information can 
be used to adjust the tax rates in a way that improves their effectiveness, even while 
each of those tax rates is still limited to be uniform across all consumers.  Therefore the 
fifth and final policy option considered in Chapter 5 is the set of constrained-optimal tax 
rates on engine size, vehicle age, and gasoline.  This policy uses all available 
information, but it is still limited to uniform rates across all consumers.  It therefore 
does not perform as well as the first-best emissions tax, but it is the “second-best” as it 
out-performs all other available incentive-based policies. 

 
A combination of three uniform rates can attain 71 percent of the emissions tax gain. 
 

In Chapter 6, we evaluate different combinations of tax rates on gasoline, engine 
size, and vehicle “newness”.  Since these solutions use the heterogeneity among a 
thousand households in our computer model, it effectively makes use of the extent to 
which the demand for miles may be correlated with engine size or with vehicle age. 
 Our main result, using this model, is that the second-best combination of tax 
rates on gasoline, engine size, and vehicle “newness” achieves a welfare gain that is 71 
percent of the maximum gain obtained by the ideal-but-unavailable tax on emissions.  A 
gas tax reduces demand for gasoline by inducing people to drive fewer miles and to buy 
smaller more fuel efficient cars.  An additional subsidy to newness helps induce them to 
buy newer cars with lower emission rates.   
 The magnitudes of the gas tax and newness subsidy depend on the 
environmental damages of vehicle pollution.  The magnitude of damages depends, 
among other things, on the composition and density of a region’s population, and on a 
region’s topography.  Second-best rates would therefore differ across regions in 
California.  We do not, therefore, recommend a specific dollar value for either a gas tax 
rate or a newness subsidy rate. We do, however, reach conclusions about the  relative  
magnitudes of a gas tax rate versus a newness subsidy.  The gas tax is large relative to 
the newness subsidy.  The overall message here is that the gas tax is the single most 
effective tool to reduce emissions.   
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A gas tax alone can attain 62 percent of the emissions tax gain.  

  
The gas tax alone can achieve 62 percent of the maximum gain obtained by the 

ideal-but-unavailable tax on emissions.  Without the gas tax, the tax rate on engine size 
or on vehicle newness can only achieve about 20 percent of the gain of the ideal 
emissions tax.  Thus we conclude that a gas tax is the key ingredient of any market-
based incentive policy – or at least one that cannot employ the ideal emissions tax. 
   
A subsidy to vehicle newness would be regressive. 
 

In Chapter 7 we use statistical techniques to explore the distributional impacts of 
our alternative policies.  This estimation tells us the effect of demographic and vehicle 
characteristics on the probability that a household will choose a vehicle or combination 
of vehicles.  Households in California are more likely to own larger cars than those in 
the Northeastern U.S., and households with more income are more likely to own more 
cars, larger cars, and newer cars.  Thus we estimate the extent to which a subsidy to 
newer cars is regressive.  Though it increases the number of newer, cleaner cars, this 
subsidy to “newness” mostly helps those with high incomes. 

 
A tax on gasoline is not regressive across the lowest incomes but is regressive across 
higher incomes. 

 
We find that the demand for vehicle miles traveled is relatively unresponsive to 

its price, but our estimate of the price elasticity (-0.67) is somewhat larger than previous 
estimates.  The estimated income elasticity (0.23) is similar to those in previous studies.  
For each one-percent increase of income, vehicle miles (and gasoline demand) increase 
by only 0.23 percent.  An implication is that a gas tax is regressive; high-income 
families buy more gas and would pay more gas tax than low-income families, but their 
extra gas purchases and gas tax are less than their extra income.  Thus their tax as a 
fraction of income falls. 

That overall elasticity estimate tends to mask some specific effects of income on 
gas purchases, however, as income increases from poor to rich.  The very poor do not 
own cars, and do not buy gasoline, so a tax on gasoline would not hurt the poorest 
families.  Thus the gas tax is not regressive at the very poorest levels, but it is regressive 
across most of the rest of the income spectrum.   

 



 1

Chapter 1 
 

Introduction  
 
 Despite air quality improvements in California, most areas of the state still do 
not comply with State and Federal standards.  Statewide emissions of oxides of nitrogen 
(NOx) were generally rising until 1990, and then fell by about 15 percent from 1990 to 
1995.  Statewide emissions of reactive organic gases (ROG) have been falling for 
longer, with a 30 percent reduction since 1985.  Both of these types of emissions are 
precursors of ground-level ozone, a contributor to respiratory and other health 
problems.  And in both cases, the recent reductions were led by declines in motor 
vehicle emissions.  Recent data on other types of emissions are reviewed below. 
 Yet all urban centers and many other areas of the state still violate the Federal 
standard for ozone.  Even more areas violate the stricter California State standard.  The 
San Joaquin and South Central Coast Air Basins are considered to be in “serious” 
nonattainment of the standard, while Sacramento and the Southeast Desert Modified Air 
Quality Management Area are in “severe” nonattainment.  As is well known, the Los 
Angles area is in “extreme” nonattainment of the national ozone standard.  These air 
quality problems are compounded by a rate of population growth for California that 
exceeds the national average.  From 1980 to 1997, vehicle miles traveled (VMT) 
increased by 64 percent for the whole United States and by 78 percent in California. 
 So far, and with some success, the State of California has addressed vehicle 
emission problems with a variety of mandates and restrictions.  “Certification 
standards” require that all vehicles sold in California have emission rates lower than 
specified levels, while “fleet composition” standards mandate that each manufacturer’s 
total sales of new cars each year must include a certain percentage that are low-emission 
vehicles.  “Inspection and Maintenance” programs require that each motorist pass a 
Smog Check every two years, and “reformulated gasoline” requirements ensure that all 
gasoline sold in California meets eight specifications for cleaner-burning fuel. 
 These command and control (CAC) regulations can guarantee vehicle emission 
reductions, but they do not provide much flexibility.  In contrast, economic theory 
suggests that costs of achieving any particular level of air quality can be minimized by 
the use of incentive policies such as permits, taxes, or subsidies.  If an individual has to 
pay the price of a permit or pay a tax per unit of emissions, then that individual has the 
incentive to find all of the cheapest and most convenient ways to reduce emissions.  
Rather than assuming that “one size fits all,” a system of incentives might allow each 
individual to choose the extent to which to save tax (or receive more subsidy) by 
driving less, buying oxygenated gasoline, buying a low-emission vehicle, getting an 
inspection, or fixing the car’s pollution control equipment.  As described below, 
California does employ certain incentive programs such as the Mobile Source Offset 
Program, the Voluntary Accelerated Vehicle Retirement Program, and certain 
incentives for the purchase of alternative-fuel vehicles and fuels.  Notably absent from 
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the list of market-based incentives is a gas tax: California’s rate of tax on gasoline is 18 
cents per gallon, which is a bit lower than the national average. 
 The purpose of the research described in this monograph is to explore other 
incentive programs that might be added to the State’s repertoire of effective pollution 
reduction policies.  Any additional policy option must meet several important criteria.  
It must reduce pollution, and it should minimize the costs of doing so.  It must be 
enforceable, which means that the authorities must be able to measure what is taxed or 
eligible for subsidy.  And any such policy must be fair; legislators are legitimately 
concerned with the distribution of the burdens across families in different 
circumstances.  
 
I.   Market-Based Incentive Policies 
 
 The cost advantage of incentives becomes more important with differences 
among firms or individuals.  At one extreme, if everybody were identical, then 
incentives would induce the same change in behavior for everybody, and thus regulators 
could just place the same requirement on everybody.  If firms differ in terms of 
pollution abatement costs, however, a uniform regulation fails to take advantage of 
those differences.  Every firm must meet the standard, even those for whom costs are 
very high.  And no firm bothers to outperform the standard, even those for whom costs 
are very low.  Similarly, if individual tastes differ, then some want classic cars or great 
acceleration while others could easily walk to work or take the bus. With these kinds of 
heterogeneity, the least-cost solution involves greater pollution reduction for some than 
for others. 
 California encompasses extreme heterogeneity.  It includes mountains, coastline, 
deserts, ski resorts, urban sprawl, rural farms, and pristine wilderness.  It includes all 
kinds of production, all ethnic groups, and all kinds of preferences.  Thus we expect 
incentive policies to matter in California. 
 The ideal incentive policy, in the original theory of Pigou (1932), is a tax per 
unit of emissions.  This Pigovian tax on emissions minimizes the total cost of pollution 
abatement by providing all individuals with incentives to reduce emissions by all of the 
least-cost means available to them.  Some might walk or take the bus, while others 
might buy cleaner fuel or cars.  Those for whom driving a classic car is most important 
could continue doing so, despite the extra pollution, so long as they are willing to pay 
for it.  Others save money by undertaking the necessary abatement. 

In this case, however, the implementation of a tax on emissions would require 
the measurement of each car’s emissions.  Thus the first and primary problem 
considered here is that such a tax would be extremely difficult if not impossible to 
implement.  It is not a tax on a market transaction, like the purchase of labor services or 
the sale of a product, with an invoice confirmed by two parties to the transaction.  To 
the contrary, emissions are hard to measure and easy to hide.  We therefore look for 
alternative incentive instruments that apply to market transactions rather than to 
emissions. 
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Technological advances might soon make it feasible to levy a tax directly on 
emissions (Harrington et al., 1994).  Three such methods can be discussed briefly, but 
each has problems.  First, the most direct method would install on-board devices to 
measure the tailpipe emissions of each vehicle, but this method would be expensive — 
particularly to retrofit millions of existing vehicles.  Also, this method misses 
evaporative emissions, and it is subject to tampering.  Moreover, it may not satisfy legal 
restrictions against the search of a private vehicle.  Second, authorities could simply 
measure each vehicle’s rate of emissions per mile (EPM) once each year and multiply 
by the number of miles driven since the last reading.  This method is subject to evasion, 
however, if drivers can roll back their odometers.  And even with accurate mileage, the 
emission rate cannot be measured accurately because it depends on how the car is 
driven.  Because of cold start-up emissions, Burmich (1989) finds that a five-mile trip 
has almost three times the emissions per mile as a twenty-mile trip at the same speed.  
Sierra Research (1994) finds that a car driven aggressively has a carbon monoxide 
emissions rate that is almost twenty times higher than when driven normally.  A third 
approach discussed by Harrington et al. (1994) would use remote sensing at selected 
locations:  “As vehicles pass the sensor, a tailpipe emission reading is taken and the 
license plate is identified electronically” (p. 24).  If enough monitoring stations are set 
up frequently and moved randomly, authorities could approximate the total emissions of 
each vehicle and send the owner a monthly tax statement.  With over-sampling during 
high-ozone periods, the tax bill could reflect the social cost of those emissions.  Still, 
however, each driver’s emissions are not exact.  This method is expensive, and it misses 
evaporative emissions.  And some drivers may disproportionately miss or intentionally 
avoid the sensor locations. 
 In our research below, we consider alternative scenarios about the availability of 
alternative instruments.  We first consider a world where the emissions tax of Pigou is 
perfectly available and enforceable, and we use it to calculate the theoretically-ideal set 
of driving behaviors that would minimize the costs of achieving a given air quality.  We 
then suppose that the ideal emissions tax is not available, and we consider alternative 
instruments.  In order to take advantage of the cost-reducing characteristics of incentive 
instruments, we consider alternative taxes and subsidies on various choices that might 
affect emissions.   We model specifically how emissions are affected by engine size, 
pollution control equipment, vehicle age, fuel cleanliness, and fuel use.  We then 
calculate the optimal combination of taxes and subsidies on each of those choices. 

The main advantage of such taxes and subsidies is that each applies to a market 
transaction: a purchase with an invoice and a seller who can help collect the tax.  This 
reduces the cost of measuring the taxed activity, and it helps with enforcement of the 
tax.  The tax on engine size can be collected at the time of sale by the manufacturer; 
subsidies to pollution control equipment and to newer cars can be paid upon annual 
inspection; and a gas tax can be collected at lower rates on cleaner fuels. 

We then take three approaches to this problem.  First, we build a theoretical 
model to identify the circumstances under which a set of taxes and subsidies on market 
transactions is logically identical to the emissions tax.  These circumstances are not 
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particularly “realistic,” perhaps, but this model is important for understanding how 
actual policies differ from the ideal cost-minimizing outcome.  Second, we build a 
computer model to simulate the effects of alternative policy instruments.  We use a 
large set of data that captures considerable heterogeneity, and we use specific 
assumptions about costs and tastes.  Using this model, we then calculate the effects of 
each policy.  Third, we develop statistical models to estimate demands for car 
characteristics and fuels.  This estimation accounts for the simultaneity of these choices: 
the demand for gasoline depends on the type of car, and the demand for each type of car 
depends on the price of gasoline.   

The remainder of this introduction will summarize the rest of this monograph 
and a few key results.   

 
II.   A Summary of Results 

 
In the second chapter below, we provide more background information on 

vehicle pollution trends in California, attainment of the standards for different parts of 
the state, and some discussion of the costs of pollution.  The third chapter reviews 
current vehicle pollution control policies in California, including CAC regulations as 
well as market-based incentives (taxes, subsidies, and permit programs).  Chapter 4 
introduces non-economists to the basic theory of optimal pollution control, and it 
provides a simple framework to compare the costs and effectiveness of alternative 
policies such as CAC regulations as opposed to taxes, subsidies, or permit programs. 

The fifth chapter begins our original research on the problems discussed above.  
It describes our vehicle-specific theoretical model, in which many different consumers 
buy cars and fuels of different types.   For analytical tractability, this model ignores the 
style of driving.  Thus we miss the effect on emissions of cold start-ups and aggressive 
driving, but we specifically model the consumer’s choice of engine size, pollution 
control equipment, vehicle age, fuel cleanliness, and amount of fuel.  Thus, we capture 
most of the important determinants of emissions.  We also capture heterogeneity.  In 
this model, individuals differ by income and tastes for engine size and miles.  
Moreover, by using a general equilibrium model, we capture the simultaneity of those 
choices by consumers facing budget constraints and firms facing competition.  All 
markets clear simultaneously. 

We then use the model to evaluate five different policies.  The first is a Pigovian 
tax on emissions.  We show how this single rate of tax on all different consumers 
minimizes the total cost of pollution abatement, even as it induces each consumer to 
change behavior to a different extent for each method of pollution abatement (such as 
buying a smaller car, newer car, better pollution control equipment, cleaner gas, or less 
gas).  But emissions are not a market transaction and are easy to hide.  Next, therefore, 
we rule out the emissions tax and consider alternatives.  As it turns out, the same 
efficient outcome can be achieved by other policies.  In each case, such a policy must 
affect all the same behaviors in the same way.  The second policy we consider is a 
complicated gas tax, one that depends on the characteristics of the vehicle at the pump.  
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It may be feasible, for example, to place a computer chip on each vehicle that identifies 
the characteristics of that vehicle, and another type of chip at each gas pump that 
“reads” the vehicle information and charges accordingly.  If so, then the amount of tax 
paid at the pump can be made to depend on the amount of gas and the type of car.  If 
purchasers realize how their payments depend on these choices (and if they cannot go 
home and transfer the gas to their other older, larger car), then the gas tax itself can 
present them with incentives to buy smaller cars, newer cars, more pollution control 
equipment, and less gasoline.  We derive a formula for the optimal gas tax of this type, 
and we show that it is functionally equivalent in our model to an emissions tax.  It 
achieves the “first-best” allocation of resources, that is, amounts spent on each type of 
driving. 

For a third policy, perhaps a tax on the vehicle could be made to depend upon 
the characteristics of the vehicle and the miles driven each year.  If vehicle size and age 
were the determinants of emissions per mile (EPM), then a tax rate per mile for that 
vehicle could be calculated on the basis of its size and age, and then multiplied by the 
year’s miles to calculate the tax due.  We show that this policy can also duplicate the 
first-best effects of the Pigovian tax on emissions, as it can be designed to provide all of 
the same incentives to reduce mileage and to buy newer, smaller cars.  On the other 
hand, this is the policy that requires yearly odometer readings, and it is thus subject to 
tampering.  Thus we turn to other policies that might be more feasible and enforceable 
but that might not achieve the first-best efficient outcome. 
 Note that each of these last two policies is individual-specific.  The formulas we 
derive show the optimal tax rates for each consumer’s vehicle and fuel use (mileage).  
In general, however, the purchaser is anonymous.  Thus, more-realistic alternatives 
might be limited to charging the same uniform rate for all consumers — one tax rate per 
unit of engine size, one tax rate that depends on vehicle age, and one tax rate on each 
grade of gasoline, no matter who buys it.  Therefore the fourth policy we consider is a 
simple use of our formulas that were derived for individual-specific optimal tax rates.  
Policymakers could just insert into those formulas the average engine size, average 
vehicle age, and average mileage.  This single set of tax rates based on those average 
characteristics could then be applied to everybody’s engine size, vehicle age, and use of 
gasoline.  As it turns out, this procedure misses some opportunities.  It does not take 
advantage of available information other than those simple averages.  In general, 
available data can be used to calculate not only average size, age, and mileage, but also 
the correlations among these variables.  If individuals with bigger cars also tend to 
choose more than average mileage, or conversely, then that information can be used to 
adjust the tax rates in a way that improves their effectiveness, even while each of those 
tax rates is still limited to be uniform across on all consumers.  Therefore the fifth and 
final policy option considered in Chapter 5 is the set of constrained-optimal tax rates on 
engine size, vehicle age, and gasoline.  This policy uses all available information, but it 
is still limited to uniform rates across all consumers.  It therefore does not perform as 
well as the first-best emissions tax, but it is the “second-best” as it out-performs all 
other available incentive-based policies. 
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 After that theoretical chapter, we proceed in Chapter 6 to describe our computer 
model and our use of actual data for more than a thousand individual cars and their 
owners.  We start with data from the 1994 Consumer Expenditure Survey (CEX) that 
includes each household’s income, gasoline expenditures, other expenditures, and 
automobile ownership (including make, model, and year).  To obtain other information 
about each car, we use data on a large sample of cars from the California Air Resources 
Board (CARB).  For each car in the CEX, we find a car in the CARB with the same 
make, model, and year, and we use the CARB data for that car’s engine size, estimated 
miles per gallon (MPG), and estimated emissions per mile (EPM).  After linking the 
data in this way, we have a large sample of households with information on income and 
gas purchases plus each car’s age, engine size, MPG, and EPM.  We can also multiply 
MPG times gallons of gas to get an estimate of miles driven.  We specify the price paid 
to acquire one more gallon of gas, the price paid to get a car that is one year newer, and 
the price paid to get a car that has one more unit of engine size (measured in cubic 
inches of displacement, CID).  Each such price could be affected by a tax or subsidy.  
Next, we assume that each household gets utility from miles driven, engine size, vehicle 
“newness,” and “other commodities.”  Maximizing this utility function subject to a 
budget constraint, we derive demand behavior, that is, how each household reacts to 
changes in each of those prices.  These demand functions recognize that the price of 
gasoline affects all choices: demand for gasoline, demand for relatively larger cars with 
lower fuel efficiency, and demand for relatively newer cars with higher fuel efficiency.  
Similarly, any change in the effective price of buying a newer car or a larger car affects 
demands for those characteristics, which affect fuel efficiency, which affects the 
demand for gasoline.  Given any outcome for each household’s chosen gasoline, engine 
size, and vehicle age, we can calculate that household’s MPG and EPM.  We multiply 
EPM by miles to get the household’s emissions, and we add over all households to get 
total emissions.  We can also calculate each household’s utility, and the overall gain or 
loss in the welfare of all households. 
 Using this model, we evaluate different combinations of tax rates.  As a basis for 
comparison, we calculate the effect of an ideal Pigovian emissions tax.  This tax raises 
the price of emissions, which raises the cost of driving, which lowers the demand for 
miles.  It also raises the effective price of engine size and lowers the effective price of 
getting a newer vehicle (since newer vehicles have lower emissions).  All consumers 
change behavior in various ways, and we calculate the reduction in emissions and the 
increase in total welfare.  We then suppose that the ideal emissions tax is not available 
and instead consider tax rates on engine size, vehicle newness, and gasoline.  Assuming 
all three of these instruments are available, we use the computer to search over 
combinations of tax rates to find the one set of rates that maximize the gain in welfare.  
This set of tax rates is the “second-best” policy, given the constraint that the first-best 
emissions tax is not available.  Also, since this solution uses the heterogeneity among a 
thousand households in our computer model, it effectively makes use of the extent to 
which the demand for miles may be correlated with engine size or with vehicle age. 
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 Our main result, using this model, is that the second-best combination of tax 
rates achieves a welfare gain that is 71 percent of the maximum gain obtained by the 
ideal-but-unavailable tax on emissions.  The glass is more than half full.  What does this 
second-best policy look like?  The tax on gasoline is relatively high, and the tax on 
“newness” is negative (that is, a subsidy to buying a newer car with lower emissions).  
However, the tax rate on engine size is slightly negative.  Surprisingly, the second-best 
policy calls for a slight subsidy to engine size.  As discussed more in Chapter 6, the 
reason is that the high gas tax already effectively raises the price of buying a larger car 
with lower fuel efficiency – even more than is necessary to achieve the optimal 
allocation of resources.  The dollar values of the rates depend on the magnitude of 
environmental damages, which depend on regional characteristics.  We do not, 
therefore, recommend exact values for the rates.  We do conclude, however, that the gas 
tax rate is large relative to the newness subsidy rate.  The overall message here is that 
the gas tax is the single most effective tool to reduce emissions.  It reduces the demand 
for gasoline by inducing people to drive fewer miles and to buy smaller more fuel 
efficient cars.  An additional subsidy to newness helps induce them to buy newer cars 
with lower emission rates. 
 Chapter 6 also considers situations in which policymakers are limited to just one 
or two of those three tax rates.  Since the subsidy to size was so small, it can effectively 
be ignored: a policy with just a gas tax and newness subsidy does almost as well as the 
three-part policy (71 percent of the gain from the ideal emissions tax).  Without the 
newness subsidy, however, the welfare gain falls to 62 percent of the gain from the 
ideal emissions tax.  Actually, the gas tax alone can achieve this 62 percent gain, with 
or without the small subsidy to size.  Without the gas tax, the other two instruments can 
only achieve about 20 percent of the gain of the ideal emissions tax.  Thus we conclude 
that a gas tax is the key ingredient of any market-based incentive policy – or at least one 
that cannot employ the ideal emissions tax. 
 We might also note that these market-based incentive policies are not enough on 
their own.  In particular, the subsidy to buying a newer car is one way to reduce 
emissions in this model, but only because newer cars have lower emissions rates.  And 
newer cars have lower emissions rates only because of regulations that have become 
increasingly stringent over time.  So regulations are important, but so are incentives.  
The regulations by themselves make newer cars more expensive, because of the 
additional technology necessary to meet the increasingly-stringent standards.  The fact 
that the newer cars are more expensive makes consumers less likely to buy them, and 
more likely to prolong the life of their older, dirtier cars.  The subsidy to buying a newer 
car helps overcome that hurdle and thus makes the air cleaner.  Perhaps a new subsidy 
to buying a cleaner car could be financed by an increase in the gas tax, a combination 
that performs efficiently in our model. 
 While that combination is efficient, we have not yet provided any information 
on the distribution of the tax burdens.  Chapter 7 uses statistical techniques to address 
that issue.  In addition, while the computer model of Chapter 6 uses assumptions about 
consumer demand behavior, we now attempt to estimate such demands directly.  For 
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any normal market commodity, the usual approach is to use a large sample of 
households to estimate the quantity demanded as a function of price, income, and 
demographic characteristics.  This regression indicates both price and income 
elasticities of demand, and it indicates how the demand for this good varies across 
households of different types.  Such results can be used to calculate the burden of a tax 
on this good across households of different types.  In this case, however, estimation is 
complicated by the simultaneity of consumer choices.  The demand for gasoline reflects 
a demand for vehicle-miles traveled (VMT), which depends on the price of gasoline and 
on the MPG of the family car.  But MPG depends on vintage and engine size.  The 
demand for engine size depends on the cost of getting a larger engine, but that cost 
depends in part on the price of gasoline.  In other words, the household’s choice of 
vehicle affects their demand for miles, and vice versa.  Our estimation accounts for this 
simultaneity. 
 For each household in a large sample from the Consumer Expenditure Survey 
(CEX), we record the number of cars and each car’s age and number of cylinders.  We 
divide all possible bundles into 19 categories.  Having no cars is one such bundle, as is 
having one car that is small and old, or two cars that are medium-sized and new, etc.  
We estimate MPG as a function of these vehicle characteristics.  With data on gasoline 
prices and gasoline purchases, we can then calculate each household’s miles traveled 
and cost per mile.  We also calculate the cost of owning each vehicle bundle.   

We then break down the estimation of demands into stages.  First the household 
considers income and all relevant prices to decide from among the 19 vehicle bundles.  
This estimation tells us the effect of demographic and bundle characteristics on the 
probability that a household will choose each bundle.  Results tell us, for example, the 
extent to which households in urban areas are more likely to own no cars, or the effect 
of the number of income earners on the number of cars owned.  Households in 
California are more likely to own larger cars than those in the Northeastern U.S., and 
households with more income are more likely to own more cars, larger cars, and newer 
cars.  Thus we estimate the extent to which a subsidy to newer cars is regressive.  
Though it increases the number of newer, cleaner cars, this subsidy to “newness” 
mostly helps those with high incomes. 

In the second stage, we estimate VMT  demand as a function of prices, incomes, 
demographic characteristics, and vehicle bundle.  A problem with this estimation is that 
the actual vehicle bundle is chosen by the household, so the use of actual bundle in this 
regression would bias the estimates of the other coefficients.  Instead, we use the 
estimates from the first stage above to predict the chosen bundle from other variables 
for the household that are not chosen by the household (like income, prices, and 
demographic characteristics).  We then use predicted bundles instead of actual bundles 
in the second stage estimation of VMT  demand to get unbiased estimates. 

We find that the demand for VMT  is relatively unresponsive to its price, but our 
estimate of the price elasticity (-0.67) is somewhat larger than previous estimates.  The 
estimated income elasticity (0.23) is similar to those in previous studies.  For each one-
percent increase of income, vehicle miles (and gasoline demand) increase by only 0.23 
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percent.  An implication is that a gas tax is regressive; high-income families buy more 
gas and would pay more gas tax than low-income families, but their extra gas purchases 
and gas tax are less than their extra income.  Thus their tax as a fraction of income falls. 

That overall elasticity estimate tends to mask some specific effects of income on 
gas purchases, however, as income increases from poor to rich.  The very poor do not 
own cars, and do not buy gasoline, so a tax on gasoline would not hurt the poorest 
families.  The next income bracket includes working low-income families who tend to 
spend a relatively high fraction of income on gasoline.  They would bear the brunt of a 
gas tax, while successive income brackets spend successively lower fractions of income 
on gas.  Thus the gas tax is not regressive at the very poorest levels, but it is regressive 
across most of the rest of the income spectrum.   

The subsidy to newness is relatively regressive, because it helps the rich, and the 
gasoline tax is relatively regressive, because it hits relatively low-income working 
families.  These effects present significant challenges to researchers and policymakers 
alike: how to reduce emissions efficiently by using incentive instruments without 
placing undue burden on low-income families.  This question warrants a lot more 
attention, obviously, as we all proceed with this research agenda.  The next step could 
introduce additional constraints to the “optimal policy” problem.  We could then ask 
what is the second-best set of tax rates other than the unavailable emissions tax that 
effectively reduce emissions while protecting the real incomes of low-income families.  
Alternatively, perhaps emissions policy could be combined with a change in other 
redistributive policies.  Even if a gas tax and newness subsidy are regressive, for 
example, they could be combined with a change in transfer programs, other aid to low-
income families, or a change to the overall progressivity of the income tax.  Exempting 
low-income families from a gas tax or other emissions policy reduces its effectiveness.  
If instead all households were ensured adequate incomes through other policies, then 
the most effective emissions policy would tilt all households away from driving and 
polluting by presenting all of them with incentives such as the gas tax and newness 
subsidy.  These and other future research topics are discussed more in our concluding 
chapter.   
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Chapter 2 
 

Vehicle Pollution in California: Trends, Attainment, and Costs 
  
 Why should we be concerned about vehicle pollution in California?  Over the 
last few decades, pollution from vehicle exhaust has declined.  Total statewide ozone 
precursors such as oxides of nitrogen (NOx) and reactive organic gases (ROG), fell from 
1980 to 1995, as did statewide carbon monoxide (CO) emissions.  Particulate matter 
(PM10) from vehicle exhaust also declined over that fifteen-year period, although that 
created by tires passing over roads has increased.  Air quality, even in the heavily-
polluted South Coast Air Basin, has also improved over the last two decades.  Despite 
this improvement, many areas in California have not yet attained State and national 
ambient air quality standards.  Increases in population and vehicle-miles traveled puts 
into question California’s ability to attain these standards.   
 Because much of California does not attain air quality standards, its population 
continues to bear the external costs of driving.  The direct costs of pollution include 
increases in morbidity and mortality, diminished visibility, crop damage, building 
damage, and decreased housing values.  In addition, Californians face other costs of 
transport including the costs of accidents, road wear, noise, and lost time due to 
congestion.    
 In section I, we present information on air pollution trends and attainment in 
California.  Next, in section II, we discuss increases in population and vehicle-miles 
traveled.  Last, in section III, we discuss the costs of such pollution, focusing on health 
costs.1 
  
I.   Air Pollution in California: Trends and Attainment Status 
 

This section presents information on air pollution trends in California over the 
last few decades.  The overall pattern is clear: California air is much cleaner now than it 
was thirty years ago.  Yet much of California does not meet Federal air quality 
standards, much less the more-stringent California standards for ozone (O3), carbon 
monoxide (CO), and particulate matter (PM10).  And even with cleaner cars, emissions 
reduction is not a foregone conclusion, because of population growth, increases in miles 
driven, and preferences for larger vehicles.  In this section, we present statewide 
historical trends for three main pollutants: ozone, PM10, and carbon monoxide.  Then, 
we use maps to show the areas of nonattainment in California.  We then focus on the 
most heavily polluted region in the state, the South Coast Air Basin, by showing air 
quality trends for the three pollutants mentioned above.   
 

                                                
1 For estimates of the other transport costs mentioned above, see Greene et al (1997).  
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A.  Statewide Historical Trends 
   
The following graphs are drawn using data from  The 1999 California Almanac 

of Emissions and Air Quality (CARB, 1999).  These statewide data are shown only for 
1985, 1990, and 1995.  These data place statewide emissions into categories according 
to their source.  Stationary-source emissions consist of those from industrial fuel 
combustion, waste disposal, cleaning and surface coatings, petroleum production and 
marketing, and industrial processes.  Area-wide source emissions consist of those from 
solvent evaporation, residential fuel combustion, road dust, and miscellaneous 
activities.  Mobile-source emissions consist of those from on-road motor vehicles and 
other modes of transportation.   
  

1.  Ozone 
 
Vehicle emissions contain reactive organic gases (ROG) and oxides of nitrogen 

(NOx), which react in the presence of sunlight to create ground-level ozone (O3), the 
main component of urban smog. Respiratory symptoms of ozone exposure include 
coughing, painful breathing, and temporary loss of lung function (Wijetilleke and 
Karunatatne, 1995). When ozone levels are high, hospital admissions for respiratory and 
cardiovascular problems, emergency room visits for asthma, and asthma attacks 
increase (EPA, 1999).  Epidemiological studies suggest that there may be a positive 
relationship between ozone and premature mortality (see Ito and Thurston, 1996; 
Kinney et al., 1995; Moolgavkar et al., 1995; and Samet et al., 1997).  In addition, 
ozone damages crops, buildings, rubber, and some plastics (CARB, 1999).   

Ozone levels in California declined significantly from 1985 to 1995.  To 
measure ozone levels in the state, the CARB measures the levels of its precursors, ROG 
and NOx.  Figure 2-1 shows statewide emissions of NOx.  These emissions increased 
slightly between 1985 and 1990, and fell from 1990 to 1995.  In all three years, gasoline 
and diesel vehicles accounted for approximately 60 percent of the oxides of nitrogen 
emitted.  NOx emissions from on-road motor vehicles declined by 15 percent from 1990 
to 1995. 
 As evident in Figure 2-2, declines in emissions from on-road vehicles accounted 
for most of the 30 percent reduction in statewide ROG emissions from 1985 to 1995.  In 
1985, gasoline and diesel vehicles accounted for 54 percent of ROG emissions.  By 
1995, this number dropped to 47 percent.   
  

2. Particulate Matter (PM10) 
 
PM10 refers to particles with an aerodynamic diameter of 10 microns or smaller.  

These particles are mixtures of substances that can include carbon, lead, nickel, nitrates, 
organic compounds, sulfates, diesel exhaust, and soil.  These substances occur in the 
form of solid particles or liquid droplets.  By penetrating deep into the lungs, PM10 
causes or contributes to bronchitis, asthma, and respiratory illnesses.  Due to the well-
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established link between PM10 and premature death (see Pope et al., 1995 and Dockery 
et al., 1993), particulate matter is considered to be the most damaging component of 
urban smog (Krupnick et al., 1997). 

As shown in Figure 2-3, statewide PM10 levels rose by 18 percent between 1985 
and 1995.  Vehicle exhaust accounted for only 5 percent of PM10 in 1985, and 3 
percent in 1995.  Emissions from gasoline vehicles and especially from diesel vehicles 
declined over the fifteen- year period.  However, dust caused by driving on roads 
accounted for approximately 50 percent of area-source PM10.  Over the ten-year period, 
this component of PM10 rose by 22 percent.  Thus vehicles remain responsible for 
much of statewide PM10 creation.  

 
3. Carbon Monoxide 
 
Carbon monoxide is a colorless and odorless gas that is directly emitted as a 

product of combustion. It impairs the oxygen-carrying capacity of blood. Healthy 
people exposed to high levels of CO experience headaches, fatigue, slow reflexes, and 
dizziness (CARB, 1999). High ambient levels of CO increase hospital admissions for 
respiratory and cardiovascular problems (EPA, 1999) and may raise the probability of 
heart attack for those at risk (Krupnick, 1991).  

Figure 2-4 shows that statewide carbon monoxide levels fell 23 percent from 
1985 to 1995.  Reductions in emissions from gasoline and diesel vehicles account for all 
of this reduction; emissions from other mobile sources, stationary sources, and area-
wide sources increased over the period.   

 
B. Nonattainment Areas in California 
 
Despite the decreases in statewide ozone precursors, many areas do not attain 

State and national standards for ozone ambient levels.  A small part of California 
violates the standards for carbon monoxide, and most of the state violates standards for 
PM10.  The State and Federal standards for the three pollutants are listed in Table 2-1.  
State standards for all three pollutants are more stringent than Federal standards. 
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Table 2-1: State of California and National Standards for Ozone, PM10, and Carbon 
Monoxide 
Pollutant State of California 

Standard 
National Standard 

Ozone 0.09 parts per million 
(ppm) for one hour, not to 
be exceeded. 

0.12 ppm for 1 hour, not to be 
exceeded more than once per year, 
and  
0.08 ppm for 8 hours, not to be 
exceeded, based on the fourth 
highest concentration averaged over 
three years. 

PM10 50 micrograms of 
particulate matter per cubic 
meter of air (µg/m3) for 24 
hours, and  
30 µg/m3 annual geometric 
mean, neither to be 
exceeded. 

150 µg/m3 for 24 hours, based on the 
99th percentile concentration 
averaged over 3 years, and  
50 µg/m3 annual arithmetic mean 
averaged over 3 years.   

Carbon 
Monoxide 

20 ppm for 1 hour, and 
9.0 ppm for 8 hours, 
neither to be exceeded. 

35 ppm for 1 hour, and 
9.0 ppm for 8 hours, neither to be 
exceeded more than once per year. 

Source:  CARB (1999). 
 

Based on these standards, state and national governments classify regions into 
three air quality designations: nonattainment, attainment, and unclassified.  A 
nonattainment designation indicates that air quality violates an air quality standard, 
while an attainment designation indicates that air quality does not violate a standard.  
An unclassified designation indicates insufficient data for determining attainment or 
nonattainment.  In addition, the State of California splits nonattainment areas into two 
categories: nonattainment and nonattainment-transitional.  Areas classified as 
nonattainment-transitional have experienced air quality improvements that indicate that 
they may soon qualify as attainment areas.  

 
1.  Ozone nonattainment areas 
 
Figures 2-5 and 2-6 show state and national nonattainment areas for ozone in 

1998.  With the exception of some areas in northern and central California, most areas 
of the state, including all major urban areas, have ozone concentrations that violate the 
State standard.   

What is not shown in these maps, however, is that the Los Angeles area is the 
only area in the United States that is classified as being in “extreme” nonattainment of 
the national ozone standard.  The Sacramento area, and the Southeast Desert Modified 
Air Quality Management Area are in “severe” nonattainment, and the San Joaquin and 
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South Central Coast Air Basins are in “serious” nonattainment.  Most other urban areas 
in California also violate national ozone standards.  Areas that do not violate the 
national 1-hour standard are categorized as areas where the standard no longer applies.  
These areas may violate the new national 8-hour standard, established in 1997, and the 
EPA is in the process of redesignating those areas.   

 
2.  PM10 nonattainment areas 
 
As shown in Figure 2-7, in 1998 nearly all of the state is designated as 

nonattainment for the California PM10 standards.  Three counties remain unclassified, 
and only one area, the Lake County Air Basin, is designated as being in attainment.   

The national PM10 standards have two designation categories: nonattainment 
and unclassified.  However, several areas in California have PM10 air quality that does 
not violate the national standards.  Figure 2-8 shows that the San Joaquin Valley, 
Sacramento, the Mojave Desert, the Los Angeles area, and the Salton Sea Air Basin 
(which includes Imperial County and part of Riverside County) are designated as 
nonattainment areas by the Federal government. 

 
3. Carbon monoxide nonattainment areas 
 
In 1998, California had only two nonattainment areas for the State CO 

standards: Los Angeles County and the city of Calexico, located along the Mexican 
border.  Figure 2-9 shows these two areas.   
 If one county in an air basin does not attain national ambient air quality 
standards, the entire air basin is designated nonattainment.  This explains the fact that in 
Figure 2-10, the entire South Coast Air Basin, not just the county of Los Angeles, is 
shown to be in nonattainment of Federal standards.  
 

C. South Coast Air Basin Air Quality Trends 
 

The South Coast Air Basin is California’s largest metropolitan region.  It covers 
“a total of 6,530 square miles, is home to nearly half of California’s population, and 
generates about one-third of the state’s total criteria pollutant emissions” (CARB, 1999: 
p. 81).  As we saw in Section B of this chapter, the South Coast Air Basin does not 
attain national standards for ozone, PM10, or carbon monoxide.  However, maximum 1-
hour levels of all three pollutants were lower in 1997 than they were in most previous 
years.   

 
1.  Ozone 
 
As shown in Figure 2-11, maximum one-hour concentrations of ozone in the 

South Coast Air Basin decreased by 50 percent from 1980 to 1997. In 1980, the air 
basin experienced 210 days above the State of California standard.  In 1997, ozone 
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concentrations were above this standard on 144 days. For the national 1-hour standard, 
violations occurred in this air basin 167 days in 1980, and 64 days in 1997.   

 
2.  PM10 
 
Data on PM10 air quality are available for years beginning in 1988.  Figure 2-12 

shows that the maximum 24-hour concentrations of PM10 were quite volatile between 
1988 and 1993, and then leveled out between 1994 and 1997.  Overall, concentrations 
fell from 289 µg/m3 in 1988 to 227 µg/m3 in 1997. In 1988, the basin experienced 65 
days above the State 24-hour standard and 30 days above the national 24-hour standard.  
In 1997, the number of days above the State standard was 54, and 6 days were above 
the national standard.   

 
3. Carbon Monoxide 
 
As shown in Figure 2-13, carbon monoxide concentrations in the South Coast 

Air Basin decreased by 35 percent between 1980 and 1997.  In 1980, the State standards 
were exceeded on 98 days, and the national standards on 94 days.  In 1997, State 
standards were exceeded on 16 days, and national standards on 12 days.  
 
 
II.   Population and Vehicle-miles Traveled 
 

As documented by the CARB (1999), population and vehicle-miles (VMT) 
growth rates are stunning.  As shown in Figure 2-14, California’s population grew from 
23.6 million to 32.2 million between 1980 and 1997, an increase of 36 percent.  
According to the census, between 1990 and 1998, California’s population grew faster 
than the national population: 9.7 percent, compared to the national growth rate of 8.7 
percent.   

As shown in Figure 2-15, VMT  grew far more quickly than population:  the 
number of miles traveled each day statewide grew by 78 percent between 1980 and 
1997.  

In the South Coast Air Basin, the growth rates were slightly lower than in the 
rest of the state.  The basin’s population grew by 37 percent from 1980 to 1997.  
Vehicle-miles traveled increased from 177 million miles per day in 1980 to almost 310 
million miles per day in 1997, an increase of about 75 percent.   
 
III.  The Health Costs of Vehicle Pollution 
 
 Estimating the health costs of vehicle pollution is not a straightforward process.  
The extent to which air pollution affects a population varies according to the geographic 
characteristics of an air basin, population density, weather conditions, rush hour times, 
and a host of other factors.  The first step is to model the link between emissions and 
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concentrations of ambient pollution.  Second, once exposure levels are known, 
physiological responses to pollutants must be estimated.  Such “dose-response” 
functions have been estimated, but a scientific consensus has yet to emerge.  Third, 
even if dose-response functions are well-determined, assigning a dollar value to 
physiological effects is extremely difficult.   
 Krupnick et al. (1997) discuss these issues and how they contribute to 
significant uncertainties in estimates of the costs of vehicle pollution.  Modeling the link 
between emissions and the concentration of ambient pollutants is perhaps the most 
difficult step: 
 

The underlying air chemistry is complicated and understanding of it is 
rapidly evolving, with the models playing catchup.  Although the EPA has 
approved some models for use in the State Implementation Plan process 
(under the Clean Air Act) and in other venues, many (such as the Urban 
Airshed Model used for ozone modeling) require too much input data and 
are too expensive for use in all but the most well-funded social cost 
studies.  The alternative of using simpler models requires a reliance on 
assumptions whose credibility has yet to be established … Further, 
different models of the same pathway … offer different results (Krupnick 
et al., 1997, p. 357).  

 
 The second step, estimation of the physiological response to pollutants, is also 
problematic.  For example, results from studies of the effects of PM10 on mortality 
differ according to whether the study used data from the same region over time, or data 
from many regions for the same year.  Another debate in the PM10 literature concerns 
whether or not there is a “threshold” level in the response to PM10, that is, whether 
PM10 levels have to reach a certain minimum before any physiological responses 
occur. Studies of PM10 from electric facilities show that small changes in the assumed 
threshold can have large effects on cost estimates (Krupnick et al. 1997).2    
 The third step, in which a dollar value is assigned to effects such as increased 
morbidity or mortality, can be undertaken using a variety of methods, and each method 
can yield different results.  The approach most often used to estimate the dollar value of 
costs is to determine how much a person would be willing to pay to experience, for 
example, one fewer day with severe coughing or asthma, or to decrease the chances of 
premature death due to pollution.  The dominant approach for estimating willingness to 
pay is to estimate the wage premiums paid to workers that have increased risks of death 
(Viscusi, 1993).  These wage premiums, or “compensating differentials,” indicate how 
much an employer must pay an employee in order to get that worker to accept higher 
risks of death on the job.  Presumably that worker, and other members of the 

                                                
2 The EPA considers Pope, et al. (1995) to be the “strongest” of the PM studies.  Even so, the Pope et al. 
study has some limitations.  For example, it does not consider the migration of people across study cities, 
or the possible correlation of PM with concentrations of other air pollutants (EPA, 1999).  
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population, would be willing to give up that wage premium if risks were reduced.  
Estimates of the implied “value of life” range from $0.6 million (Kneisner and Leeth, 
1991) to $13.5 million (Garen, 1998), in 1990 dollars.  The EPA (1999) analyzed 26 
relevant studies to arrive at a “best-estimate” of $4.8 million.  Krupnick et al. (1997) 
consider the best estimates to be from about $3 million to $4 million, but note that such 
studies suffer from many limitations.3 
 It should not be surprising, then, that estimates of the damage costs of pollution 
vary widely.   Hall (1989) and Hall et al. (1992), estimate health-related benefits of 
ozone and PM10 reductions required in the South Coast Air Basin by the Federal 
government that are part of the 1989 South Coast Air Quality Management Plan 
(AQMP).  The benefits are those that would be attained through 2010 from reducing 
pollution from 1990 levels to the standard levels.  Estimates of the benefits of pollution 
reduction are equivalent to the costs of pollution.  Their estimates, adjusted to 1998 
dollars, range from a most-conservative estimate of $6.6 billion per year, to a high-
range estimate of $28.0 billion, with a “best-conservative” estimate of $13 billion per 
year.  PM10 morbidity and mortality benefits make up $9.8 billion of the $13 billion, 
and ozone morbidity the remaining $3.2 billion.  NERA (1990) also estimate the same 
benefits, and conclude that Hall et al. “substantially overstate the likely benefits of the 
AQMP” (p. E-2).  NERA’s estimates range from $.28 to $9.2 billion per year, with a 
“best estimate” of $2.2 billion, of which $1.65 billion is PM10-related.  Krupnick and 
Portney’s (1991) estimates fall between those of Hall et al. and NERA.  They estimate 
health benefits of the same plan to be $4.1 billion (also in 1998 dollars).   
 Small and Kazimi (1995) handle the disparities in cost estimates by presenting 
many different estimates of the costs of vehicle pollution for the Los Angeles region, 
using estimates from both Hall et al. (1992) and Krupnick and Portney (1991).  They 
also experiment with a variety of allocations of the health costs of ozone between NOx 
and volatile organic compounds (VOC, very similar to ROG).  Results from their study 
are particularly useful because they are presented in cents per vehicle-mile.  Per vehicle-
mile, in 1998 dollars, they estimate the cost of VOC to be 1.7 cents, NOx to be 2.04 
cents, and PM10 to be .13 cents.  They add these estimates to their estimate of the costs 
of oxides of sulfur to determine that health costs are about 4 cents per vehicle-mile.  To 
give an idea of the magnitude of this number, they consider what might happen if 
people were assessed a gas tax that corresponds to this cost.  At retail gasoline prices of 
$1.20 per gallon, and fleet average fuel economy of 22 miles per gallon, a gas tax would 
be more than 60 cents per gallon.4 
 
                                                
3Krupnick at al. (1997) list four limitations of such studies:  "(1) they reflect the risk preferences of 
perhaps a less risk adverse [sic] group than the average in society; (2) they reflect voluntarily borne risks; 
(3) more life years are lost to accidental death than those associated with pollution (cancer, for example, 
has a latency period, and the effects may be discounted because they occur far into the future; and (4) the 
source of the risk is an accident rather than a business polluting as part of its normal operations.” 
 
4 Fleet fuel efficiency from ORNL (1999).  
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Figure 2-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source:  CARB (1999).  
 
 
Figure 2-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source:  CARB (1999). 
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Figure 2-3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: CARB (1999). 
 
 
Figure 2-4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Source:  CARB (1999). 
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Figure 2-5 
 

Source:  CARB (1999). 
 
Figure 2-6 
 

Source:  CARB (1999).  
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Figure 2-7 

Source:  CARB (1999). 
 
Figure 2-8 
 

Source:  CARB (1999).  
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Figure 2-9  
 

Source:  CARB (1999).  
 
 
Figure 2-10 
 

Source:  CARB (1999). 
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Figure 2-11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source:  CARB (1999). 
 
 
Figure 2-12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: CARB (1999) 
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Figure 2-13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source:  CARB (1999). 
 
 
Figure 2-14 

Source: CARB (1999). 
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Figure 2-15 
 

Source:  CARB (1999). 
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Chapter 3 
 

Current Vehicle Pollution Policies in California 
 
 As shown in Chapter 2, over the last twenty years, pollution from vehicle 
exhaust declined.  Despite the fact that many areas in California have not attained State 
and national ambient air quality standards, pollution control policies have at least 
worked to some extent.  California implements two categories of vehicle pollution 
control policies: mandates, or command-and-control policies, and market-based 
incentives.  Mandates generally require all parties to undertake the same emissions-
reducing actions, while market-based incentives encourage but do not force emissions 
reduction.  Many small market-based incentive programs exist, but mandates are by far 
the most wide-reaching policies in the state.  In this chapter, we describe policies from 
both categories, beginning with mandates.   
 
I. Command-and-Control Vehicle Pollution Policies 
 

California’s mandates focus on requiring gasoline-burning vehicles to be 
cleaner. The state enforces four main vehicle pollution control mandates: certification 
standards, fleet composition standards, inspection and maintenance requirements, and 
reformulated gasoline requirements.5 Certification standards require that all vehicles 
sold in California have emissions lower than specified maximums when they roll off the 
assembly line.  New-vehicle “fleet” composition standards mandate that each vehicle 
manufacturer’s total new car sales be made up of a certain percentage of low-emission 
vehicles.  They also require carmakers to certify that a certain percentage of new 
vehicles sold meet these standards over the lifetime of the vehicle.  Inspection and 
maintenance programs require most vehicles in most areas to pass a smog check in 
order to be registered.  Reformulated gasoline must meet eight basic specifications for 
cleaner-burning fuel.  In the following sections, we provide more detail about each of 
these mandates. 
 

A. California Passenger Car and Light Truck Emission Certification Standards 
 

California has the most stringent emission certification standards in the United 
States.6  Taken in combination with fleet composition standards, they require that new 
vehicles’ emissions of hydrocarbons and oxides of nitrogen be at least fifty percent 
lower in 2003 than the basic Tier 0 California standards (the basic standard before 
1994).   

                                                
5 California also enforces a variety of other mandates, including standards that limit the evaporative and 
refueling emissions from vehicles 1978 model-year and newer. 
 
6 New York and Massachusetts have also adopted California’s standards.  
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Table 3-1 lists California new vehicle emissions certification standards in grams per 
mile for passenger cars and light-duty trucks. 
 
 
Table 3-1: California New Vehicle Emission Certification Standards (grams/mile) 
  Vehicle Useful Life 
  5 years/ 50,000 miles 10 years/ 100,000 miles 
Vehicle  
Type 

Emission 
Category 

NMOGa CO NOx NMOGa CO NOx 

Passenger 
Car 

Tier 0 - 7.0 0.4 - - - 

 Tier 1 - 3.4 0.4 - 4.2 0.6 
 TLEV 0.125 3.4 0.4 0.156 4.2 0.6 
 LEV 0.075 3.4 0.2 0.09 4.2 0.3 
 ULEV 0.04 1.7 0.2 0.055 2.1 0.3 
 ZEV 0.0 0.00 0.0 0.0 0.0 0.0 
LDT1 Tier 0 - 9.0 0.4 - - - 
 Tier 1 - 3.4 0.4 - 4.2 0.6 
 TLEV 0.125 3.4 0.4 0.156 4.2 0.6 
 LEV 0.075 3.4 0.2 0.09 4.2 0.3 
 ULEV 0.04 1.7 0.2 0.055 2.1 0.3 
 ZEV 0.0 0.00 0.0 0.0 0.0 0.0 
LDT2 Tier 0 - 9.0 1.0 - - - 
 Tier 1 - 4.4 0.7 - 5.5 0.97 
 TLEV 0.16 4.4 0.7 0.2 5.5 0.9 
 LEV 0.1 4.4 0.4 0.13 5.5 0.5 
 ULEV 0.05 2.2 0.4 0.07 2.8 0.5 

Source:  ORNL (1999): p. 4-35. 
 a For diesel-fueled vehicles, NMHC (non-methane hydrocarbons) are measured instead 
of NMOG 
LDT1 = light-duty truck up to 3,750 lbs. loaded vehicle weight 
LDT2 = light-duty truck greater than 3,750 lbs. loaded vehicle weight 
Tier 0 = basic standard before 1994 
Tier 1 = basic standard, partially implemented in 1994 and 1995, fully implemented in 
1996 
NMOG = non-methane organic gases 
TLEV = transitional low-emission vehicle, LEV = low-emission vehicle 
ULEV = ultra-low-emission vehicle, ZEV = zero-emission vehicle 
 
 
 Since 1996, all vehicles sold were required to meet Tier 1 standards.  Unlike the 
previous Tier 0 standards, Tier 1 passenger car standards also apply to category 1 light-
duty trucks (LDT1).  Tier 1 also introduced standards, less stringent than for LDT1, for 
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category 2 light-duty trucks (LDT2).  In addition, Tier 1 standards extend the definition 
of a vehicle’s useful life from five years to ten years.  For example, to pass Tier 1 
standards, a ten-year old vehicle must emit less than 4.2 grams per mile of CO.  To 
prove that they fulfill this requirement, automakers simulate the likely deterioration that 
would take place over ten years by running a new vehicle for 100,000 miles.  Then they 
conduct an emissions test.  Before 1994, the standards listed in Table 3-1 under the 5 
years/50,000 miles columns applied, and automakers ran vehicles for 50,000 miles 
before testing emissions.  As this monograph was being written, the EPA was in the 
process of drafting Tier 2 standards, which will involve more stringent requirements for 
PM10 and will apply to a broader class of trucks.   
 Current standards also define the emissions levels required for a vehicle to be 
classified into four classes of lower-emission vehicles:  transitional low-emission 
vehicles (TLEVs), low-emission vehicles (LEVs), ultra-low-emission vehicles 
(ULEVs), and zero-emission vehicles (ZEVs).  For each category, Table 3-2 lists the 
emission reduction from Tier 0 standards for passenger cars and category 1 light-duty 
trucks. 
 
   Table 3-2: California Emission Reduction for Passenger Cars and LDT1 

 Emission reduction from the Tier 0 Standards 
 HC CO NOx 
TLEV 50% 0% 0% 
LEV 70% 0% 50% 
ULEV 85% 50% 50% 
ZEV 100% 100% 100% 

Source: ORNL (1999): p. 4-36.  
HC = hydrocarbons, the main ingredient of reactive organic gases (ROG) 
 
 The real impact of these standards is not due to the requirement that all cars 
meet Tier 1 standards.  Instead, it is because these standards are combined with fleet 
requirements, which we explain in section B.  
 

B.  Fleet Composition Requirements 
 

Beginning in 1994, California required a certain percentage of each car 
manufacturer’s vehicles sold in the state to be transitional low-emission vehicles.  From 
1994 to 2003, each car manufacturer is required to meet increasingly stringent new-fleet 
composition requirements.  Table 3-3 presents these requirements. 

What is not shown in this table is that the original requirements, adopted in 
1991, required that 2 percent of all vehicles sold be zero-emission vehicles in 1998.  
This requirement was to increase to 5 percent by 2002.  A March 1996 amendment to 
the plan allows the market to determine the number of zero-emission vehicles from 
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1998 through 2002.  Then, in 2003, ten percent of the vehicles sold by each car 
manufacturer must be zero-emission vehicles.7  

 
 

Table 3-3: California New Fleet Composition Requirements  
Year Conventional 

Vehicles 
TLEVs LEVs ULEVs ZEVs 

1993 100%     
1994 90% 10%    
1995 85% 15%    
1996 80% 20%    
1997 73%  25% 2%  
1998 48%  48% 2%  
1999 25%  73% 2%  
2000   90% 2%  
2001   90% 5%  
2002   85% 10%  
2003   75% 15% 10% 

    Source: ORNL (1999): p. 4-37. 
 
 In addition to imposing these statewide sales composition requirements, the state 
allows districts in non-attainment areas to require public and private fleet operators to 
purchase LEVs and operate them on clean fuels.  All passenger vehicles for hire in non-
attainment areas are required to be alternative fuel vehicles (AFV), and the state is 
required to purchase 25% AFVs as it replaces fleet vehicles (USDOE, 1998).  The 
CARB also requires certain owners of retail gasoline stations to equip their stations to 
dispense alternative fuel if 20,000 or more vehicles in California are certified to a low-
emission standard using that fuel.  Through 2000, no alternative fuel has been the 
certification fuel for 20,000 or more vehicles.  
 

C. Inspection and Maintenance Requirements: The Smog Check Program  
 
California’s first vehicle inspection program began in 1984.  Most vehicles in 

most areas cannot be registered without passing a “Smog Check” once every two years.  
Motorists whose vehicles do not pass the Smog Check must repair their vehicle and 
have it tested again.  The State of California Department of Consumer Affairs (DCA) 
and the Bureau of Automotive Repair (BAR) oversee the privately-owned stations that 
conduct these inspection and maintenance programs.  In the 1990 amendments to the 
Clean Air Act, the U.S. EPA mandated a plan for enhanced emissions testing.  It calls 

                                                
7This discussion was valid as of year 2000. 
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for the elimination of privately-owned vehicle inspection stations, to be replaced by 
state-owned stations.   

Beginning in 1994, the state implemented a compromise plan.  The compromise 
has three main components.  First, instead of eliminating all privately-owned inspection 
stations, it requires that 15 percent of vehicles in “enhanced areas”, regions that do not 
meet Federal ozone ambient air quality standards, be sent to specially-authorized test-
only stations.8   The BAR uses a high-emitter profile of vehicles considered most likely 
to fail their smog checks, and it directs enough owners of these vehicles to the test-only 
stations to satisfy the 15 percent requirement.9   Second, all enhanced area stations are 
required to use a treadmill-like machine called a dynamometer to test emissions.  By 
simulating actual driving conditions, this equipment allows stations to obtain more 
accurate emissions readings.  Third, the state focuses on gross polluters, those vehicles 
that far exceed allowable emissions levels for a particular model.  Gross polluters must 
be repaired and have those repairs verified, and the vehicle certified, at a test-only 
station or at a gross polluter certification pilot station (DCA, 1998a and 1998b).  

In 1998 the Smog Check program was modified in three ways.  First, cars built 
in model year 1973 and earlier are now exempt from all aspects of the program.  
Second, vehicles four years old and newer are exempted from the biennial requirement, 
but still must have Smog Checks performed when sold or when registered for the first 
time in California.   

Third, three financial assistance programs were created.  In the first program, a 
vehicle may now be registered without passing its Smog Check if the vehicle owner 
makes $450 in emissions-related repairs at a licensed repair station.  When a person 
makes these repairs, she receives a “Repair Cost Waiver” that lasts two years.  An 
owner may only receive one such waiver while she owns the vehicle.  In the second 
program, an “Economic Hardship Extension” is available for qualified low-income 
motorists.  It is also valid for two years and may be obtained only once during the 
driver’s ownership of a vehicle.  To obtain the extension, the motorist must spend $250 
on emissions-related repairs from a licensed Smog Check station, or have an estimate 
showing that a single repair would cost more than $250.  The vehicle owner must also 
have an income that is at or below 175% of the U.S. poverty level.  The third program is 
the low-income repair assistance program, which helps low-income motorists pay for 
emissions-related repairs.  The vehicle-owner must make a $250 co-payment, and the 
state contributes an additional amount not to exceed $450 (DCA, 1998b).    

The inspection and maintenance emissions requirements depend on the vehicle’s 
model year and weight, and on the type of test to which the vehicle is submitted.  Older 

                                                
8The followings areas are "enhanced": Sacramento, Davis, Vacaville, Stockton, Modesto, Fresno, 
Bakersfield, Hemet-San Jacinto, Palm Springs, Southern Ventura County, the South Coast Air Basin, and 
Western San Diego County.  For a map of these areas and additional information about the Smog Check 
Program, see the Smog Check web site at http://www.smogcheck.org. 
 
9 The High Emitter Profile is a computer model that uses data from previous Smog Checks of vehicles.    
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and heavier vehicles are subject to higher passing limits.  The tests measure 
hydrocarbons and oxides of nitrogen in parts per million, and carbon monoxide in 
percentage terms.10 

 
D.  Reformulated Gasoline 

  
 All gasoline sold in California for use in motor vehicles meets eight 
specifications: two specifications for reduced distillation temperatures; one for use of an 
oxygen-containing additive such as ethanol; and the remaining five for reduced sulfur 
content, benzene content, levels of aromatic hydrocarbons, levels of olefins, and vapor 
pressure. 
 The California Air Resources Board regulations allow refiners to sell fuel that 
satisfies only some of these requirements as long as the fuel provides “comparable air 
quality benefits”.11  In March 1999, Governor Gray Davis ordered the gradual 
elimination of the widely-used oxygen containing fuel additive MTBE from California 
gasoline.  Most California gasoline in recent years has contained MTBE, even though 
there has never been any legal requirement for its use. MTBE has caused public concern 
because, like other gasoline components, it can contaminate groundwater when 
underground fuel tanks leak.  MTBE moves faster in water than other fuel components 
and, in small amounts, renders drinking water unusable (CARB, 1999).  
 The California Energy Commission estimates that the use of cleaner-burning 
gasoline increased gasoline prices on average by 5 to 8 cents since 1996.   
 
II. Market-based Incentives for Vehicle Emissions Reduction 
 

Most of the state’s broadest market-based incentive programs encourage the 
retirement or repair of gasoline vehicles, or they encourage the purchase of alternative-
fuel vehicles or alternative fuels.  A variety of smaller programs promote car-pooling.  
Notably absent from the list of market-incentives is a gas tax: California’s gas tax is 18 
cents per gallon, a little lower than the national average state gas tax.   

In this section, we discuss the Mobile Source Offset Program, which provides 
incentives to repair or retire a vehicle, and another planned program that would 
encourage early vehicle retirement.  Second, we list incentives that encourage the 
purchase of alternative vehicles and fuels.  Third, we examine a variety of smaller 
incentive programs that target the number of miles driven.  

 

                                                
10See http://www.smogcheck.ca.gov/smogweb/smog/cutpointsasm1099.asp for a table of these standards.  
 
11 Refineries can sell the gasoline as long as smog-forming emissions are reduced by at least 15 percent, 
and cancer risk from exposure to toxics is reduced by about 40 percent from levels associated with 
gasoline sold before Spring 1996 (CARB, 1996). 
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A. Mobile Source Offset Program12 and Voluntary Accelerated Vehicle 
Retirement Programs (VAVRs) 

 
The South Coast Air Quality Management District (SCAQMD) is a regional 

government agency in Southern California with jurisdiction over air quality in Los 
Angeles and Riverside Counties, and the non-desert portion of San Bernardino County.  
The SCAQMD implements the Mobile Source Offset Program, designed to give 
stationary sources more flexibility in meeting emissions reduction requirements.  It is 
hoped that providing this flexibility for stationary sources will result in lower vehicle 
emissions.  Under this program, businesses or individuals can receive credit for 
emissions reduction that occurs when they repair high-emitting vehicles, when they 
operate low- or zero-emission on-road vehicles, or when they retire, or “scrap” old 
vehicles.  When a business or person undertakes any of these activities, they can 
document the activity to the SCAQMD, and receive mobile source emissions reduction 
credits (MSERCs).  

These credits can then be sold or transferred in the RECLAIM program.  
RECLAIM is a mandatory allocation program for stationary sources in the South Coast 
Air Basin that emit four tons or more of NOx or oxides of sulfur (SOx) per year.  Based 
on system-wide emission caps for the year, participating facilities receive an annual 
allocation of tradable permits, called RECLAIM Trading Credits (RTCs).  Each permit 
allows its holder to emit one pound of emissions in the designated year.  RTC 
allocations are diminished over time in accordance with emission reduction 
requirements in the air management plan.  The permits can be bought, sold, or 
transferred.  Those sources with high emissions reduction costs can buy permits on the 
permit market, thereby avoiding those higher costs.  Sources with low reduction costs 
sell permits. Stationary sources that purchase MSERCs from vehicle owners get credit 
for emissions reduction and these credits can be traded like permits.  

Mobile source emissions reduction credits (MSERCs) can also be used as new 
source review offsets, as an alternative method or compliance with SCAQMD 
Regulation XI rules that have future compliance dates, as a method of compliance with 
on-road motor vehicle mitigation options, and as an alternative method of compliance 
with any other SCAQMD regulations that allow the use of credits. 
 For vehicle repair to qualify for MSERCs, a vehicle must be 1966 model year or 
newer and must have its emissions detected by a remote sensing device.  If the device 
measures emissions of CO or HC above certain cutpoints, the vehicle owner can opt to 
have the vehicle tested at a Smog Check station.  If the vehicle does not pass Smog 
Check, the owner can repair the vehicle to bring it into compliance.  The testing and 
repair of these vehicles is voluntary, and therefore the emissions reduction that results is 
considered to be in “surplus” of the amount normally attained through the Smog Check 
program.  If vehicles had not been voluntarily tested and repaired, they would have 
                                                
12Information on the Mobile Offset Program that appears below was taken from the EPA website: 
http://www. epa.gov.omswww/market.htm.   
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remained out of compliance until their next required emissions test.  The formulas that 
calculate MSERCs take into account the number of days until the next required test, and 
vehicles that fail the required tests are not eligible for MSERCs. 
 Operation of low- or zero-emission passenger cars, light-duty trucks, and 
medium- and heavy-duty vehicles also generates MSERCs.  In order to obtain the 
MSERCs, the vehicle operator must submit an application that documents the purchase, 
retrofit, or repowering (providing a replacement engine that is certified to meet certain 
emission standards), as well as the operation of cleaner vehicles.  Following approval of 
the application, the vehicle operator must demonstrate vehicle operation by reporting 
actual vehicle miles traveled (VMT) for the first six months following the vehicle’s 
initial service date, and projected VMT for the following six months.  The SCAQMD 
issues MSERCs on approval of the application and verification of actual and projected 
VMT.  
 MSERCs are also generated by scrapping old (pre-1982) vehicles.  Such “gross-
polluters” account for only 18 percent of all vehicles in the SCAQMD, but generate an 
estimated 60 percent of VOC emissions and 54 percent of NOx emissions from vehicles.  
Vehicle owners voluntarily give up their vehicles to a licensed scrapper, typically in 
return for an incentive payment.  Scrapped vehicles must be operable and driveable, and 
they must have been continuously registered as an operable vehicle for the two years 
prior to scrapping.  The scrapper can receive MSERCs for each of four pollutants: 
VOCs, NOx, CO, and PM, and can sell them in each pollutant’s respective permit 
market.  MSERCs are generated according to a formula that assumes that a vehicle had 
a remaining useful life of three years, and is replaced by a vehicle with the average 
current in-use emissions rate.  
 Another voluntary accelerated vehicle retirement program is scheduled to be 
implemented in the SCAQMD beginning in 2001.  Under a plan outlined in the 1994 
California State Implementation Plan for Ozone, as many as 75,000 older, high-emitting 
light-duty vehicles would be purchased each year by the state from their owners, and 
then destroyed.  Private entities would purchase eligible vehicles from willing vehicle 
owners.  To be eligible, a vehicle must be registered within the SCAQMD for two 
consecutive years prior to the sale, must not be out of compliance with Smog Check 
rules or due for a Smog Check within the next 90 days, be in good working condition, 
and be at least 15 years old.  Dixon and Garber (1999) explain the rules of the program: 

 
To participate in the program as an enterprise, an organization must either 
be an auto dismantler licensed by the State or have a binding agreement 
with a licensed dismantler to dispose of LDVs purchased under the 
program.  The private entities will obtain their revenues from the program 
by selling emissions credits to the State.  The emissions credits earned for 
scrapping an LDV will depend on its age and are based on CARB’s 
estimates of emissions levels from LDVs of that age (Dixon and Garber, 
1999, p. 4).  
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 Both programs discussed above grant credit, either in the form of tradable 
emissions credits or cash, because vehicle owners voluntarily retire dirty vehicles earlier 
than they would have without the program. 

 
B. Incentives for the Purchase of Alternative Fuel Vehicles and Fuels 
 
California has a wide variety of incentives for the purchase of alternative fuel 

vehicles and fuels.   These incentives include rebates on the purchase of a low-emission 
vehicle, lower excise taxes on alternative fuels, and discounts on electricity used in 
electric vehicles.   

While some gasoline-powered vehicles may be eligible for these incentives 
because of their low emissions rates, most of these incentives apply to vehicles that are 
powered by compressed natural gas (CNG), methanol, or electricity.  Some methanol 
vehicles qualify as LEVs, while others are only transitional low-emission vehicles 
(TLEVs).  Generally, CNG vehicles are in the ultra-low emissions vehicle (ULEV) 
category.  Electric vehicles are in the zero-emissions vehicle (ZEV) category.  Table 3-4 
lists and describes alternative fuel vehicle incentives. 
 
Table 3-4: Alternative Fuel Vehicles Incentives in California 

Program Type Location of Program  Description 
 ZEV Buy-down 
(Subsidy) 

SCAQMD $5,000 paid directly to 
manufacturers who then apply 
it directly to the sticker price of 
an electric vehicle.  Vehicles 
must cost less than the level 
subject to a luxury tax (less 
than $34,900).  

ULEV and LEV  
Buy-downs 

SCAQMD $3,000 for ULEVs,  
$1,000 for LEVs 

ZEV Buy-down Bay Area AQMD 
Sacramento Metropolitan AQMD 
San Diego APCD 
Santa Barbara APCD 
Ventura County APCD 

$5,000 subsidy from the 
California Energy Commission, 
in partnership with 5 air 
districts 

Natural-gas 
vehicle incentive 

San Diego APCD $1,000 for purchase of or 
conversion to a natural gas 
vehicle 

Clean Cities AFV 
incentive 

San Diego  $1,000 for AFV purchase or 
conversion from the San Diego 
Regional AFV Coalition  

    Sources:  USDOE (1998) and the EPA, www. epa.gov/omsww/market.htm  
    SCAQMD = South Coast Air Quality Management District 
    AQMD = Air Quality Management District 
    APCD = Air Pollution Control District 
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The South Coast Air Quality Management District (SCAQMD) offers vehicle 
buyers in that district a $1,000 subsidy for the purchase of a LEV, a $3,000 subsidy for 
the purchase of a ULEV, and a $5,000 subsidy for the purchase of a ZEV.  Vehicle 
buyers in five other districts can receive a $5,000 subsidy for the purchase of a ZEV.  
Residents of San Diego that buy or convert to a natural gas vehicle are eligible for 
$1,000 subsidies from both the San Diego APCD and the San Diego Regional AFV 
Coalition.  

Excise taxes on ethanol, methanol, and other alcohol fuels are one-half the rate 
imposed on gasoline (which is 18 cents per gallon).  Neat (100%) alcohol fuels are 
exempt from fuel taxes.  

Some utilities offer special discounts for electricity used in electric vehicles 
(EVs).  Table 3-5 lists these discounts. 
 

 
    Table 3-5: Electric Utility Discounts on Electricity used in Electric Vehicles (EVs) 

Utility Discount 
Los Angeles Department of Water and 
Power 

Discount of $0.025/kWh, up to a 
maximum of 500 kWh/month 
limited to off-peak hours.   

San Diego Gas and Electric Discounts during off-peak periods. 
See http:/www.sdge.com/ev for rates

Sacramento Municipal Utility District Discounted rate of $0.04187/kWh 
for residential customers, a lower 
rate for commercial customers, off-
peak periods 

Southern California Edison Special time-of-use rates for 
customers who install a meter to 
recharge EVs during off-peak hours. 

    Source: USDOE (1998).  
 
 

Residents of Los Angeles of San Diego can opt for a discount from their local 
power companies for electricity use during off-peak periods, or for special rates from 
Southern California Edison if they install a meter to recharge their EV.  
 

C. Carpooling and Other Incentives 
 
All of the major urban centers in California have at least one program that 

provides incentives for carpooling.  The list of these programs is too long to include in 
this monograph, but we provide a smaller set of examples below.   

San Francisco and the Bay Area have a variety of incentives designed to 
encourage car-pooling.  In addition to allowing carpools to use high-occupancy lanes 
and pay lower tolls when crossing bridges, San Francisco gives preferential on-street 
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parking to certified carpools in designated areas adjacent to surrounding participating 
workplaces.  Qualifying institutions must have 200 or more employees and must be 
located in a neighborhood that is primarily residential.  Eligible carpools must have 
three or more riders who commute within San Francisco or from suburban areas.  
Riders can work at the institution for which the carpool permit parking area is 
designated or at another site as long as it is within a half mile of the parking area.   

In San Diego, one project uses congestion pricing to manage commuter traffic 
flow on an eight-mile stretch of Interstate 15 in northern San Diego County.  Since 
1988, the road has contained two express lanes that are accessible, free of charge, to 
high-occupancy vehicles (in this case, vehicles with two or more occupants).  These 
lanes had been underutilized, and so to increase traffic on these lanes, single-occupancy 
vehicles may now use the lanes for a fee.  These lanes would then be high-occupancy 
toll (HOT) lanes, that is, high-occupancy vehicle (HOV) lanes to which otherwise 
ineligible vehicles may purchase access.  
In 1994, the Southern California Association of Governments (SCAG) obtained a 
congestion-pricing implementation study grant from the Federal Highway 
Administration to develop pilot projects that use transportation fees.  A task force, 
called REACH, was formed by the SCAG to determine what kinds of projects to 
pursue.  The task force’s main recommendation, given in 1997, was to begin conducting 
feasibility studies for high-occupancy toll (HOT) lane projects.  These projects would 
consider the use of both congestion fees and emissions fees, and the fees would be 
closely related to the actual costs of congestion and air pollution. 
  
III. Conclusion 
 

Command-and-control mandates dominate California’s vehicle pollution 
reduction policies.  Performance standards require carmakers to produce vehicles that 
meet emissions standards, and to sell a certain proportion of low-emissions vehicles.  
Design standards require refineries to sell gasoline that meets content specifications. 
While the Smog Check program now targets gross polluters, its repair requirements still 
apply to all cars, regardless of the different costs of abatement faced by different vehicle 
owners. These command-and-control policies are the most stringent in the United 
States, and they impose equal emissions-reduction requirements on all affected parties, 
regardless of differences in abatement costs.   

Current market-based incentives in California consist of smaller programs 
implemented at regional or city levels.  While incentives for carpooling and travel in 
HOV lanes encourage miles-reduction, most programs do not closely relate their 
incentives to the actual costs of congestion and air pollution.  Possible exceptions are 
the projects proposed by the Southern California Association of Governments, which 
would consider the use of congestion and emissions fees.  While the Smog Check 
program now targets gross polluters, its repair requirements still apply to all cars, 
regardless of the different costs of abatement faced by different vehicle owners.  New 
proposals for accelerated vehicle retirement programs encourage the retirement of older 



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California  

 37

cars and thus the purchase of newer ones.  Notably absent from California policy is a 
higher-than-average tax on gasoline.  New mandates focus on heavier cars, but no 
incentives act to encourage consumers to buy smaller vehicles.  And no incentives 
encourage all drivers across the board to drive fewer miles.  

The development of new programs, including the SCAQMD’s accelerated 
vehicle retirement program, may signal that California is moving toward use of more 
market-based incentives.  As we explain in the next chapter, such a movement may 
increase the efficiency of California policy by reducing total abatement costs.   
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Chapter 4 
 

Theory of Optimal Pollution Control 
 

In chapter 3, we described the existing command and control (CAC) and 
market-based incentives for the control of vehicle pollution in California.  In this 
chapter, we provide broader analysis of these policies.  We use economic theory to 
evaluate these policies, focusing on two criteria.  First, we analyze their efficiency in 
two respects.  For a pollution policy to be “cost-effective,” it must be designed to 
achieve any given level of pollution reduction at minimum total cost.  Then, to achieve 
overall efficiency, it must also reduce pollution to the right level.  A policy can achieve 
both kinds of efficiency if it can properly induce polluters to balance the costs of 
pollution reduction with the benefits of this reduction.  If all polluters properly balance 
these costs and benefits, pollution will be reduced at minimum cost to its efficient level.   

Then later, we evaluate the policies in terms of the information required to 
implement them.  The amount of information required for CAC policies to achieve the 
lowest-cost abatement is large, but market-based incentives require information on the 
costs of pollution and may require more expensive emissions monitoring.  

 
I. Command-and-Control and Market-based Incentive Policies 
 

California implements two forms of command and control policies: 
“performance standards”, which impose restrictions on emissions from each source, and 
“design standards”, which restrict the kind of technology used by polluters.  Vehicle 
certification and fleet composition standards, because they act to put a cap on the 
amount of pollution generated by each automaker’s new fleet of vehicles, are 
performance standards.  The inspection and maintenance requirements in the Smog 
Check program impose performance standards on drivers.  Under such performance 
standards, polluters may choose how to attain the required cleanliness.  Automakers, for 
example, may choose to add more or better pollution-control equipment to their 
vehicles.  Alternatively, they may focus on increasing the fuel-efficiency of their fleet.  
To pass the Smog Check, drivers may change their vehicle’s oil, replace an air filter, or 
ensure that their pollution control equipment functions properly.   

Requirements that all vehicles have certain pollution-control equipment, such as 
catalytic converters, are design standards.  To satisfy reformulated gasoline 
requirements, refiners must meet specific content specifications.  While the 
requirements allow some flexibility (refiners have some choice over types of oxygen-
containing additive), they are quite specific technically.  This requirement, therefore, is 
more similar to a design standard than a performance standard.   

Market-based incentives include policies such as taxes, subsidies, or permits. As 
suggested by Arthur Pigou (1932), the pollution problem could be addressed by a tax 
per unit of pollution, or by a subsidy to pollution abatement.  The best kind of Pigovian 
tax applies to the pollutant itself, rather than to output, at a rate equal to the pollutant’s 
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marginal environmental damages (MED).  The term “market-based incentives” includes 
both the Pigovian type of tax and the subsidy to abatement, and it includes other 
policies that involve taxes, subsidies, or permits.  In this context, a permit system acts 
much like a tax.  Instead of paying a tax per unit of pollution, the polluter pays the price 
of a permit per unit of pollution.  Either way, the polluter has the incentive to cut back 
on pollution.   

California does not directly tax vehicle pollution or directly subsidize 
abatement.  However, subsidies for alternative-fuel vehicles and smaller excise taxes on 
alternative fuels are  indirect  abatement subsidies, as are carpooling incentives and 
voluntary accelerated vehicle retirement programs.  Mobile source emissions reduction 
credits, which can be used as trading credits in the RECLAIM program, are a type of 
pollution permit.  

 
II.   Evaluating Pollution Control Policy Options 
 

A. Efficiency 
 

 Much of the environmental economics literature finds that the use of incentives 
is more “cost-effective” than command and control restrictions.13  With imperfect 
information, the regulatory authorities may or may not know what is the cheapest form 
of abatement technology.  Thus CAC regulations, especially design standards, may 
require technology that is more expensive than necessary.  With a tax or a price per unit 
of emissions, however, each polluter has incentives to find and to undertake any form of 
abatement that is cheaper than paying the tax or buying a permit.  Since only the 
cheapest forms of abatement are undertaken, these incentive policies can minimize the 
total cost of achieving any given level of pollution protection.  In this section, we 
analyze and compare the efficiency impacts of a tax on emissions, a subsidy to 
abatement, and a command and control (CAC) limit on emissions.   

To do this, we use a simple framework and focus on one market.  We discuss the 
outcome in this market when polluters do not acknowledge the costs they impose on 
society by polluting, and we discuss the “social optimum”, the outcome that results 
when polluters are made to account for the costs of the pollution they create.  In this 
simple framework, several different kinds of policies, if designed correctly, can shift the 
economy to the same social optimum allocation of resources.   

Just as we can use supply and demand curves to determine the most efficient 
price and quantity of any good that is sold in a market, we can use similar curves to 
determine the most efficient quantity of pollution and the size of the most efficient tax 
on pollution.  Figure 4-1 graphs these curves.  The horizontal axis represents the amount 
of pollution (Z), and the vertical axis represents a price or cost (in dollars per unit of 
emissions).  The private cost of pollution, called the “price” of pollution, Po, represents 
                                                
13See reviews of this literature in Bohm and Russell (1985), Cropper and Oates (1992), and Stavins 
(1998). 
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the minimal amount that the driver would pay (in terms of gasoline, maintenance, and 
other variable costs) per unit of pollution—without any government pollution policy.  
We assume that this price is constant.  Thus drivers face a flat private marginal cost 
(labeled PMC).  The demand for pollution (labeled “marginal benefits”) starts out high, 
because some minimal level of pollution is necessary for driving, and it slopes down 
because additional units of pollution are successively less crucial.  In the absence of any 
regulations or taxes, drivers would keep polluting as long as the marginal benefits 
exceed the private cost, and they would stop where the marginal benefit of pollution 
intersects the private marginal cost.  Thus, unregulated pollution is at point  Zo. 

Yet the social cost of pollution is higher than the private cost, because it imposes 
negative external costs on others.  As we discussed in chapter 2, Small and Kazimi 
(1995) estimate the health costs of vehicle pollution to be about 4 cents per vehicle-
mile.  These costs represent the “marginal environmental damages” (MED) of vehicle 
pollution.  The social marginal cost (SMC) of pollution includes the private marginal 
cost plus MED.  The social marginal cost curve in Figure 4-1 starts slightly above the 
private cost to indicate that the very first unit of pollution has only small external cost, 
but the upward slope indicates that successive units of pollution become more costly.  It 
might become very steep, for example, if the air is already dirty enough that one 
additional unit is enough to send many people to the hospital.   
 Vehicle pollution has social benefits by allowing us to drive and it also has 
social costs.  The net gain to society is maximized by polluting only as long as the 
social benefits exceed the social costs.  The intersection of these two curves indicates 
the optimal amount of pollution,  Z', and the problem for policy is to cut pollution from  
Zo  to  Z'. 
 
 1.   Emissions tax 
 

The solution of Arthur Pigou (1932) is to impose a tax per unit of pollution, at a 
rate  tz, equal to the marginal external damages per unit of pollution at the optimum.  
This Pigovian tax raises the private cost of pollution from  Po  to  P' = Po + tz.  Then 
drivers face costs  P' and stop at  Z'. 14  The tax revenue would be the tax rate times the 
amount of pollution subject to tax, that is, the rectangle area 2+3 in the figure. Welfare 
improves by the triangle area 5+6.  This area measures the extent to which social 
marginal cost exceeds the (social) marginal benefits, for each of those units of pollution 
beyond  Z', up to Zo. 

 

                                                
14 Alternatively, if the tax rate could rise with pollution, then the driver could be made to face the entire 
SMC curve in Figure 1.  Such a driver would compare marginal benefits to SMC and choose  Z'.  For 
elaboration on this point, see Kaplow and Shavell (1997). 
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2.  Abatement subsidy 
 
The other Pigovian solution is for the government to pay drivers to cut back on 

pollution.  They could earn this subsidy by driving less, buying cleaner gas, or 
switching to a cleaner vehicle.  Suppose the policy states that each driver will be paid  tz 
(the same amount as before,  P' – Po) for every unit of pollution reduced from the initial 
point  ZE.  Then for each unit of pollution, the driver bears a “cost” equal to the subsidy 
it must give up by not reducing that unit of pollution.  The full cost of pollution is  P', 
the private marginal cost (Po) plus the subsidy foregone.  The driver pollutes as long as 
the marginal benefits exceed this cost  P', that is, to Z'.  In other words, the subsidy for 
abatement induces the driver to abate.  Because the abatement is the same as before, the 
net efficiency gain is the same as before—area 5+6. 

 
3.  Command-and-Control Regulations 
 
As discussed in chapter 3, California’s environmental policies do not use taxes 

to discourage pollution.  Instead, the policies tend to employ command-and-control 
regulations that apply mainly to automakers.  In the model of Figure 4-1, a CAC 
“performance standard” might be represented by the mandate that “pollution shall not 
exceed Z'.”  If designed properly, and if revenue is not an issue, such a regulation can 
move the economy to the same reduced optimal amount of pollution (Z') and provide 
the same triangle welfare gain (area 5+6).  

 
4.  Abatement Costs 
 
So, in Figure 4-1, all of the policies provide the same gain. More generally, 

however, economic efficiency also requires minimizing the cost of achieving any given 
level of abatement.  On this basis, these policies are likely to differ.  To avoid paying a 
price per unit of pollution, a driver can choose the cheapest methods for controlling 
emissions: each driver can decide how large or new an automobile to buy, how well to 
maintain the vehicle, and whether to drive more or less aggressively.  In contrast, a 
CAC policy is only able to match this efficiency if the regulator knows exactly which 
combination of abatement technologies minimizes costs.  The regulator would have to 
tell each different driver what vintage and size vehicle to buy, how well to maintain the 
vehicle, and how often to accelerate rapidly.  The amount of information required to 
ensure the lowest total-cost abatement is enormous. 
 In general, each driver (or auto manufacturer) is likely to have much better 
information than the regulator about the cost and effectiveness of alternative abatement 
technologies.  A market-based incentive instrument is likely to impose lower economic 
costs than a CAC instrument because it induces the driver to find the lowest cost 
combination of abatement methods.  In particular, CAC regulations typically require all 
drivers or auto manufacturers to reduce pollution to the same level.  Yet some drivers 
can carpool more easily than others; some can find alternative fuels more easily than 
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others; and some are more willing to accept poor acceleration than others.  Thus, for 
various reasons, some drivers have lower costs of pollution abatement than others.  The 
CAC regulations cannot easily account for these differences.  With a tax system, 
however, some drivers or auto makers with low abatement costs may undertake most of 
the total abatement, while other drivers or auto makers with high abatement costs may 
not abate much at all.  Still other drivers may stop driving all together.  Previous 
researchers have investigated the difference between these policies empirically (in 
general, not just for vehicle emissions), and they have found that typical CAC policies 
are six to ten times as expensive as the minimum abatement cost made possible by 
market-based policies like taxes or permits.15 
 

B. Information Requirements 
  
As mentioned above, the amount of information required for CAC policies to 

achieve the lowest total-cost abatement is large.  But emissions taxes or abatement 
subsidies have their own information requirements.  The ideal incentive-based tax rate 
would reflect the marginal external cost of pollution, but as explained in chapter 3, this 
cost is difficult to measure.  Actual U.S. environmental tax rates are not set on this basis 
at all.  Each tax is set instead at a rate that will yield a pre-specified revenue.  For 
example, gasoline taxes pay for the costs of highway construction—costs that bear no 
relation to the external cost of driving.  
 In addition, effective environmental policy needs to reflect monitoring 
capabilities.  A Pigovian tax may require counting grams of emissions, whereas a 
design standard simply requires authorities to confirm the use of a particular kind of 
pollution control equipment.  Smog Check inspectors can easily check that a vehicle’s 
pollution-control equipment is in working order, but the technology is not yet available 
to measure each car’s emissions during regular driving in a reliable and cost-effective 
manner.  On-board diagnostic equipment is too costly because millions of vehicles 
would need to be retrofitted (Harrington, et al., 1994).  Remote sensing is inexpensive, 
but it cannot “distinguish unambiguously the car that is dirty on the average from the 
car that is clean on the average” (Sierra Research, 1994, p. 17).  Thus the information 
requirements of some kinds of CAC regulations may be less prohibitive than those of 
traditional market-based incentives.  For these reasons, we explore alternative 
nontraditional market-based incentives for the control of vehicle pollution.  

                                                
15 See, for examples, Atkinson and Lewis (1974), Seskin, Anderson, and Reid (1983), and other studies 
surveyed in Cropper and Oates (1992). 
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Figure 4-1 

Equivalence of Efficiency Effects from Alternative Policies 
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Chapter 5 
 

Alternative Market-Based Incentives  
 

We concluded chapter 4 by saying that traditional market-based incentives such 
as a Pigovian tax are generally more efficient than command and control policies but 
require the measurement of emissions.  In the case of vehicle emissions, such traditional 
incentives are therefore still unavailable to policy makers.  So, we explore alternative 
market-based incentives that can be used to mimic the effects of an ideal, but 
unavailable, tax on vehicle emissions.  The goal of the emissions tax is to raise the price 
of pollution and to affect behavior in a variety of ways.  To be as efficient, alternative 
instruments must also induce consumers’ responses that are identical to those responses 
induced by the emissions tax.  But to avoid the problems involved in measuring vehicle 
emissions, these instruments can apply to activities that are market transactions.   
 If a true Pigovian tax on vehicle emissions were available, it would reduce 
pollution by inducing households to drive fewer miles, to buy fuel-efficient cars, to 
install and maintain pollution control equipment, to purchase cleaner fuel, to perform 
general maintenance, to avoid cold start-ups, and perhaps to drive less aggressively.16  
Households would choose between paying more in emissions taxes or taking steps to 
reduce pollution.  We presume that these households would take these pollution-
reducing steps if the costs of doing so were lower than what they would pay in 
emissions tax.  Households with lower abatement costs would reduce pollution by more 
than households with higher abatement costs.  For example, drivers that live close to gas 
stations with cleaner fuel might buy this fuel and abate more than those who live far 
from these stations.  And, households with vehicles that are very dirty simply because 
pollution control equipment is not connected would make this inexpensive repair, while 
households that could only reduce emissions by making more costly repairs might elect 
instead to pay taxes on the extra emissions.  
 Any efficient alternative policy would need to induce this same set of behaviors.  
We focus on policies that apply to those behaviors that are associated with measurable 
market transactions. To determine the specific form of these alternative policies, in 
Fullerton and West (2002), we derive a mathematical model of each different 
household’s choice of miles, vehicle attributes, pollution control equipment (PCE), fuel 
cleanliness, and other goods and services.  In Fullerton and West (2000), we use the 
model to solve explicitly for the optimal tax on emissions, and to examine precisely 
how consumers would respond to such a tax.   And, we use the model to solve for and 
investigate combinations of policies that would, like an emissions tax, influence people 

                                                
16 Because of cold start-up emissions, Burmich (1989) finds that a 5-mile trip has almost three times the 
emissions per mile as a 20-mile trip at the same speed.  Sierra Research (1994) finds that a car driven 
aggressively has a carbon monoxide emissions rate that is almost 20 times higher than when driven 
normally.   
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to drive fewer miles and to buy smaller cars, newer cars, better pollution-control 
equipment, and cleaner fuel. 
 In this chapter, we present a non-technical description of our model and results 
from that more-rigorous derivation.  We provide a theoretical framework for household 
choice, compare these choices with the socially optimal choices, and provide intuition 
for why and how our alternative market-based incentives can mimic an ideal emissions 
tax.  

Other researchers explore market incentives that could be used in place of the 
emissions tax.17  Because vehicle emissions cannot be monitored at the source, 
Eskeland and Jimenez (1992) analyze indirect instruments relating to cars and fuels.  
Eskeland (1994) expands this analysis and builds a simple model with identical 
consumers.  These papers explore optimal combinations of mandates and taxes that can 
mimic the unavailable emissions fee, with identical consumers.  Eskeland and 
Devarajan (1996) proceed to discuss the problem when consumers are not identical, and 
they show how combinations of policies can be used to approach the effect of a 
Pigovian tax.  

Harrington, et al. (1998) consider the cost-effectiveness of a mandated vehicle 
inspection and maintenance (I/M) program compared to an incentive program.  The 
incentive is a fee that is based on the vehicle’s emission rate, assuming miles are not 
observable.  Thus, motorists can reduce their fee by repairing their vehicle, but not by 
driving less.  Sevigny (1998) incorporates the choice of miles with an emissions tax, but 
this tax requires knowledge of each vehicle’s average emissions per mile and the 
accurate measurement of miles traveled.18  Innes (1996) also analyzes combinations of 
feasible policy instruments when consumers differ.  Our model clarifies Innes’ results, 
and expands the model to allow consumers to differ in three ways rather than two.  

Using our model, we examine five kinds of policies.  First, we solve for the ideal 
Pigovian tax on emissions.  Second, we find that the emissions tax can be replicated by 
a complicated tax on gasoline.  However, this ideal outcome requires that the gasoline 
tax depend on vehicle characteristics.  Third, if vehicle characteristics cannot be 
measured at the pump, the efficient outcome could instead be attained by a vehicle tax 
that depends on miles driven.  Fourth, if policymakers cannot assess individual-specific 
                                                
17 Plaut (1998) compares instruments one at a time.  Kohn (1996) shows that any combination of a tax on 
emissions and subsidy to abatement are equivalent.  For any such combination to be administered, 
however, emissions must be measurable.  Train, et al. (1997) analyze “feebates,” in which rebates are 
provided to vehicles with higher-than-average fuel efficiency and fees are levied on less efficient 
vehicles.  These feebates are feasible incentives because fuel efficiency can be measured, but they are not 
perfectly efficient because they do not depend on miles driven.  
 
18 All of these schemes are imperfect.  Emissions per mile (EPM) cannot be measured perfectly, because 
it depends on how the car is driven.  Miles cannot be measured perfectly, because drivers can roll back 
the odometer.  Harrington et al (1994) discuss remote sensing at a selection of locations as a good 
approximation, but some drivers may disproportionately miss or intentionally avoid those locations.  Our 
schemes are not perfect either, as they miss some behaviors mentioned above (cold start-ups, aggressive 
driving). 
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rates, they could implement uniform rates on gasoline and on vehicle characteristics 
calculated using the population averages of miles and vehicle characteristics.  Such 
rates would not fully account for the technological relationships between vehicle 
characteristics and emissions per mile and fuel efficiency, nor would they fully account 
for the possible correlation in consumers’ tastes for miles and vehicle characteristics.  
These rates, therefore, may reduce emissions by too little or by too much.  Fifth, 
policymakers could explore these technological relationships and correlation among 
tastes, and impose uniform taxes that more fully account for these relationships. This 
method, while still imperfect, would enable policymakers to more closely approximate 
the effects of an ideal emissions tax.  

Section I presents the household choice framework.  Section II contrasts 
household choices with socially optimal choices.  Section III discusses the five 
alternative market-based incentives and Section IV concludes.  
   
I. The Household Choice Framework 
 

In this section, we use a theoretical framework to provide the intuition behind 
our mathematical model of household choice.  In the spirit of Baumol and Oates (1988), 
we assume perfect information, perfect competition, and no market failures other than a 
negative externality from emissions.19  Each household owns one vehicle, and each 
vehicle is made up of characteristics that affect emissions such as engine size, vehicle 
vintage, fuel efficiency, and PCE, and characteristics that do not affect emissions (such 
as leather seats or a sunroof).  Households buy gasoline in order to drive miles, and they 
choose among grades of fuel-cleanliness.  They also buy other goods.  Figure 5.1 
provides a schematic diagram of household choice.   

 We measure engine size as cubic inches of displacement (CID).  We use 
“newness”, the counterpart of vehicle age, to describe the household’s choice of 
vintage.  Pollution-control equipment (PCE) includes catalytic converters and other 
emissions-reducing equipment directly installed on a vehicle.  In general, consumers 
also choose the condition as well as the amount of  PCE.  Fuel cleanliness is an attribute 
of gasoline such as volatility or oxygenation.20  We assume that cleaner fuel is more 
expensive.  Households enjoy driving and consuming other goods, and they are 
negatively affected by total auto emissions.   

                                                
19 We ignore existing mandates in the theoretical framework below, but we recognize that these mandates 
affect the estimated ways in which actual emissions per mile depend on engine size and other car 
characteristics.  Thus, incentive policies may work because they encourage purchase of regulated cars. 
 
20 More volatile gasoline leads to more evaporative emissions.  The addition of oxygenates to gasoline 
alters the stoichiometric air/fuel ratio.  Provided the carburetor setting is unchanged, this alteration may 
reduce emissions of carbon monoxide (CO) and hydrocarbons (HC), but can also increase emissions of 
oxides of nitrogen (NOx).  And, if the mixture becomes too lean (high air/fuel), HC emissions can 
increase due to misfiring (OECD, 1995).   
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Cars with larger engines have greater emissions per mile (EPM), and cars that 
are newer have more or better pollution control equipment and have lower  EPM.  
Obviously, households that buy cleaner fuel will also generate lower  EPM.   Each 
household’s emissions can be calculated by multiplying their EPM  by the number of 
miles they drive.  Then total emissions is calculated by adding together all of the 
households’ emissions.  Each car’s fuel efficiency is measured in miles per gallon 
(MPG) and depends on vehicle newness, engine size, and the quantity of the clean-car 
good (PCE) on the vehicle.21  Cars with larger engines get lower gas mileage, while 
newer cars get higher gas mileage.  The addition of a clean-car characteristic such as a 
catalytic converter adds weight to a vehicle, and diminishes fuel efficiency.22 

Consumers do not purchase miles directly, but through the combination they 
choose of gasoline, vehicle newness, engine size, and the clean-car characteristic (c).  
To determine each household’s demand for gasoline, we divide their desired miles by  
MPG.  Since fuel efficiency depends on vehicle characteristics, so does demand for 
gasoline and miles.  

While we allow tastes for miles and vehicle characteristics to differ among 
households, in order to analyze different choices and abatement costs, we are not 
concerned with differential benefits from environmental protection.  We therefore 
assume that households experience the same detrimental effects of aggregate pollution. 
 
II. Household Choices versus Socially-Optimal Choices 

 
To decide how much of each good to purchase, each household weighs the 

benefits they receive from consuming an additional unit of each good with the costs of 
that consumption.  Our mathematical formulas assume that consumers “maximize 
utility,” which just means that each keeps buying more of a good until the marginal  
private  benefits fall to the level of private marginal cost—the price for one more unit.  
They take into account any tax or subsidy on each good, but households do not 
recognize that their own choices affect total emissions.  For example, when deciding 
whether to drive another mile, a household only takes into consideration the private 
costs of doing so: the cost of gasoline, wear on tires, and other per-mile costs.  Its 
decision does not depend on environmental costs of driving the extra mile.   

So, as we graphed the costs and benefits of pollution in Figure 4-1, we can graph 
the costs and benefits of buying a market commodity.  We use one diagram for 
consumption of a “dirty” good (one that increases pollution, such as gasoline or engine 

                                                
21 Fuel efficiency may also be affected by the clean-fuel characteristic.  Oxygenated fuel contains methyl 
tertiary butyl ether (MTBE) or ethanol, each of which have lower energy content per gallon than 
conventional gasoline.  For simplicity, we do not incorporate the clean-fuel characteristic into the 
calculation of MPG .  
 
22 According to Duleep (1992), the addition of one cylinder decreases fuel efficiency by 3 percent.  Also, 
the equipment mandated in U.S. tier 1 emissions regulations lowers fuel efficiency by 1 percent. 
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size), and a different diagram for consumption of a “clean good” (one that reduces 
pollution such as cleaner fuel, PCE, or other clean car characteristics).   

Figure 5-2 shows a household’s choice of a dirty good such as gasoline or 
engine size.  The horizontal axis represents the amount of either gasoline or engine size 
consumed (X), and the vertical axis represents a price or cost (in dollars per unit of that 
good).  The private cost of the good, Po, represents the price per gallon of gasoline or 
the price per cubic inch of displacement.  We assume that these prices are constant, and 
so households again face a flat private marginal cost (PMC).  The demand for gasoline 
or engine size (“marginal benefits”) starts out high, as some minimal amount of each is 
necessary for driving.  Each additional unit of the good is less important than the 
previous good, and so the marginal benefits curve slopes downward.  In the absence of 
any taxes on gasoline (or engine size), the household would face price Po consume Xo 
units of gasoline (engine size). Each different household would be represented by a 
different version of the graph in Figure 5-2, however, since some households drive 
more miles, or purchase more gasoline, or have larger vehicles than others.   

To determine the “optimal” choices, we introduce the concept of an informed 
and benevolent policymaker.  This decisionmaker does recognize that individual 
amounts of gasoline and engine size affect aggregate emissions.  We assume that this 
policymaker chooses the amount of each dirty good for each household to maximize 
utility, but we assume that this takes into account the additional environmental damage 
caused by an increase of one gallon of gasoline or one cubic inch of displacement.  That 
is, the decisionmaker perceives the social marginal cost of the good, which includes the 
private marginal cost plus the value of the environmental damage per unit of the good.  
In Figure 5-2, social marginal cost is labeled SMC.  The net gain to society of gasoline 
and engine size is maximized by consuming these goods as long as the social benefits 
exceed the social costs.  The intersection of marginal benefits and social marginal costs 
indicates the optimal amount of the dirty good, X'.   

The next problem for policymakers, then, is how to cut consumption of the dirty 
goods from Xo to X'.  Since each household has different marginal benefits, even for the 
same marginal costs, the optimal reduction of each dirty good would be different for 
each household.  For those households that particularly enjoy driving, the marginal 
benefits of gasoline or larger cars would be higher, and so their socially-optimal 
abatement would be lower than that of other households.   

Figure 5-3 shows the household's choice of a clean good, that is, a good that 
reduces pollution when consumed.  In our model, these goods are newness, a clean fuel 
characteristic, and  PCE.  Consumption of each of these goods results in environmental 
benefits.  When households decide whether to buy a newer car rather than an older one, 
they weigh their own private costs of buying one versus the other, but they do not 
consider the benefits of pollution reduction that would result from buying the newer 
vehicle.  The social marginal benefits (SMB) of such a good in Figure 5-3 includes both 
the private marginal benefit (PMB) plus the environmental benefits per unit of the good.  
In the absence of any subsidy on newness (or clean fuel characteristic or  PCE) the 
household consumes Yo.  The net gain to society of this clean good is maximized by 
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consuming it as long as the social benefits exceed the social costs.  The intersection of 
social marginal benefit and marginal cost indicates the optimal amount of the clean 
good, Y'.  The problem for policymakers in this case is to  increase  consumption of the 
clean goods from Yo to Y'.  A subsidy can decrease the private marginal cost of the 
good to P'.  Then, when the household follows PMB down to P', it chooses the optimal 
quantity.  Since each household has different marginal benefit and different marginal 
cost, each will have a different  optimal increase in consumption of each clean good.  

Households also weigh the costs and benefits of consuming other goods.  For 
each good that neither increases nor decreases pollution, the private marginal cost is the 
social marginal cost and the private marginal benefit is the social marginal benefit.  
Policymakers need not act directly to change consumption of these other goods.  
However, when households respond to policies that induce them to consume more or 
less of emissions-related goods, they may substitute toward or away from consumption 
of other goods.  

 
III. Solutions 

 
The goal of this research is to find a combination of taxes on dirty goods and 

subsidies to clean goods so as to replicate the effects of the ideal-but-unavailable tax on 
emissions.  The problem is that vehicle emissions cannot be measured accurately, in 
order to apply that tax.  We seek to induce the same behaviors, however, with the right 
tax rates on gasoline and engine size, plus subsidies to newness and pollution control 
equipment.  We use our mathematical model to determine the forms of these tax rates.  

Using our model, we examine five kinds of policies.  Implementation of each 
policy requires different information.  Table 5-1 summarizes these policies. 

First, we use our model to solve for the ideal Pigovian tax on emissions (Policy 
1).  To assess this tax, policymakers would need to be able to measure tailpipe 
emissions.  Second, if emissions cannot be measured, we find that the emissions tax can 
be replicated by a complicated tax on gasoline (Policy 2).  However, this ideal outcome 
requires that the gasoline tax depend on vehicle attributes.  Third, if vehicle 
characteristics cannot be measured at the pump, a vehicle tax that depends on miles 
driven can also attain the ideal outcome (Policy 3).  Fourth, if policymakers cannot 
assess individual-specific rates, they could implement uniform rates calculated using the 
population averages of miles and vehicle characteristics (Policy 4).  Such rates would 
not fully account for the technological relationships between vehicle characteristics and 
emissions per mile and fuel efficiency, nor would they fully account for the possible 
correlation in consumers’ tastes for miles and vehicle characteristics. Fifth, 
policymakers could explore these technological relationships and correlation among 
tastes, and impose uniform taxes that more fully account for these relationships (Policy 
5). This method, while still imperfect, would enable policymakers to more closely 
approximate the effects of an ideal emissions tax. 
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Table 5-1: Five Alternative Policies for the Control of Vehicle Emissions 
 

Policy Set 
 

Effect 
 

Efficiency 
Information 

Requirements 
Policy 1: Pigovian 

Emissions Tax 
 
 

Reduce gasoline, miles, 
and engine size; Increase 
newness, PCE,  MPG and 

fuel cleanliness 

Most efficient Constant 
measurement of 
emissions during 

driving 
Policy 2: Complicated 

Gas Tax 
 Most efficient: 

Identical to emissions 
tax 

 

Gas tax differing by 
vehicle at the pump 

Reduce gasoline, miles, 
and engine size; Increase 
newness, PCE,  MPG and 

fuel cleanliness. 

 Identification of 
vehicle type at gas 

pump 

Policy 3: Miles-specific 
Vehicle Tax 

   

Vehicle tax that 
depends on miles and 

on vehicle 
characteristics 

Reduce gasoline, miles, 
and engine size; Increase 
newness, PCE,  MPG and 

fuel cleanliness. 

Most efficient: 
Identical to emissions 

tax 

Measurement of 
miles driven: 

Odometer readings 
or accurate estimate 

of lifetime miles 
Policy 4: Uniform 

Rates Based on 
Averages (ignore PCE 

and clean-fuel 
characteristics): 

 Least efficient: 
Do not fully account 

for technological 
relationships and 
taste correlations 

 

Gas tax using 
average vintage and 

engine size 

Reduce gasoline and 
miles; 

Increase MPG 

 Average vintage and 
average engine size 

Newness subsidy using 
average miles 

Increase newness and 
MPG 

 Average miles 

Engine size tax using 
average miles 

Decrease engine size, 
increase MPG 

 Average miles 

Policy 5: Alternative 
Uniform Rates 

(ignore PCE and clean-
fuel characteristics): 

 Less efficient: 
More fully accounts 

for technological 
relationships and 
correlation among 

tastes 

 

Gas tax Reduce gasoline and 
miles; 

Increase MPG 

 

Newness subsidy Increase newness and 
MPG 

 

Engine size tax Decrease engine size, 
increase MPG 

 

Information about 
the distribution of 

vintage, engine size, 
and miles over the 

population 

 
 
 
 



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California  

 51

Because consumers differ, the decisionmaker cannot seek the best outcome by 
considering the choices made by one household.  No one household is perfectly 
representative of the rest.  Instead, the decisionmaker must maximize a weighted sum of 
household utilities, and therefore must give each household a certain weight in this sum.  
To simplify this problem, we specify household weights that meet two criteria.  First, in 
order to focus on efficiency rather than on distributional considerations, initially, we 
choose weights so that a dollar given to any household has the same effect on social 
welfare.  Second, in the counterfactual case where an emissions tax is available, we 
want the maximization of our social welfare sum to yield the Pigovian emissions tax.  
These two considerations determine the weights, but we then use that same set of 
weights when the ideal emissions tax is not available.  In this way, we ensure that the 
effects of our policies are directly comparable with the effects of an ideal emissions tax. 

 
A. First-best Policies 

 
1.  Policy 1: A Pigovian Tax 

 
A tax on emissions provides the basic efficient policy against which alternatives 

can be compared.  Given the weights we have chosen, our model with heterogeneous 
consumers generates a result that matches the result of a simple representative-
household model.  In particular, a uniform Pigovian tax that is equal to the marginal 
environmental damages per unit of emissions at the same rate for all households, will 
induce all households to make all the optimal choices about miles, car size and vintage, 
fuel, and pollution control equipment.  In response to the one tax rate on emissions, 
each household chooses the extent to which it will reduce consumption of gasoline or 
engine size (from Xo to X' in Figure 5-2).  In addition, each would choose the optimal 
extent to which it will increase consumption of vehicle newness, the clean fuel 
characteristic, and  PCE  (from Yo to Y' in Figure 5-3).  
 

2. Policy 2: A Complicated Gas Tax 
 
In the case where the measurement of emissions were difficult or impossible, so 

that an emissions tax could not be implemented, we then find a different policy that 
attains the exact same efficient outcome.  This policy is a tax schedule for gasoline that 
depends on characteristics of the gasoline  and  on characteristics of the car at the pump.  
This tax is equal to the damage per unit emission (MED) times emissions per mile 
(EPM)  times miles per gallon (MPG).  Emissions per mile and miles per gallon both 
depend on vehicle characteristics, and so therefore does this gas tax.   

Since the gas tax depends on vehicle characteristics, are separate taxes on 
newness, engine size, and  PCE  necessary?  Under some assumptions, these additional 
policies may not be necessary (Innes, 1996).  Assuming individuals know that their 
individualized gas tax rate will depend on their own choices of newness, engine size, 
and  PCE, then that gas tax alone can induce the optimal size, vintage, and pollution-
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control equipment.  To influence drivers to reduce gasoline or engine size consumption 
from Xo to X', the gas tax effectively raises the private cost of these goods from Po to P'.  
And, when consumers see that their gas tax rate depends on the type of car they drive, 
they increase their purchase of newness, the clean fuel characteristic, and PCE: the gas 
tax effectively lowers the private cost of these goods from Po to P'.   
 

3.  Policy 3: A Miles-Specific Vehicle Tax   
 
 The gas tax in Policy 2 is very complicated.  It seems reasonable for a gas tax to 
depend on the characteristics of the fuel.  But in order for the efficient outcome to be 
attained using just the complicated gas tax, it must depend on vehicle characteristics.  
Individual-specific gas taxes would be costly to administer: 

 
For example, a tamper-resistant computer code would likely be required 
on each automobile; similarly, gasoline pumps would have to be equipped 
to automatically tack the appropriate tax onto any gasoline that is 
dispensed to a particular automobile.  Moreover, since a simple siphoning 
of gas will permit consumers to bypass taxes on high-emission vehicles, 
the scope for abuse, particularly among those high-emitting consumers 
who are arguably the most important targets of the tax, would be 
tremendous. (Innes, 1996: p. 226). 

 
As it turns out, a different combination works just as well as the complicated gas 

tax. To induce drivers to buy newer, smaller cars with more  PCE, policymakers can use 
a tax on vehicles that depends on miles driven.  To implement this tax, policymakers 
would calculate each vehicle’s emissions per mile by using the  EPM  function, which 
relates emissions per mile to engine size, vehicle vintage, fuel cleanliness, and pollution 
control equipment (PCE).  Then, to determine the household’s total emissions, 
policymakers could multiply the vehicle’s  EPM  by the number of miles driven in the 
car.  The vehicle tax rate would be higher for vehicles with larger engines, and lower for 
cars that are newer or that have more  PCE.  When consumers see that their vehicle tax 
rate depends on the number of miles they drive, they decrease their purchases of 
gasoline.  Because the vehicle tax effectively raises the private cost of engine size from 
Po to P', it would induce drivers to reduce consumption of this good from Xo to X'.  And 
because the vehicle tax would effectively lower the private cost of newness and PCE  
from Po to P', drivers would increase consumption of these goods from Yo to Y'.  

Implementing the miles-specific vehicle taxes would also be difficult or costly.  
If the vehicle tax were assessed when the vehicle is purchased, then some measure of 
the total expected miles for the life of the vehicle would be necessary.  Since conditions 
change, however, the one-time vehicle tax would not provide the right subsequent 
incentives (e.g. choice of mileage, choice of PCE maintenance or purchase, and choice 
of retirement date).  If the vehicle tax were assessed annually, then annual odometer 
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readings could be helpful.  However, this would provide incentive for individuals to roll 
back their odometers to reduce their vehicle tax.23  
 
  4.  Additional Implications for Policy 2 and Policy 3 
 

Both the complicated gas tax (Policy 2) and the miles-specific vehicle tax 
(Policy 3) induce households to make optimal choices, given that they consume positive 
amounts of each good.  A more complete analysis is required to deal with situations in 
which households do not wish to consume any of the clean fuel characteristic or any  
PCE.  If households dislike pollution control equipment enough, then the subsidy to  
PCE  within the complicated gas tax or within the vehicle tax may not induce them to 
buy any of it.  In this case, the subsidy to PCE  can only induce consumers to buy any 
pollution equipment if it is equal to the entire private cost of PCE, including both the 
direct cost of equipment and the extra gasoline costs incurred due to the negative effect 
that PCE has on fuel efficiency.  With a 100 percent subsidy, however, the choice of  
PCE  is indeterminate.  That is, with the subsidy, consumers may buy less, more, or 
exactly the socially optimal amount of  PCE.   Thus, if people do not care for  PCE, but 
also are not hurt by  PCE, then incentives do not work.  The optimal  PCE  can only be 
achieved by a mandate (as in Innes, 1996).  
 The same analysis applies to the clean-fuel characteristic. For households to 
choose cleaner gas, the subsidy must equal the entire cost of the attribute. 

We think that people are unlikely to feel exactly neutral about clean cars and 
clean fuel.  People may like using the latest technologies, or feel peer pressure to do so.  
On the other hand,  PCE  may negatively affect performance by increasing vehicle 
weight and decreasing acceleration.  In addition, if cleaner fuel can be found only in a 
limited number of locations, the inconvenience costs of refueling could be high.  A high 
enough subsidy could then induce households to purchase the optimal amount of clean 
fuel and clean car characteristics.  
 The optimality of these results also depends on our assumptions about the 
available abatement technologies.  Since emissions depend on newness, engine size, 
clean fuel, and  PCE, both the complicated gas tax and the miles-specific vehicle tax 
attain the same efficient equilibrium as that reached by the Pigovian tax.  Despite the 
fact that emissions are never measured, both policies can attain 100 percent of the 
improvement in social welfare achieved by the Pigovian tax.  If technologies that we do 
not consider here also increase or reduce emissions, then those technologies would need 
to be taxed or subsidized in order to achieve the greatest possible welfare gains. 
 

                                                
23 “Even if only a small proportion of consumers cheat in this way, those who cheat are likely to be those 
who drive the most, who therefore have the greatest incentive to cheat and who are arguably the most 
important targets of mileage taxation” (Innes, 1996: p. 226-227). 
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 B.  Second-best Policies: Uniform Tax Rates 
 
  If the gas tax cannot be made to depend on vehicle type, or a vehicle tax cannot 

be made to depend on miles-driven, then separate taxes on size and gasoline and a 
separate subsidy to newness become important.  

In the next sections we therefore go on to consider taxes or subsidies that do not 
vary with vehicle characteristics at the pump or with mileage.  Because of this extra 
complication, we now drop consideration of the clean-car and clean-fuel characteristics.  
Since we know that these goods would require subsidies equal to their total cost, further 
discussion would provide no additional insight.  And, doing so enables us to focus on 
the problems of setting only three tax or subsidy rates.  Thus fuel efficiency and 
emissions per mile depend only on newness and engine size.  We consider two ways to 
set uniform rates.  First, we examine the use of average values of vehicle characteristics 
to set the gas tax, and average miles to set the tax rates for size and newness.  Rates set 
using this method do not fully incorporate information about the technological 
relationships between vehicle characteristics and  EPM  and MPG, nor about the 
correlation among tastes for miles, size, and newness.  Some households facing these 
rates, therefore, would reduce emissions by too much, and others would reduce 
emissions by too little.  Then, we discuss a method that would more fully account for 
these technological relationships and correlation among tastes.  This method, while still 
imperfect, would enable policymakers to approximate more closely the effects of an 
ideal emissions tax.  

  
  1.  Policy 4: Setting Uniform Tax Rates Using Averages  
  

To set the uniform gas tax rate, policymakers could use the averages of engine 
size and newness.  For example, in 1994, the average U.S. vehicle was six years old and 
had six-cylinder engine.  Such a vehicle would have, on average, an engine with about 
170 cubic inches of displacement.  If the policymaker knows the mathematical 
relationship between these vehicle characteristics and emissions per miles and fuel 
efficiency, she could estimate the average vehicle’s  EPM  and  MPG.  Then, she could 
plug these values into the equation for the vehicle-specific gas tax rate (in Fullerton and 
West (2002)), and impose this rate on all vehicles.   

This is a fairly straightforward process, and so the information requirements for 
this averages-based rate is low.  If the relationship between vehicle characteristics and  
EPM  and MPG  is a simple one, and in particular if the relationship is linear, then these 
rates would be the same as the average of all of the individual-specific rates.  Then 
knowing all of the vehicle’s individual  EPMs  and  MPGs  would not give the 
policymaker any additional helpful information.  The tax rate set using averages would 
be the same as the best uniform rate that could be set using information about each 
vehicle.  If, however, the technological relationships are more complicated, then the use 
of averages would ignore important information.  Rates set using averages would be 
different from the best uniform rates set using information about each vehicle.  For 



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California  

 55

example, if emissions per mile increase very rapidly with engine size, a vehicle with an 
engine double the size of another would emit more than double the amount of pollution 
per mile.  Or, if fuel efficiency decreases very quickly with vehicle age, a car that is 
double the age of another would use more than double the amount of gasoline.  A gas 
tax rate calculated using average values of size and newness simply does not 
incorporate these kinds of relationships.  In the next chapter, we provide evidence that 
these relationships are important.   
 For now, we just consider the case where tax or subsidy rates for newness and 
engine size, are set by the policymaker using the characteristics of the average vehicle.  
For miles, she could use the average number of miles driven.  Doing so would not only 
ignore the potentially-complicated technological relationships discussed above; it would 
also ignore the fact that households’ tastes for driving-related goods may be correlated.  
For example, households who live far from their place of work have a high demand for 
miles, and so they may prefer either a small car (for better gas mileage) or a large car 
(for comfort and safety).  Households that prefer older cars may do so because these 
vehicles are larger.  And, households that own newer, more-reliable vehicles may drive 
more miles than households with older vehicles that are more likely to break down.   

These kinds of correlation among tastes imply that the tax on size, for example, 
would affect not only the choice of engine but also the characteristic with which taste 
for engine size is correlated.  If households that drive more miles prefer smaller cars, 
then a tax on size that induces households to purchase even smaller cars would also 
induce them to drive more miles, because their cost per mile is lower in the more fuel-
efficient car.  If households that drive more miles prefer larger cars, then a size tax 
would induce them to drive fewer miles, because their commutes are no longer so 
comfortable.   

The same is true for a newness subsidy.  In the presence of correlation among 
tastes, such a subsidy affects not only the choice of vintage, but also the choice of the 
characteristic with which taste for newness is correlated.  For example, if households 
that like older cars also like larger cars, then a newness subsidy, because it influences 
them to buy newer cars, would influence them to buy smaller cars.   

If such correlation is not accounted for, tax and subsidy rates could be set too 
high or too low, and induce some households to reduce pollution by too much or by too 
little.  In the next chapter, we present evidence that tastes for miles and vehicle 
characteristics are correlated.   
  

2. Policy 5: An Alternative for Setting Uniform Rates 
 
In order to approximate more closely the effects of an ideal emissions tax, we 

suggest an alternative method that more fully accounts for the technological 
relationships and correlation among tastes discussed above.  This case is still limited to 
a gas tax than cannot depend on the car, and car taxes that cannot depend on miles 
driven, so the outcome will not perfectly match the efficient outcome of the Pigovian 
tax, but we seek the best possible tax rates subject to these constraints.  To find the best 
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such rates, we must find the single size and gas tax rates, and newness subsidy rate that 
maximize social welfare, taking as given households’ demand behavior for miles, size, 
newness, and other goods and services.   In essence, we would like to find the rates that 
move each household nearest to its optimal consumption of these goods.  Because we 
are not using individual-specific taxes, only by coincidence would any one household 
move from its old Xo and Yo to its optimal  X' and Y'.   

For this problem, the decisionmaker considers the general technological 
relationship between vehicle characteristics and  EPM  and  MPG.  The planner also 
incorporates information about the distribution across the population of vehicles and 
miles driven, and determines the correlation among newness, engine size, and miles.24  

The tax rates on size and gasoline and subsidy rate on newness should each be raised or 
lowered until the aggregate additional gain in private welfare just equals the aggregate 
loss from the effect on emissions.  The extent to which emissions are reduced depends 
on the degree of responsiveness in the choice of miles, size, and newness.  Thus optimal 
uniform tax or subsidy rates on size, newness, and gasoline depend on the elasticities of 
demand for these goods.  But the way in which changes in size and newness affect 
emissions is through the technological relationships that size and newness have with 
emissions per mile and fuel efficiency.  The functions  EPM  and  MPG are therefore 
major determinants of the uniform tax rates.  Correlation among preferences will also 
affect the optimal uniform rates.   

Unlike the framework we use to solve for individual-specific tax rates, the 
mathematical model we use to determine the general form of optimal uniform rates does 
not give us explicit equations for the rates.  Only with data on households’ vehicles and 
miles driven and responses to tax rates can we solve for optimal uniform rates.  

 
IV. Conclusion 
 

We find that the ideal Pigovian tax on emissions (Policy 1) can be replicated 
perfectly by a complicated gas tax (Policy 2).  However, this ideal outcome requires that 
the gasoline tax depend on engine size, newness and PCE.  Alternatively, the 
policymaker, then, attain the ideal outcome by using miles-specific vehicle tax 
schedules (Policy 3).  If these individual-specific tax rates are too difficult or costly, 
they could implement uniform tax rates on gasoline, engine size, and newness.  To do 
this, they could implement uniform rates calculated using the population averages of 
miles and vehicle characteristics (Policy 4).  Last, policymakers could explore these 

                                                
24  For those readers with more background in economics, the decisionmaker maximizes the weighted 
sum of indirect utilities, taking as given households' demand behavior, with respect to the three tax rates.  
For the sake of clarity, here we consider linear second-best tax rates.  Perhaps policymakers could assess 
nonlinear size and newness tax schedules fairly easily.  The use on nonlinear schedules could incorporate 
heterogeneity by accounting for convexity or concavity of  EPM  and  MPG, but not for the possible 
correlation among size, newness, and miles.  
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technological relationships and correlation among tastes, and impose uniform taxes that 
account for these relationships (Policy 5). We do this in the next chapter. 

 
 

Figure 5-1: Consumer Choice Framework 
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Figure 5-2 

Consumption of Dirty Goods (Gasoline and Engine Size) 

(Each Household has a Different Graph) 
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Figure 5-3 

Consumption of Clean Goods (Vehicle Newness, Clean Fuel Characteristic,  PCE) 

(Each Household has a Different Graph) 
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Chapter 6 

Calculations of Uniform Tax Rates 
  
 So far, we have shown that a Pigovian tax on emissions achieves the optimal 
degree of abatement through a set of behaviors that minimize costs.  We also showed 
that such “first-best” results can also be achieved by tax rates on gasoline that depend 
on the vehicle at the pump, or by a vehicle tax that depends on miles driven.  Yet such 
taxes would be difficult to administer.  For this reason, we now consider taxes that are 
constrained to be uniform across households: a gas tax at the same rate for all vehicles, 
a tax on vehicle size that does not depend on miles driven, and a tax (or subsidy) to 
vehicle newness that does not depend on miles.  Whereas the unconstrained tax rates 
achieved “first-best” results, this constrained set of tax rates cannot perform as well.  
Thus we solve for “second-best” uniform tax rates on gas, newness, and engine size. 
 To solve for optimal uniform taxes or subsidies on gasoline, newness, and 
engine size, first we explicitly state how households evaluate the tradeoff between the 
marginal benefits and costs of each good.  In addition, we specify the degree to which 
households substitute among goods in response to price changes that result from taxing 
or subsidizing goods.  Second, we gather information on households' choices of vehicle-
related goods and other goods, so that we incorporate correlation among preferences 
into the framework.  This household information includes data on expenditures, prices, 
and each vehicle's size, newness, fuel efficiency, and emissions per mile.  We use these 
data to determine how newness and engine size relate to emissions per mile and fuel 
efficiency.  
 If consumers were identical, each would drive the same type of car the same 
number of miles, and so uniform rates set using averages would perform just as well as 
rates set using data on all households.  So, more differences among individuals imply 
that the constrained uniform rates do less well.  

We use our data and model to simulate a scenario in which individuals face no 
taxes.  Then, we solve the model under eight different policy scenarios.  We first 
simulate a uniform emissions tax, the optimal policy against which we evaluate the 
performance of other potentially-more-feasible tax combinations.  All other policies are 
combinations of uniform taxes or subsidies on gasoline, engine size, and vehicle 
newness. One combination would use all three instruments.  We then consider three 
policy options that consist of only two of the three instruments.  The remaining three 
policies involve a single tax or subsidy. 

We solve the model under these varying assumptions about the availability of 
these policy instruments, and we rank the policy combinations according to welfare.  To 
compare the performance of the less-efficient instruments with that of the most-efficient 
emissions tax, we calculate the percentage of the Pigovian tax improvement gained by 
each policy.  Despite the considerable extent to which individuals in our data differ, 
some combinations of uniform taxes perform quite well.  We find that the three-part 
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instrument attains 71 percent of the Pigovian tax improvement (relative to the zero-tax 
scenario).  A gas tax alone reaches 62 percent of the Pigovian welfare gains.25   

We also use this numerical model to evaluate the welfare gains of uniform rates 
calculated using the averages of observed miles, size, and newness.  Since  EPM  and 
MPG  are nonlinear functions of size and newness, and since preferences for miles, size, 
and newness are significantly correlated, the use of averages to set the three tax rates 
gains only 61.5 percent of the Pigovian tax welfare gains, less than that gained by the 
optimal uniform gas tax.  Thus ignoring heterogeneity may result in significant welfare 
losses. 
 
I. Numerical Model 
 

In this section, we clarify the theoretical framework that we use as a basis for 
our computer simulations.  

A household may be composed of one or more drivers, each of whom makes 
decisions regarding vehicle type and miles driven.  In our model, we focus on the 
individual; households that have two vehicles thus have two decision-makers.26  Our 
data do not provide the amount and type of pollution control equipment on each vehicle, 
maintenance of this equipment, or the cleanliness level of the fuel.  So, for the purposes 
of this model, we ignore effects of these characteristics on emissions.  We are able to 
identify the make, model, engine size, and year of each car in each household, matched 
with other data on income and all expenditures for each household, however, so that we 
do capture the effects on emissions of choices about age and engine size.  

As explained in chapter 5, individuals gain utility, or satisfaction, from 
consumption of newness, engine size, miles, and other goods.  They are negatively 
affected by total auto emissions, but do not recognize how their choices contribute to 
total emissions.  The marginal benefits of each good are essentially the “demand” for 
each good, based on the contribution of each good to an individual's utility.   

In the absence of taxes, the private cost of each good is determined by its market 
price.  Since the price per mile driven depends on fuel efficiency, which depends on 
newness and engine size, the choice of miles depends on the choice of these vehicle 
characteristics.  Since vehicle characteristics affect the amount of gasoline required to 
drive a mile, the prices of these goods involve not only a direct component, but also an 
indirect component through the effect on the cost of gasoline.  All relative prices can be 
altered by taxes or subsidies on emissions, gasoline, engine size, newness, or on all 
                                                
25  Since California already administers a gas tax, one might be tempted to use our results to conclude that 
the existing gas tax reaches 62 percent of the Pigovian welfare gains.  This is not necessarily true, 
however, because the magnitude of the existing gas tax was not set according to the environmental 
damages that are caused by burning gasoline.  
 
26 In our model, one driver does not affect the decisions made by another driver in the same household.  
We ignore possible interdependence among choices rather than making arbitrary assumptions about those 
interdependencies.  
 



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California 
 

 62

other goods.  Table 6-1 explains the price of each good and the tax or subsidy rate 
associated with each good.  
 
Table 6-1: Prices and Tax or Subsidy 

Good Direct Component of Price  Indirect  
Component 
of Price 

Tax or Subsidy 

Miles The price per gallon of gasoline, 
divided by miles per gallon  

None Gas tax,  
or increase in 
emissions tax due to 
an extra mile 

Engine Size  The price per cubic inch of 
displacement (CID) 

Higher cost 
of gas from 
effect of  
using larger 
car 

Size tax,  
or increase in 
emissions tax due to 
an increase in size 

Newness  Equals one, so that "spending" on 
newness each year is the amount 
that the vehicle falls in value 
(depreciation) 

Lower cost 
of gas from 
effect of 
using newer 
car 

Newness subsidy, 
or decrease in 
emissions tax due to 
an increase in newness 

Other Goods Equals one None None 
 
 To choose the number of miles to drive, individuals evaluate the direct cost per 
mile, which is determined by the price per gallon of gasoline and fuel efficiency, and, 
they evaluate how much they would have to pay either in gas tax or in the emissions tax 
attributable to driving an extra mile.  To determine what size engine to buy, individuals 
consider the price per cubic inch of displacement (CID), and they evaluate the cost of 
the extra gas that must be paid, given a number of miles, when using a larger vehicle 
with lower  MPG.  Individuals may also face a tax on size or on emissions associated 
with the extra size of the car.   

Newness is the counterpart of vehicle age. An arbitrarily “old” vehicle does not 
depreciate any further, and newer vehicles depreciate more than older vehicles, so the 
individual’s “spending” on newness each year is related to the amount it falls in value.  
We assume that the price of newness is one.  Therefore the “quantity” of newness 
purchased in a given year is the amount “spent” on the vehicle’s depreciation.  
Individuals evaluate this expenditure when deciding what vintage vehicle to purchase.  
And, they consider the lower cost of gasoline when using a newer vehicle with higher  
MPG.  They may also face a subsidy to newness, or they may experience a decrease in 
emissions tax paid when driving a newer car. 

We use a mathematical expression for utility to specify preferences for goods, 
and the assumed maximization of this utility function determines the demands for 
(marginal benefits from) these goods as functions of income and prices.  This equation 
incorporates the complicated interrelatedness of each individual’s choices.  And, each 
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individual is allowed to have his or her own preferences about goods.27  Some of our 
results depend upon the degree to which consumers can respond to policies by 
substituting consumption of one good for consumption of another.  For example, when 
faced with a gas tax, individuals could spend less on miles and engine size, and spend 
more on newness and other goods.  We experiment with different degrees of 
substitutability, and explain how this affects our results.  

 
II. Data and Derivations 
 

To implement the model discussed above, we need data on individual 
expenditures, prices, and each vehicle’s engine size, vintage, fuel efficiency, and 
emissions per mile.  In this section we describe the three main sources of data used in 
this study: the Consumer Expenditure Survey (CEX), the California Air Resources 
Board (CARB) Light-Duty Surveillance Program, and the American Chamber of 
Commerce Researchers’ Association (ACCRA) cost-of-living index.  In addition, we 
explain the derivation of prices and other values used in the calculations. 

The 1994 Consumer Expenditure Survey is the first component of our data.  
This survey is published annually by the Bureau of Labor Statistics of the U.S. 
Department of Labor, and it provides comprehensive and detailed information on the 
quarterly expenditures of approximately 5000 consumer units.28  Each consumer unit 
participates in the survey for five consecutive interview quarters.  All CEX observations 
include the amount spent on gasoline as well as total expenditures.  The 1994 survey 
also contains files with detailed information on each consumer unit’s vehicles.  Just a 
few of the variables included in the vehicle file are year, make, model, and number of 
cylinders.29  The CEX is a rotating panel survey.  Each quarter, 20 percent of the sample 
is rotated out and replaced by new consumer units.  We pool households across the four 
quarters in the 1994 CEX and treat each observation as a different household.  

Next, we need the fuel efficiency and emission characteristics of each car.  
Between November 1995 and March 1997, the CARB tested the emissions per mile and 

                                                
27 We assume a Constant Elasticity of Substitution (CES) form of utility over the four chosen 
commodities, and that total emissions has a linear negative effect on utility.  For a full derivation of this 
model, see Fullerton and West (2000).  
 
28 A consumer unit can comprise either “(1) all members of a particular household who are related by 
blood, marriage, adoption, or other legal arrangements; (2) a person living alone or sharing a household 
with others or living as a roomer in a hotel or motel, but who is financially independent; or (3) two or 
more persons living together who use their income to make joint expenditures.” (BLS, 1996, p. 236). 
 
29 In addition, the vehicle file lists each vehicle’s cumulative mileage.  In order to obtain a number for 
miles driven in a quarter, we originally planned to match households across quarters and subtract the 
previous quarter’s odometer reading from that of the current quarter.  When we did this, however, we 
discovered that most odometer readings are only rough estimates.  And, for some households, the current 
quarter’s reported odometer reading is less than that of the previous quarter.  Thus we elected to derive 
miles using data to be described shortly. 
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fuel efficiency of 345 vehicles in California.30  They recorded numbers for emissions of 
hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx).  In addition, 
they compiled vehicle information such as make, model, year, number of cylinders, and 
cubic inches of displacement.  Unfortunately, the CARB did not measure emissions of 
PM10, the only pollutant whose overall levels have been rising in California.   

We drop the three vehicles in the CARB that are motor homes, and 342 vehicles 
remain.  We then find vehicles in the CEX that match a CARB vehicle’s make, model, 
year, and number of cylinders.  This match enables us to use the CARB vehicle’s cubic 
inches of displacement for that car in the Consumer Expenditure Survey.  For single-car 
households in the CEX with complete expenditure and vehicle data, we obtain 567 
usable matches.31  We then select all multi-car households that have complete 
expenditure and vehicle data and that have at least one vehicle that exactly matches a 
CARB vehicle.32  For the other vehicles of those multi-car households, we impute 
displacement by using CARB data to estimate displacement as a function of cylinders, 
newness, and an indicator for whether the vehicle is a truck or van.33  The final sample 
consists of 567 vehicles from one-vehicle CEX households and 694 vehicles from 
multi-vehicle CEX households.34  We also assign values for income of each driver.  
Individuals from one-car CEX households are assigned the total expenditures listed for 
their household.  For drivers in multi-car households, income is total expenditures 
divided by the number of vehicles. 

                                                
30 The Light-Duty Vehicle Surveillance Program, Series 13, was conducted as part of an ongoing effort 
by the California Air Resources Board to accumulate vehicle emissions data, to investigate vehicle 
maintenance practices and deficiencies, and to determine the frequency and effect of tampering with 
pollution control equipment.  To undertake this project, the CARB compiled a list of candidate vehicles 
from a randomized set of registered vehicles belonging to households within a 25-mile radius of the 
CARB office in El Monte, California. 
 
31 Some matches were not used because high consumption of one or more goods rendered expenditure 
shares that summed to more than one, or because our simulation program could not solve the household’s 
demand system due to the nonlinearity of the system in combination with that household’s particular 
parameters.  
 
32 Vehicles from multi-car households are also selected according to whether information on mileage is 
available.  We explain this further below. 
  
33 With standard errors in parentheses, N=Newness, and CID=Cubic Inches of Displacement, the 
estimated equation is: 
CID = -101.75 + 35.88cylin + 2.68cylin2 + 5.83N - .06N2  -.74N*cylin + 26.08 truck/van dummy 
            (49.48)     (14.1)         (1.07)      (1.75)    (.03)     (.17)           (4.3)   #obs = 342,  R2 = .8753 
 
34 Thus 45 percent of the vehicles in our final sample are from single-car CEX households and 55 percent 
are vehicles from multi-car CEX households.  This distribution corresponds fairly well to the distribution 
of single-car and multi-car households in the U.S. population: in the 1990 census, 38 percent of all 
households owned one vehicle, while 62 percent owned two or more vehicles (ORNL, 1998: p. 10-8).   
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  To establish a base from which to compare welfare levels, we need to assign 
prices to gasoline, size, newness, and all other goods.  For the price of “all other goods,” 
we define a unit as the amount that costs one dollar, so the price per unit is one.  For gas 
prices, we use the ACCRA cost-of-living index.  This index compiles prices of many 
goods as well as overall price indexes for approximately 300 cities in the United States.  
It is most widely used to calculate the difference in the overall cost-of-living between 
any two cities.  It also lists average gasoline prices for each city in the survey each 
quarter.  For each state, we average the city gas prices to obtain a state gasoline price 
for each calendar quarter.35  We then assign a gas price to each CEX household based 
on state of residence and CEX quarter, and divide gas expenditures by this price to get 
gallons of gas consumed.   
 In order to simulate a scenario with no pre-existing gas taxes, we need to know 
the 1994 state and federal gas tax rates.  The federal gas tax was $.184 per gallon.  For 
each state’s gas tax, we relied on  The Transportation Energy Data Book 16 (ORNL, 
1996).  The average of these 1994 state gas tax rates was 19 cents.   

Ohta and Griliches (1986) provide the information necessary to calculate the 
price per cubic inch of displacement (CID).  They estimate that an increase of one cubic 
inch of displacement increases the price of a vehicle by .253%.  To translate their 
estimate into dollars per cubic inch in 1994, we use $19,676 as the average 1994 price 
of a new car in 1994 (ORNL, 1996, p. 2-38).36 Thus the initial outlay per cubic inch of 
displacement in 1994 is ($19,676)(0.00253) = $49.78.  The 1990 vehicle model year 
average survival rate is 13.7 years (ORNL, 1996, p. 3-9).  So, to obtain a price per 
quarter for one CID, we find the amount that would be paid each quarter for 56 quarters 
with a present value of $50, assuming a 5% annual interest rate.  This results in a price 
per CID of $1.23 per quarter.   
 We use a similar unit definition to set the price of newness equal to one.  Thus 
the “quantity” of newness is total expenditure on newness, that is, vehicle depreciation.  
To calculate depreciation for each vehicle, we assume that vehicles depreciate 
geometrically at a rate of .20 per year.37  While vehicles differ in value across types, and 
thus each has a different depreciation amount, some of that depreciation pertains to 
leather seats or other features not related to emissions.  We want to use the same 
measure of emission-related newness for all vehicles.  Thus we apply the depreciation 
schedule to a base vehicle’s value, the average value for a new vehicle.  The 

                                                
35 Because gas prices from municipalities that are not Metropolitan Statistical Areas (MSAs) are 
incomplete, we removed non-MSAs from the sample.  All households in the sample from the CEX are 
urban dwellers.   
 
36 This average price is in 1994 dollars and includes prices of imported vehicles. 
 
37 Estimates of this depreciation rate range from .33 (Hulten and Wykoff, 1981; Jorgenson 1996) or .30 
(Hulten and Wykoff, 1996) to .15, the rate implicit in the vehicle depreciation schedule currently used by 
the Bureau of Economic Analysis (authors’ calculations based on a depreciation schedule provided by 
Arnold Katz, BEA).  We use .20 because it falls between these estimates.   
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approximate average price of a new vehicle from 1960 to 1995 is $15,000 in 1994 
dollars, so a new 1995 car depreciates by $15,000 x (.2) = $3000 per year, or $750 per 
quarter.  Thus the owner of a 1995 vehicle (regardless of make or model) consumes 750 
units of newness, while the owner of a 1980 vehicle consumes only 26.38 units of 
newness per quarter. 

We used the CARB data to experiment with a variety of specifications for  MPG  
and  EPM  as functions of newness and engine size.  For our measure of  EPM, we use a 
weighted sum of the three pollutants in our sample: HC, CO, and NOx.  We weight each 
pollutant according to its contribution to MED; in accordance with Small and Kazimi 
(1995), we assign the highest weight to NOx (.495), followed by HC (.405) and CO 
(.10).38  
 We estimate the relationship between vehicle characteristics and fuel efficiency 
to be as follows (N=Newness, and standard errors are in parentheses): 
 
MPG  = 34.15 - .116*CID + .0001*CID2 + .015*N - .00001*N2  + .0000007*(N*CID) 
   (.986)    (.009)          (.00002)          (.003)   (.000004)       (.00001) 
 

These estimates show that fuel efficiency decreases with size.  Specifically, an 
increase of one cubic inch of displacement decreases  MPG  by about .1158 miles per 
gallon.  And, fuel efficiency increases with newness.  Also, the multipliers or 
"coefficients" on the vehicle characteristics that have been squared (CID2 and N2) are 
statistically significant.  This means that the relationship between vehicle characteristics 
and fuel efficiency is not a simple linear one.  If it were linear, then an increase in 
engine size would decrease fuel efficiency at a constant rate, and an increase in newness 
would increase fuel efficiency at a constant rate.  Instead, the positive coefficient on  
CID2  means that an increase in engine size decreases fuel efficiency at an increasing 
rate.  The difference in fuel efficiency for a vehicle with an engine with 250 CID and 
one with 200 CID is greater than the difference in  MPG  for a vehicle with 200 CID 
compared with one with 150 CID.  And, the negative coefficient on  N2  means that an 
increase in newness increases fuel efficiency at a decreasing rate.   

To estimate the relationship between vehicle characteristics and  EPM, we used 
a slightly more complicated equation.39  The results of this estimation show that 
emissions per mile increase with engine size at a decreasing rate.  Emissions per mile 
decrease with newness at a decreasing rate.   

As explained in chapter 5, the magnitude of welfare gains from calculating 
optimal tax rates using data on heterogeneous households (as opposed to using average 

                                                
38 Small and Kazimi (1995) do not calculate a value of MED for CO, but they say it is small, so we use 
.10 for CO. We then use their  MED estimates for HC and NOx to assign weights to those two pollutants. 
 
39 With standard errors in parentheses, and N=Newness, the estimated equation is: 
  ln (EPM) = 1.101 + .004*CID - .000004*CID2 - .009*N + .000008*N2 - .000001*N*CID 

                    (.252)    (.002)          (.000005)           (.001)        (.0000009)       (.000003) 
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values of miles, size, and newness) depends in part on how nonlinear are the functions 
for  MPG  and  EPM.  The results in the last two paragraphs show that both functions 
are quite nonlinear.  

We use the estimated equations to assign each vehicle with a function that 
provides  MPG  and  EPM , not only for baseline values of size and newness, but also 
for simulated changes in choices about vehicle characteristics.  Then, to obtain baseline 
miles driven, for each individual from a one-car household, we multiply  MPG  by 
gallons of gas consumed.  Calculating miles driven for each car of a multi-car 
household is not so straightforward, because each household has only one value for gas 
expenditure.  To allocate gas expenditure to each driver or car in such a household, we 
need to know the number of miles driven and  MPG  of all vehicles.  To obtain an 
estimate of miles driven for these cars, we match CEX vehicles across quarters and 
subtract the previous quarter’s odometer reading from that of the current quarter.  We 
keep vehicles from households for which we have at least two vehicles with positive 
miles driven that quarter, assuming that vehicles with missing or negative miles are not 
used by the household.  Then, we divide each miles number by the vehicle’s estimated  
MPG  to get estimated gasoline consumption.  We divide each vehicle’s estimated gas 
consumption by the sum of all of the household’s vehicles’ estimated gas consumption 
to assign the proportion of gas used by each vehicle.  Finally, we allocate the actual 
total gas consumption (recorded in the CEX) for that household among their vehicles by 
these proportions.  Each car’s share of total gas reported in the CEX is divided by that 
car’s  MPG  to obtain our final estimate of miles driven. 

We also have to assign values to each individual that account for that person's 
tastes.  To do this, we use a method called calibration.  We observe the amount of each 
good that an individual has purchased, given income and prices.  And, for each good we 
have a mathematical equation that relates the quantity demanded by an individual to 
prices and income.  This equation contains a parameter that corresponds to the 
preference for each good.   So, we have all of the information that we need to solve for 
the value of each such parameter.  People that are observed to drive more miles than 
others will be assigned a higher value for their preference for miles.  We use these 
preference parameters in every subsequent simulation.  These parameters guide the 
individual’s selection of new quantities for miles and car characteristics in response to a 
change in tax rates and subsidy rates; these quantities react to changes in tax rates, not 
changes in preferences. 

Lastly, we need a number for marginal environmental damages,  MED.  As 
summarized in chapter 2, the literature includes many diverse estimates of the  MED  
per unit of car pollution, but methodological issues and other difficulties preclude 
consensus.  Moreover,  MED  by its very nature depends on whether the area is densely 
populated.  We use Small and Kazimi's estimates to assign weights to the three 
pollutants measured by the CARB.  But we avoid problems with the determination of   
MED  by assigning it a value that would result in an optimal gasoline tax close to that 
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which already exists.  We find that if  MED  is .0076 (that is, .76 cents per gram of 
emissions) then the optimal uniform gas tax is $.29 per gallon.40  

Table 6-2 summarizes the starting point for our simulations.  The average miles, 
size, newness, and other goods are those chosen when households face no taxes (the 
"zero-tax" scenario). 
 
Table 6-2: Parameter and Variable Descriptions and Means (1261 individuals) 

Description Mean in Zero-Tax 
Scenario 

 
Total quarterly expenditure  

 
5011.37 

Percent of expenditure spent on miles 3.0 
Percent of expenditure spent on engine size 7.0 
Percent of expenditure spent on newness 
Percent of expenditure spent on other goods 

4.0 
86.0 

Marginal environmental damages (MED) .0076 
Price per gallon gasoline after removing pre-
existing taxes ($) 

.72 

Price per cubic inch of displacement per quarter ($) 1.23 
Price per year of newness per quarter ($) 1.00 
Price per unit other goods ($) 1.00 
Miles per quarter 3685.83 
Cubic inches of displacement 166.45 
Newness (depreciation per quarter) 
Other goods 

181.39* 

4455.45 
Gallons of gasoline  169.63 
Miles per gallon 21.74 
Grams per mile of emissions 2.04 

* This depreciation corresponds most closely with that of a vintage 1988 vehicle. 
 

The 3 percent average for the percent of expenditure spent on miles matches the 
mean gasoline expenditure for the 1994 CEX.  The average individual allocates 14 
percent of total expenditure to gasoline, size, and newness.  Since this figure excludes 
non-emission-related car characteristics (such as a sunroof or leather seats), it 
corresponds well to data for the average CEX household, which spends 19 percent of its 
income on transportation (including gasoline, vehicle purchases, maintenance, and other 
charges).  The average vehicle in the sample is a 1988 model year, has six-cylinders, 
and is driven 14,743 miles per year.  On the national level in 1994, the average car was 
also a 1988 model year, driven 11,400 miles per year (ORNL, 1996, p. 3-11).  
 

                                                
40 We assume that the individuals in our sample live and drive in an airshed with perfect mixing.   
 



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California  

 69

III.  Simulation Results 
 

A. Eight Scenarios 
 

We use the data set and parameters just described to simulate a baseline and 
eight different tax scenarios.  To obtain the baseline, we remove the pre-existing federal 
and state gas taxes and solve the model.41  When we solve for optimal tax rates, we 
must specify what happens to tax revenue.  We assume that the government has the 
ability to levy lump-sum taxes and thus faces no particular revenue requirement in this 
problem.  We add an individual’s tax revenues to that individual’s income and subtract 
tax subsidies from income.  

We are interested in eight alternative tax combinations.  In each case, we specify 
which tax rates are allowed for each specific policy combination, and we set all other 
tax rates to zero.  We then use the numerical model to find the values for the allowable 
tax rates, positive or negative, that maximize welfare (given individual demand 
behavior).  The first policy, a uniform emissions tax, is the optimal policy against which 
we evaluate the performance of other potentially more feasible instruments.  Our theory 
predicts that this optimal Pigovian tax will be equal to  MED, which we have specified 
to be .0076, and we use this fact to test that our model correctly implements the 
underlying theory. 

For the seven remaining scenarios, we set the tax on emissions to zero and solve 
for combinations of other tax rates (assuming that each tax rate must be uniform across 
heterogeneous households).  Because the gas tax reduces miles most directly, and thus 
reduces emissions more directly than the size tax or newness subsidy, we expect the 
combinations that involve a gas tax to result in higher welfare gains than those without.  

We also simulate the effects of using uniform tax rates on gasoline, engine size, 
and vehicle newness calculated using equations from Fullerton and West (2000) and the 
sample averages.  Since these rates ignore the nonlinearity in the functions for  EPM 
and  MPG, and correlation among tastes for miles, engine size, and vehicle newness, we 
expect these rates to result in lower welfare gains than the three-part instrument that 
incorporates heterogeneity among households in the data.  Results of this exercise 
appear in section D below. 

Starting for the case in which people are assumed to have a moderate degree of 
flexibility in substitution among goods, Table 6-3 shows the results.  For each policy, it 
lists the percentage improvement relative to the zero-tax scenario, and the welfare gain 
as a percentage of that achieved by the ideal-but-unavailable Pigovian tax on emissions. 
 

                                                
41 We do not remove other pre-existing policies such as the Corporate Average Fuel Economy (CAFE) 
standards, emissions standards, and gas-guzzler taxes, but these controls are embodied to some extent in 
the functions that relate MPG  and EPM to engine size and vehicle newness.  Without these regulations, 
our tax policies that alter choices about these car characteristics would not have the same impact on  EPM 
or MPG.  An appropriate extension to this project would model other regulatory policies explicitly. 
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Table 6-3: Simulation Results (Moderate Degree of Substitution) 
Scenario  

Pigovian 
Tax Rate 

Gas 
Tax 
Rate 

Size 
Tax 
Rate  

Newness 
Subsidy 

Rate 

% 
Improvement 
from Zero-

Tax 

% of  
Pigovian Tax 
Improvement 

       
Pigovian 
Tax 

.0076 0 0 0 .2511 100.00 

Three-part 0 .267 -.007 -.107 .1795 71.49 
Two-part 
#1 

0 .268 0 -.107 .1794 71.45 

Two-part 
#2 

0 .291 -.004 0 .1565    62.33 

Gas tax 0 .291 0 0 .1565 62.31 
Two-part 
#3 

0 0 -.023 -.148 .0501 19.96 

New 
subsidy 

0 0 0 -.148 .0493 19.61 

Size 
subsidy 

0 0 -.020 0 .0007 .29 

Zero taxes 0 0 0 0 0 0 
 
 
 In accordance with Pigovian tax theory, our simulation program finds that a tax 
on emissions equal to .0076 improves welfare to the greatest extent.  The optimal three-
part instrument includes a 27 cent tax per gallon of gasoline, a .7 cent subsidy per cubic 
inch of displacement per quarter, and a 10.7 cent subsidy to newness per quarter.  
Because the dollar values of these rates depend on   MED, and different regions have 
different values for  MED, our results do not imply that the California should impose a 
statewide gas tax of 27 cents, or a newness subsidy of 10.7 cents.  Before implementing 
these policies, policymakers in a particular region would have determine the  MED  for 
that region.  If, for example, estimates of  MED  were double the value we use in this 
study, the optimal rates would be double the values in Table 6-3.  

Our results do imply that the gas tax rate is large relative to the newness subsidy 
rate.  This emphasizes the importance of the gas tax, and of reducing miles driven, for 
reducing vehicle emissions.  The fact that the size tax is negative also emphasizes the 
importance of reducing miles for significant welfare gains to be attained.  A subsidy to 
size acts indirectly to reduce miles driven.  A size subsidy increases the amount of size 
purchased, which has a small positive effect on emissions per mile (EPM) but a larger 
negative effect on fuel efficiency (MPG).  This raises the overall price per mile, and it 
thus reduces miles driven.  In other words, a small subsidy to size has a net negative 
effect on emissions through the decrease in miles driven.  Despite the heterogeneity of 
the consumers in our model, the three-part instrument performs adequately well.  These 



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California  

 71

size and newness subsidies plus gas tax, even at uniform rates for all consumers, can 
attain approximately 71% of the gain in social welfare achieved by a Pigovian tax.   

Because the size subsidy is so small, a two-part instrument involving just a 27 
cent gas tax and 10.7 cent subsidy to newness attains nearly the same 71% gain of the 
three-part instrument.  A different two-part instrument, with a gas tax and size subsidy, 
attains 62% of the maximum gain.  A 29 cent gas tax alone also achieves about 62% of 
the gain from the ideal Pigovian tax.  This gas tax alone gains more welfare than the 
combination of only subsidies to size and newness, a result that emphasizes the fact that 
miles reduction is the most direct way to cut emissions. 
 
 
  Table 6-4: Average Miles, Size, and Newness, and Percent Emissions Reduction 

 
Scenario 
 

 
Miles 

 
Size 

(CID) 

 
Newness

 
%Emissions  
Reduction 

% Pigovian 
Tax 

Emissions 
Reduction 

Pigovian tax 
 

2850.01 169.22 204.00 42.70 100.00 

Three-part 
 

2692.92 168.36 202.68 32.12 75.22 

Two-part #1:   
Gas tax, Newness 
Subsidy 

 

2697.50 167.41 202.68 32.11 75.20 

Two-part #2:   
Gas tax, Size 
Subsidy 
 

2627.10 168.60 182.18 28.79 67.42 

Gas tax 
 

2629.92 168.01 182.84 28.79 67.42 

Two-part #3:  
Size subsidy, 
newness subsidy 
 

3670.13 168.90 210.01 9.80 22.95 

Newness subsidy 
 

3696.65 165.74 210.01 9.65 22.60 

Size subsidy 
 

3675.53 167.66 181.35 .06 .14 

Zero taxes 3685.83 166.45 181.39 - - 
 
 

Three policies that do not involve a gas tax attain less than one quarter of the 
welfare gain of the Pigovian tax: the combination of a size subsidy and newness 
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subsidy, and single subsidies to newness or size.  In the absence of a gas tax, the 
optimal size subsidy becomes more negative, as it assumes more of the burden of 
reducing miles.  Since the size subsidy reduces miles more indirectly than does the gas 
tax, welfare gains for the size subsidy alone or in combination with the newness subsidy 
are lower than for combinations involving a gas tax. 

For each scenario, Table 6-4 lists the means of choices for miles, size, and 
newness, and it shows the percent emissions reduction.  Emissions are reduced by 
42.7% with the Pigovian tax, and by 32.1% with the three-part instrument.   
 

B. Discussion 
 
How big is the absolute size of each such welfare gain in dollars?  Translating 

the gains in welfare into dollar terms implies a gain from the Pigovian tax equal to 
$12.49 per individual per quarter.  This gain over all individuals is 0.25% of the sum of 
individual income in the sample.  Both the three-part instrument and the first two-part 
instrument provide a welfare gain of about $8.92 per individual, or a total over all 
individuals that is 0.18% of the sum of individual income.  

The added gain from the ideal Pigovian tax is the difference, 0.1% of income.  
Thus, if the additional administrative costs of implementing a Pigovian tax are greater 
than 0.1% of the sum of all affected individuals’ incomes, then the three-part and first 
two-part instrument may be overall more efficient than the Pigovian tax.  However, the 
distributional effects of the Pigovian tax and these other combinations may differ.  The 
impacts of alternative tax scenarios may differ even further if household composition is 
taken into consideration.  In addition, we assumed that our EPM  and MPG  functions 
generated the true emissions and fuel efficiencies of each car in the sample.  Any error 
in this assumption would change the relative gains from these instruments. 

Under our assumptions, a gas tax of 29 cents per gallon yields 62% of the 
Pigovian tax improvement.  Whether the government should elect to impose just a gas 
tax depends on the ease with which it could implement a newness subsidy.  Such a 
subsidy could be paid upon the purchase of a new vehicle, or implicitly assessed in a 
program to buy up old vehicles as examined in Alberini et al. (1995) or Dixon and 
Garber (1999).  Another alternative is the gas tax and size subsidy combination.  A 
positive size tax is already implicitly incorporated into the gas-guzzler tax that 
consumers must pay when purchasing an automobile that has an EPA fuel economy 
rating of less than 22.6 MPG.42  These U.S. gas-guzzler tax schedules could be modified 
to incorporate the externalities from pollution that result from larger engines.  California 
could introduce its own tax schedules.  Instead of indirectly taxing size through low 
MPG, this tax could be made to depend on emission rates.  However, since the increase 

                                                
42 For example, a tax of $1,000 is assessed on all automobiles whose fuel economy is between 22 and 
22.5 MPG.  This existing tax increases in a nonlinear fashion and reaches a maximum of $7,700 for 
vehicles with fuel efficiency ratings under 12.5 MPG.  In 1996, the Federal government collected nearly 
$53 million in gas-guzzler taxes (ORNL, 1998, p. 6-15, 6-16). 
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in welfare due to the size subsidy is so small, we hesitate to recommend its 
implementation. 
 

C.  Sensitivity Analysis 
 
 The relative welfare gains discussed in the previous section result from 
simulations in which households have moderate ability to substitute among goods.  In 
this section, we evaluate the robustness of those results by undertaking the same kinds 
of simulations assuming that households have greater or lesser flexibility in their 
choices of goods.  Relative welfare gains using all three levels of flexibility are listed in 
Table 6-5.  
 
 
Table 6-5:  Sensitivity Analysis 
 Less Flexibility Moderate 

Flexibility 
(from Table 6-3) 

Greater Flexibility 

Scenario % 
Improvement 

in Welfare 
from 

Zero-tax 

%  
of Pigovian 

Tax 
Improvement 

% 
Improvement 

in Welfare 
from 

Zero-tax 

%  
of Pigovian 

Tax 
Improvement 

%  
Improvement 

in Welfare 
from  

Zero-tax 

%  
of Pigovian 

Tax 
Improvement 

Pigovian Tax .1185 100 .2511 100 .4409 
 

100 
 

Three-part  .0802 67.70 .1795 71.49 .3211 73.05 

Two-part #1: gas, 
newness 

.0800 67.49 .1794 71.45 .3153 71.49 

Two-part #2: gas, 
size 

.0694 58.54 .1565     
62.33 

.2780 63.05 

Gas tax .0692 58.40 .1565 62.31 .2773 62.90 

Two-part #3: size, 
newness 

.0189 15.93 .0501 19.96 .1075 24.38 

Newness subsidy .0189 15.90 .0493 19.61 .1036 23.49 

Size subsidy .0001 .11 .0007 .29 .0038 .86 

Zero-taxes 0 0 0 0 0 0 

 
Note two characteristics of these results.  First, for all policies compared to the 

zero-tax scenario, the gains in welfare increase as flexibility increases.  As individuals 
are allowed to substitute more easily among goods, all policies reduce emissions at a 
lower cost.  Second, the welfare gains from the alternative policies relative to the 
Pigovian tax gains also increase with the degree of flexibility.  Yet the rankings of the 
policies are identical for all degrees of flexibility.  So, while welfare gains are sensitive 
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to the degree to which households can substitute consumption of one good for 
consumption of another, the choice among instruments is not.  
 

D.  Uniform Rates Using Averages 
 
We found that  MPG  and  EPM  are curved functions.  In addition, miles and 

size in our sample are negatively correlated, which means that individuals with large 
engines tend to drive fewer miles.  Size and newness are negatively correlated, while 
miles and newness are positively correlated.  Because people differ, the most-efficient 
individual-specific taxes would reflect many combinations of miles, size, and newness.  
Thus it is not possible to predict the effect of these correlations on the optimal uniform 
tax rates.  
 Table 6-6 lists tax and subsidy rates calculated using tax rate equations from 
Fullerton and West (2000) and the averages of miles, size, and newness.  
 
      Table 6-6: Comparison of 3PI Rates Evaluated using Averages and Optimal   
      Uniform Rates 

Tax Rate Value at Averages 
 

Optimal Uniform Rates 
(from table 6-3) 

Gas Tax .21 .27 
Size Tax -.03 -.007 
Newness Subsidy  -.20 -.107 

 
The size subsidy calculated using sample averages is four times the magnitude 

of the optimal uniform rate.  Probable sources of this difference are the negative 
correlation between size and miles, and the nonlinearity of  EPM.  The size subsidy 
reduces emissions by reducing miles.  Since size and miles are negatively correlated, 
the size subsidy induces more miles reduction than would be expected were consumers 
identical.  So a smaller subsidy is optimal.  The newness subsidy calculated using 
averages is nearly double the size of the optimal uniform rate, indicating that the 
negative correlation between size and newness could be affecting the optimal rates.  
Due to the negative correlation, the newness subsidy increases newness and decreases 
size (on average), and so a smaller newness subsidy is optimal.   

What impact do these correlations have on welfare gains?  The three-part 
instrument using rates evaluated at observed means obtains 61.5 percent of the welfare 
gains of the Pigovian tax (compared with 71.5 percent under the computed optimal 
3PI).  Thus, ignoring heterogeneity could result in sizeable welfare losses.   
 
IV.  Conclusion 
 

In this chapter, we solve for a variety of combinations of uniform tax rates on 
gasoline, engine size, and vehicle newness, using data from the 1994 Consumer 
Expenditure Survey, the California Air Resources Board Light-Duty Surveillance 
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Program, and the ACCRA Cost of Living Indexes.  We thus combine information on 
1261 individuals’ expenditures with other information on vehicle characteristics 
including engine size, vehicle vintage, fuel efficiency, and emissions per mile. 

With three main determinants of emissions (miles, engine size, and vehicle 
newness), we solve for eight different tax and subsidy combinations.  We have 
excluded, however, other individual choices that impact vehicle emissions, such as the 
choice of pollution-control equipment and its maintenance, fuel cleanliness, the number 
of cold-start-ups, and driving aggressiveness.  If data on individuals’ choices of these 
goods become available, we could expand this numerical model to include them.  Then, 
to affect emissions without a direct tax on emissions, the model would require a tax or 
subsidy to each of these additional choices.  As it stands, our model measures the 
determinants of emissions imperfectly.  We also ignore the interdependencies in a 
multi-car household’s choice of miles allocation across vehicles.  In our model, a gas 
tax causes all drivers in the household to drive fewer miles.  In general, however, a gas 
tax may cause a household to drive fewer miles in their old gas-guzzler and  more  
miles in their newer, more fuel-efficient car.  Allowing for substitution among vehicles 
within the household would enable the same emissions reduction to occur at a lower 
cost to the household, and welfare gains of our simulated policies could be larger.43 

In addition, we do not explicitly incorporate pre-existing policies such as the 
Corporate Average Fuel Economy (CAFE) standards, the gas-guzzler tax, and 
emissions standards.  These policies are embodied to some extent in our estimated 
functions for  MPG  and EPM.  Without these standards, our alternative instruments 
would not perform as they do in our model.  The gas- guzzler tax indirectly taxes engine 
size and thus affects the magnitude of the optimal uniform size tax rate in our model.  
Also, CAFE standards change the effect that newness and size have on fuel efficiency 
and thus affect the magnitude of all our tax rates and especially the gas tax rate.  The 
newness subsidy is effective in our model in part because emissions standards have 
become increasingly stringent over time.  A more complete numerical implementation 
would explicitly model existing and potential mandates and incentives.  

We compare the performance of second-best instruments with that of a first-best 
emissions tax by calculating the percentage of the Pigovian tax improvement gained by 
each policy combination.  Despite the considerable heterogeneity among households in 
the data, two combinations of uniform taxes perform well.44  We find that 71 percent of 
the Pigovian tax improvement from the zero-tax scenario can be gained by the three-
part instrument involving a gas tax, a size subsidy, and a newness subsidy.  The two-
part instrument involving a gas tax and newness subsidy also attains about 71 percent of 
                                                
43 Green and Hu (1985) find that this substitution occurs to a large extent in some households, but that its 
overall effect is negligible.  A calibrated numerical model like ours could incorporate such substitution, as 
could a simulation model that uses regression-based estimates of responsiveness. 
 
44 Since we can observe size and newness, taxes or subsidies on these goods need not be uniform.  
Instead, a vehicle tax could be any nonlinear function of size and newness.  Use of such a tax schedule in 
our model would generate welfare gains that are greater percentages of the Pigovian tax gains.   
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the Pigovian tax improvement.  Adding the size subsidy to this two-part instrument does 
not significantly increase welfare because of the small impact that engine size has on 
EPM.  For the most part, then, we can conclude, that a size tax or subsidy is not 
essential.   

A gas tax alone reaches 62 percent of the gains from an ideal Pigovian tax. The 
ultimate choice of policy depends on these estimated welfare effects and on other 
effects not estimated here such as distributional effects and administrative costs of 
implementing each tax or subsidy. 
 
 



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California  

 77

Chapter 7 
 

Distributional Impacts of Taxes on Gas or Cars 
 
 
In chapter 6, we focused on the efficiency effects of taxes or subsidies on 

gasoline, the newness of the car, and engine size.  We explicitly ignored the differential 
effects that these policies might have on groups with different income and demographic 
characteristics.  In this chapter, we discuss a more general empirical model of the choice 
of vehicle, including the choice of vintage and engine size and the choice of vehicle-
miles-traveled (VMT).  We use results from this estimation to describe the likely 
distributional effects of a gas tax, size tax, and newness subsidy.  In addition, we 
evaluate the degrees of responsiveness of demand for  VMT  and gasoline to changes in 
the price of gasoline.     

The joint nature of the demands for vehicles and miles complicates estimation of 
these demand functions.  The choices of vehicle and  VMT  are related because 
characteristics that influence a household to purchase a certain vehicle may also 
influence that household’s choice of miles.  For example, an individual that lives far 
from work may gain more enjoyment from commuting in a large, comfortable vehicle.  
Residence location also makes it likely that the individual will drive more miles.  The 
two choices are also related through the effect that vintage and engine size have on fuel 
efficiency, and thus on the price per mile.  The price per mile is the price per gallon of 
gasoline divided by fuel efficiency (miles per gallon), which is itself a function of 
vintage and engine size.  Since the demand for  VMT  depends on the price per mile, and 
thus fuel efficiency, the household’s choice of vehicle affects their demand for miles, 
and vice versa.  

Section I explains the estimation approach.  Section II describes the data, 
explains the classification of vehicle bundles, details the derivation of variables used in 
the estimation, and provides summary statistics.  Section III presents results from the 
two stages of estimation.  Section IV offers conclusions and directions for future 
research.  
 
I. Estimation Approach 
 

Several studies examine either the choice of vehicle or vehicle characteristics, 
and other studies examine the demand for miles.  Many studies conducted in the 1970s 
estimate the aggregate demand for vehicles using time-series data (see, for example, 
Hess (1977) and Johnson (1978)).  Some studies estimate the choice of vehicle, but not 
the demand for miles (Berkovec (1985), Berkovec and Rust (1985), McCarthy (1996)).  
Still other researchers use "hedonic" analysis to estimate the contributions of vehicle 
characteristics to vehicle price, and then use these estimates for second-stage estimation 
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of the demand for characteristics.45  While many studies of the demand for miles 
include indicator variables for vehicle choice in equations that estimate miles demand, 
they do not explicitly model the joint nature of the choice. 46  Hundreds of studies of 
gasoline demand do not include vehicle choice at all.47   

Recognizing that estimates obtained from these studies are biased, a few 
gasoline demand studies have modeled the choice of vehicle explicitly.  Because an 
automobile is durable, and miles-driven is the service provided by an automobile 
through gasoline use, an appropriate framework for modeling this joint choice is found 
in Dubin and McFadden (1984).  They derive models to estimate the joint demand for 
durables and energy use, and apply them to the demand for appliances and electricity.   

Four studies use the Dubin and McFadden framework to estimate the joint 
demand for vehicles and miles.  Two use data from the 1970s.  First, Mannering and 
Winston (1985) develop a dynamic model of vehicle ownership and utilization, with 
discrete choices, a model in which utilization is the sum of miles driven by all vehicles 
in the household.  Second, Train’s (1986) model is not dynamic, but it does examine the 
number of miles driven in each vehicle in the household.  While both studies explicitly 
incorporate vehicle choice in the demand for  VMT, their results using 1970s vehicles 
may not apply today.  Two studies use more recent data for  foreign countries.  Using 
Canadian data from the 1980s, Berkowitz et al. (1990) expand upon previous studies to 
include choices between vehicles and alternative modes of transportation.  Hensher et 
al. (1992) use Australian panel data from 1981 to 1985 to estimate a dynamic model of 
vehicle holdings and use.   

Each of these studies uses one method to control for the effect of vehicle choice 
in estimation of miles demand.  All except Train (1986) treat vehicles as durable goods.  
However, none of these studies uses recent data from the United States.  In addition, all 
use traditional measures of income.  Since current income includes transitory 
components, a better measure of permanent income is current total expenditures (Bohi 
(1981), Poterba (1991), and Slesnick (1994)).  Finally, no study models vehicle choice 
in a way that can be used to determine the effects of household characteristics on the 
demand for newness and engine size, attributes that are important for analyzing 
emission-reduction policies.            

In our framework, households face choices regarding the number of vehicles to 
own and the engine size and vintage of each vehicle.  They also face the choice of 
vehicle-miles-traveled,  VMT.  To model these related choices, we combine the choice 
of the number, engine size, and vintage of vehicles into one choice, the choice of 
vehicle bundle.  A household chooses from among a set of these bundles.  The choice of 
                                                
45  See for example Agarwal and Ratchford (1980), Arguea, Hsiao, and Taylor (1994), Atkinson and 
Halvorsen (1984), Bitros and Panas (1990), and Goodman (1983). 
 
46  See Archibald and Gillingham (1981), Sevigny (1998), and Walls et al. (1994). 
 
47 See Dahl (1986), Dahl and Sterner (1991), and Espey (1996) for reviews of the literature on the 
demand for gasoline.  
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vehicle depends on income, the quarterly cost of the vehicle bundle, the cost per mile 
for vehicles in each bundle, household characteristics, and attributes of the bundle such 
as newness and engine size.   

Unobserved household characteristics that affect the utility of miles driven in a 
particular vehicle bundle are likely to affect both the probability of selecting that bundle 
and the intensity of its use.  For example, a household with many children may gain 
more enjoyment from driving in a spacious vehicle.  The household may also have to 
drive the children to more activities, and so they may drive more miles.  Moreover, 
factors that affect the intensity of use will affect the probability of choosing particular 
vehicle bundles.  A person living in a region with long commutes drives more miles, 
and may be more likely to choose a vehicle bundle that has low operating costs.   

Dubin and McFadden (1984) suggest three alternative methods that incorporate 
the interrelated nature of the choices of vehicle and  VMT.  Here, we present the results 
of the “reduced form method.”  To use this method, we first estimate the probability 
that households choose each one of the available vehicle bundles.  Then, we include 
these probabilities in the estimation of  VMT.  Doing so ensures that we have properly 
accounted for the effect that vehicle choice has on the demand for miles traveled.  
 
II.   Data and Summary Statistics 

 
To estimate the model discussed above, one needs data on individual 

expenditures, prices, and household and vehicle characteristics.  We use the three 
sources of data described in chapter 6.  To consider the distributional effects of our 
policies, we do not need to match vehicles from the CEX with vehicles from the CARB.  
Thus we are able to use a larger national sample from the CEX.  This sample contains 
information on 5740 households from around the United States.  Of the 5740 in the full 
sample, 642 are from California.  We estimated vehicle and  VMT  choice for both the 
national sample and the California sample.  Both samples yield similar results, and so 
we report those using the larger national data set. 
 

A.  Classification of Vehicle Bundles 
  

We classify vehicle bundles according to three characteristics: number of 
vehicles, vintage, and engine size.  We use vintage and engine size rather than other 
characteristics because they, of the vehicle characteristics included in the CEX, have the 
most measurable impact on the price per mile.48  This classification also enables us to 
estimate the effects of household characteristics on the demand for size and vintage.   

                                                
48  To classify vehicles, Train (1986), and Mannering and Winston (1985) use vintage, but no measure of 
vehicle size.  Berkowitz et al. (1990) classify bundles using vintage, and type (sedan or truck), which is 
one measure of size.  They estimate fuel efficiency, but they do not reveal whether they include type in 
this estimation.  Hensher et al. (1992) uses type, but not vintage, to classify bundles. 
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 First we classify bundles according to three “number of vehicles” categories: 
zero, one, or two.  Then, within the one- and two-vehicle categories, we further classify 
each vehicle according to vintage and engine size.  Since we are primarily concerned 
with the effect of vintage on fuel efficiency, initially we hoped to divide vehicles into 
vintage groups in accordance with the years in which larger-than-average changes in 
Corporate Average Fuel Economy (CAFE) Standards took effect.  Doing so would 
imply three categories such as pre-1981, 1981 to 1989, and 1990 and newer.49  
However, the CEX lumps 1980- through 1982-vintage cars into the same category.  So, 
we divide vehicle bundles into the following vintage categories: all cars are pre-1980 
(old), at least one car is built between 1980 to 1989 and no car is built since 1990 
(newer), or, at least one car is built since 1990 (newest).  For engine size, the three 
categories are: all 4-cylinder (small), at least one 6-cylinder and no 8-cylinder 
(medium), or at least one 8-cylinder (large). 
 
   Table 7-1: Vehicle Bundle Description and Statistics 

Bundle Description  
Bundle 
Numbe

r 

Number 
of 

vehicles 

Engine  
Size 

Vehicle  
Age 

 
Frequency 

 
Percent of total 

1 0 - - 1541 26.85 
2 1 small old 45 .78 
3 1 small newer 632 11.01 
4 1 small newest 371 6.46 
5 1 medium old  61 1.06 
6 1 medium newer 483 8.41 
7 1 medium newest 302 5.26 
8 1 large old 158 2.75 
9 1 large newer 212 3.69 

10 1 large newest 68 1.18 
11 2 small old 3 .05 
12 2 small newer 166 2.89 
13 2 small newest 200 3.48 
14 2 medium old 16 .28 
15 2 medium newer 329 5.73 
16 2 medium newest 476 8.29 
17 2 large old 36 .63 
18 2 large newer 384 6.69 
19 2 large newest 257 4.48 

Total 5740 100.00 

                                                
49  For a table of CAFE standards across time, see ORNL (1996), p. 3-43.   
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This classification generates nine one-vehicle bundles and nine two-vehicle 

bundles.  Table 7-1 describes each bundle and shows the total number of households 
choosing each bundle.  Households that own no cars make up 27 percent of the sample, 
whereas 41 percent own one car, and 32 percent own two cars.  The most common 
bundle is one 4-cylinder 1980s-vintage car (small, “newer”), and the next most common 
bundle is one 6-cylinder 1980s-vintage car (medium, “newer”).  The most common 
two-car bundle is a one with at least one 6-cylinder 1990s-vintage car. 
 

B.  Derivation of Bundle-Specific Attributes and VMT 
 
Two key bundle-specific attributes are employed in our estimation.  They are 

price per mile and capital cost.  The price per mile for each vehicle is the price of 
gasoline divided by fuel efficiency.  The ACCRA gives the price per gallon of gasoline, 
by state.  To obtain fuel efficiency, we use the CARB to estimate a regression of  MPG  
on indicator variables for the three size categories and for the three vintage categories.  
The results of this regression appear in Table 7-2. 

 
Table 7-2:  Fuel Efficiency Regression 

Depende
nt 
Variable 

 
Constant 

 
6-

cylinder 

 
8-

cylinder 

 
1980s 

 
1990s 

 
R2 

 
F-stat 

 
MPG 

 
21.74 

 
-6.36 

 
-9.34 

 
2.43 

 
4.75 

 
.68 

 
175.2

7 
  

(.51) 
 

(.40) 
 

(.51) 
 

(.51) 
 

(.56) 
  

   Standard errors are in parentheses; the number of observations is 342.   
  Given the omitted indicator variables, the constant represents the estimated fuel efficiency of a 4-   
   cylinder,  pre-1980 vehicle. 
 

The regression shows that fuel efficiency decreases with both vehicle age and 
engine size.  For one-vehicle bundles, fuel efficiency is calculated directly from the 
regression results.  For two-vehicle bundles, first we calculate the fuel efficiency of 
each two-car pair within the bundle by averaging the two cars’ estimated efficiencies.  
Then, we assign the two-vehicle bundles that consist of more than one possible two-
vehicle pair the average, weighted by the number of each two-vehicle pair, of the pairs’ 
average efficiencies.   
 Unfortunately, the CEX only lists the total gas expenditure for each household, 
not the gas expenditure for each vehicle.  Thus we cannot assign  VMT  to each vehicle, 
and must use total  VMT  by a household.  To calculate VMT , we first divide the 
household’s gas expenditure by its gas price to get gallons of gas consumed.  Then, we 
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multiply gallons by fuel efficiency (for that household’s bundle) to obtain  VMT  for the 
household.50 
 The quarterly cost of a vehicle bundle includes the capital cost of each vehicle 
and the typical cost of driving.  For capital costs, we use the average purchase price of a 
bundle.  Households in the CEX are asked how much they paid for each vehicle they 
own, and what year they bought the vehicle.  We use prices of new and used vehicles 
purchased in 1994 to calculate the capital cost of each size-vintage combination.  For 
two-vehicle bundles, we calculate the capital cost of each two-car pair within the bundle 
by adding the two cars’ average prices.  Then, we assign the two-vehicle bundles that 
consist of more than one possible two-vehicle pair the weighted average of the pairs’ 
capital costs.  
 Typical fuel costs depend on the typical number of miles a household expects to 
drive.  To construct a measure of the typical miles driven by a household, we calculate 
the average number of miles driven in each bundle (averaged over all households).  
Then, we allow typical miles to differ by the household's total expenditures and the 
number of drivers. 
 

C.  Summary Statistics: Household and Vehicle Characteristics 
 
This section presents summary statistics for household and vehicle 

characteristics by number of vehicles, engine size, and vintage.  These statistics allow 
us to make hypotheses about the effects of these characteristics on the probability that a 
vehicle bundle is chosen. 
 Table 7-3 lists these summary statistics by a CEX household’s number of 
vehicles.  
 

                                                
50  Using total  VMT  rather than the  VMT  in each vehicle ignores the possibility that households respond 
to changes in gasoline price by driving more in one vehicle and less in another.  Thus, estimates of the 
elasticity of  VMT  with respect to the price per mile are likely to be biased downwards.   However, 
Greene and Hu (1985) find that substitution among vehicles in response to changes to the price per mile 
is negligible, and so the bias is not likely to be large. 
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    Table 7-3: Summary Statistics by Number of Vehicles 

Number of Vehicles  
Household  
and Vehicle Characteristics* 

0 1 2 All 

Number of households 1541 2332 1867 5740 
Household size 2.00 2.01 2.94 2.30 
% Households with kids 23.3 24.2 48.1 31.7 
Number in household > 15 years 
old 

1.43 1.52 2.12 1.69 

Number of income earners .712 .981 1.62 1.12 
% Household heads that are male 34.1 49.8 72.7 53.0 
Age of household head 47.0 48.6 45.0 47.0 
% HH heads that are white  67.2 82.9 87.5 80.2 
% HH heads with educ. > high 
school 

34.6 53.0 57.4 49.5 

% HH in metro area with pop. > 4 
million 

23.0 11.6 10.7 14.4 

% HH in Northeast 32.5 19.4 16.8 22.1 
% HH in Midwest 22.1 22.6 26.6 23.8 
% HH in South 30.1 35.8 35.1 34.1 
% HH in West 15.2 22.1 21.5 20.1 
Total quarterly expenditures (1994 
$) 

3725 5816 8962 6278 

Bundle purchase price  (1994 $) 0 5882 11630 6172 
Price per mile  0 .056 .055 .041 
Actual miles driven 0 2981 4943 2819 

    * Average values are given unless otherwise noted. 
 

 
Not controlling for other variables, the number of vehicles owned increases with 

household size, the number of household members older than 15 (a variable meant to 
represent the number of drivers), the number of income earners, and total expenditures.  
Since all of those variables are correlated, however, Table 7-3 does not indicate which 
are most important.  Based on the distribution of percentages across number of vehicles, 
the probability that a household chooses a vehicle bundle with more vehicles may 
increase if the head of household is male, white, has more than a high school education 
or lives in the Midwest.  The likelihood that a household chooses bundles with more 
vehicles appears to decrease if the household lives in a large metropolitan area. 

Statistics by engine size appear in Table 7-4.   
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   Table 7-4:  Summary Statistics by Vehicle Engine Size (Households with Vehicles) 

Size of Vehicles in Bundle  
Household  
and Vehicle Characteristics* 

Small:  
All 4 

cylinder 

Medium:  
At least 
one 6 

cylinder, 
no 8  

Large:  
At least 

one 
 8 cylinder 

All 

Number of households 1417 1667 1115 4199 
Household size 2.14 2.53 2.63 2.42 
% Households with kids 29.9 37.8 36.7 34.8 
Number in household > 15 years 
old 

1.62 1.84 1.92 1.79 

Number of income earners 1.21 1.33 1.25 1.27 
% Household heads that are male 50.5 61.5 69.6 60.0 
Age of household head 42.7 47.7 49.5 46.5 
% HH heads that are white  84.3 85.6 84.8 85.0 
% HH heads with educ. > high 
school 

63.8 55.7 42.6 55.0 

% HH in metro area with pop. > 4 
million 

9.81 12.8 10.5 11.2 

% HH in Northeast 19.3 19.7 14.7 18.2 
% HH in Midwest 20.9 26.0 26.5 24.4 
% HH in South 35.3 34.5 37.3 35.5 
% HH in West 24.6 19.9 21.5 21.9 
Total quarterly expenditures (1994 
$) 

6470 7824 7249 7215 

Bundle purchase price (1994 $) 7287 9711 7997 8438 
Price per mile  .044 .057 .069 .056 
Actual miles driven 3722 4078 3685 3853 

    * Average values are given unless otherwise noted. 
 

The likelihood that a household chooses a vehicle with larger engine size 
appears to increase with household size, the number of members older than 15, and the 
age of the household head.  More-educated household heads appear to choose smaller 
vehicles, and households in the Midwest and South or with male heads of household to 
appear to choose larger vehicles.  As predicted by the fuel efficiency regression, the 
price per mile increases with engine size. 

Finally, Table 7-5 contains summary statistics by vintage.   
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   Table 7-5: Summary Statistics by Vehicle Age (Households with Vehicles) 

Age of Vehicles in Bundle  
Household  
and Vehicle Characteristics 

Old:  
All 1979 
or older 

Newer:  
At least  

one 
1980s,  

no 1990s 

Newest
: At 
least 
one 

1990s 

All 

Number of households 319 2206 1674 4199 
Household size 2.26 2.46 2.41 2.42 
% Households with kids 27.9 35.1 35.7 34.8 
Number in household > 15 years 
old 

1.59 1.79 1.83 1.79 

Number of income earners 0.92 1.24 1.37 1.27 
% Household heads that are male 50.5 57.9 64.5 60.0 
Age of household head 49.2 46.4 46.0 46.5 
% HH heads that are white  78.7 83.0 88.8 85.0 
% HH heads with educ. > high 
school 

34.8 51.8 63.0 55.0 

% HH in metro area with pop. > 4 
million 

6.58 11.2 12.1 11.2 

% HH in Northeast 12.9 19.9 17.1 18.2 
% HH in Midwest 18.2 23.9 26.2 24.4 
% HH in South 34.2 34.4 37.2 35.5 
% HH in West 34.8 21.8 19.5 21.9 
Total quarterly expenditures 4381 6407 8819 7215 
Average purchase price (1994 $) 875 3331 16609 8438 
Price per mile .078 .057 .050 .056 
Actual miles driven 2106 3530 4612 3853 

   * Statistics are means, except where noted otherwise. 
 

Newer and newest vehicles appear to be preferred by households with children, 
with more members above the age of 15, with more income earners, larger total 
expenditures, and with white, male, and more-educated heads.  Households living in 
large metropolitan areas also appear more likely to choose newer vehicles, while 
households with older heads seem more likely to choose older vehicles.  As indicated 
by the fuel efficiency regression, the price per mile increases with vehicle age. 

These statistics provide insight into the probable determinants of bundle choice, 
and they  inform the selection of variables to include in the vehicle-choice estimation 
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detailed next.  The reason for the estimation described below is to isolate the effect of 
one demographic variable controlling for the others.  For example, female heads of 
households tend to have low income.  Table 7-4 indicates that they tend to have smaller 
cars, but it does not indicate which variable has the stronger effect.  Do they buy the 
smaller cars because they are female or because they have low incomes?  The next 
section’s estimation is designed to address such questions. 
 
II. Estimation and Results 
 
 Estimation of the model described in Section I is undertaken in two stages.  The 
first stage estimates a conditional logit specification of the discrete choice of vehicle 
bundle as a function of household and vehicle bundle characteristics.51  Then, the 
second stage estimates the demand for  VMT  using the method described in Section I.  
 

A.  Stage 1: The Choice of Vehicle Bundle 
 
 In the first stage, we use estimate the households' choices of vehicle bundle 
using a “conditional logit.”  Such an estimation technique enables us to determine the 
effect of demographic and bundle characteristics on the probability that a household 
will choose a given bundle.  Table 7-6 presents definitions of the characteristics that we 
include in the bundle-choice estimation. 

                                                
51 The conditional logit is estimated using full information maximum likelihood.  Estimating vehicle 
choice using the logit specification imposes the assumption of independence of irrelevant alternatives 
(IIA).  This assumption means that the ratio of choice probabilities between two alternatives does not 
depend on any alternatives other than the two. The natural solution to this problem is to use a nested logit 
structure, wherein households first choose the number of vehicles, the vintage, then size.  
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   Table 7-6: Definition of Bundle-Choice Variables 

Variable Name Variable Definition 
CAPCOST Bundle’s average purchase price 
INC*CAPCOST Total expenditures times average purchase price 
TFCOST Total fuel cost (price per mile times typical miles driven) 
PRICE PER  MILE Price of a mile (gas price/MPG) 
MALE Head of household is male 
EDUCATION Head of household has more than high school education 
WHITE Head of household is white 
METRO Household lives in metro area with population>4 million 
KIDS Household has kids 
FAMSIZE Number of household members 
DRIVERS Number of household members older than 15 years 
EARNERS Number of income earners in household 
AGE1 Age of household head < 25 
AGE2 24 < Age of household head < 45 
AGE3 44 < Age of household head < 65 
AGE4 Age of household head > 64 
NORTHEAST Household lives in the Northeast 
MIDWEST Household lives in the Midwest 
SOUTH Household lives in the South 
WEST Equals one if household lives in the West 

 
 
 Table 7-7 presents the estimation results for the effect of vehicle price variables 
on the probability that a vehicle bundle is chosen. 
 
   Table 7-7:  Effects of Vehicle Price Variables on Probability the Bundle is Chosen 

Variable Increase or Decrease Probability? 
Purchase Price Decrease 
Income*Purchase Price Increase 
Price per Mile Decrease 

 
The first row of Table 7-7 means that a more-expensive vehicle makes it less 

likely that a household will choose it.  The second row means that households with 
higher incomes are more likely to choose bundles that are more expensive.  And, as 
expected, households prefer bundles with lower operating costs, those vehicles with 
lower price per mile.      

Our results for the impact of demographic characteristics tend to confirm the 
apparent results of the summary statistics in Section II.C, and in some cases provide 
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additional information not evident in the summary statistics.  Table 7-8 lists the effects 
of these characteristics.  Other characteristics that are not listed in the table cannot be 
said to significantly affect vehicle bundle choice.  To address the question raised in the 
specific example above, the results in the second panel of Table 7-8 imply that females 
tend to buy smaller cars independent of income, and that those with less income tend to 
buy smaller cars (independent of gender).  

 
   Table 7-8: Effects of Demographic Characteristics on the Probability a Vehicle 
                    Bundle is Chosen 

Characteristics 
 
Characteristics that affect number of vehicles owned 

Increase or Decrease Probability
(of owning more vehicles) 

METRO decrease 
EARNERS increase 
DRIVERS increase 

KIDS increase 
MALE increase 

WHITE increase 
EDUCATION increase 

INCOME increase 
  
Characteristics that affect engine size  (of owning larger vehicles) 

METRO decrease 
MALE increase 
AGE2 increase 
AGE3 increase 
AGE4 increase 

EDUCATION decrease 
MIDWEST increase 

SOUTH increase 
WEST increase 

INCOME increase 
  
Characteristics that affect vintage  (of owning newer vehicles) 

MALE increase 
WHITE increase 

EDUCATION increase 
INCOME increase 

 
In general, starting back at the top of Table 7-8, households that live in 

metropolitan areas are less likely to own cars than they are to own no cars.  All else 
equal, households with more income earners and members over the age of 15 are more 
likely to own two cars than they are to own one, as are households with kids.  The same 
is true for households with male, white, or more-educated heads.    

As predicted using summary statistics, households with male, older, or less-
educated heads are more likely to choose bundles with larger vehicles.  Households that 
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live in the Midwest, South, or West are more likely to own larger cars than similar 
households in the Northeast.  Those that live in large metropolitan areas are less likely 
to own large vehicles.  Once the estimation controls for income and other factors, race 
and family size do not appear to be an important determinant of engine size choice.  In 
other words, if minorities tend to own older cars, it is because they tend to have lower 
incomes—not because they are minorities. 

Households with male, white, and more-educated household heads are more 
likely to own newer vehicle bundles.  Despite what the summary statistics indicate, age 
and children do not appear to affect vintage choice.  In other words, Table 7-5 indicates 
that households with more kids and higher incomes prefer newer cars.  But having 
children and having more income are positively correlated.  Table 7-8 indicates that 
households with more kids and more income get newer cars because they have more 
income, not because they have more kids.  This is what the estimation can clarify that is 
not in clarified by the summary statistics. 
 Households with higher incomes prefer newer and larger vehicles.  These results 
provide preliminary information about the probable distributional effects of a size tax 
and newness subsidy across income, demographic characteristics, and regions.  Since 
households that purchase larger cars have more income, a size tax would likely be 
progressive, and a size subsidy would likely be regressive—perhaps surprisingly.  
However, since households with more income also prefer newer cars, a newness 
subsidy would be regressive—as might be expected.  Households with male, older, or 
less-educated heads that live in regions other than the Northeast would be hardest hit by 
a size tax (and would benefit the most from a size subsidy).  White, more-educated, 
male-headed households would benefit the most from a newness subsidy.  
  

B.  Stage 2: Estimation of the Demand for Vehicle-Miles-Traveled  
 
Table 7-9 presents the results for the estimation of the demand for  VMT.   
As expected, the demand for  VMT  decreases with the price per mile, and it 

increases with income.  The coefficient of –469.50 on the price per mile means that if 
the price per mile increases by 1 cent from an average price per mile of 4 cents, 
households would drive, on average, 469.5 fewer miles per quarter.  This figure is 17 
percent of the average number of miles per household per quarter.  Demand for  VMT  
increases if the household lives in the South or West.  Miles per household also increase 
if the household lives in a large metropolitan area. The number of income earners 
increases demand for miles per household, which emphasizes the influence of 
commuting.  However, household miles demand decreases with the number of potential 
drivers, the number of household members older than 15.  Those households whose 
heads are past retirement age also drive less.  Controlling for income and other factors, 
miles-driven cannot be conclusively said to be affected by race, education, having 
children, or family size.    



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California 
 

 90

   Table 7-9: Results from VMT  Regressions, all Households (VMT minus typical miles 
                    is the dependent variable, standard errors in parentheses) 

Variable Coefficient Estimates 

PRICE PER MILE (cents)  -469.50 
 (119.79) 
(INC-TFCOST) .10 
 (.030) 
CAPCOST .21 
 (.031) 
REGION2 82.31 
 (175.16) 
REGION3 756.73 
 (203.13) 
REGION4 732.13 
 (276.46) 
MALE 94.79 
 (158.09) 
EDUC -161.92 
 (237.94) 
WHITE 43.17 
 (172.45) 
NUMEARNER -177.63 
 (137.15) 
FAMSIZE -41.92 
 (84.28) 
NUMDRIVER -406.50 
 (137.69) 
AGE2 -307.78 
 (174.75) 
AGE3 -421.87 
 (256.68) 
AGE4 -708.00 
 (289.82) 
KIDS 131.60 
 (175.87) 
METRO 701.49 
 (229.89) 
Adjusted R2 .0925 
Number of observations. 5740 

  
 

 
C. Price and Income Elasticities 
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By controlling for other factors such as age, the number of drivers, etc., the 

conditional logit enables us to isolate the impacts of income on vehicle bundle choice, 
and thus informs us about the probable distributional effects of a size tax and newness 
subsidy.  A second goal of this chapter is to produce reliable estimates of the degree of 
responsiveness in demand for  VMT  to price and income.  Such degrees of 
responsiveness are measured using “elasticities.”  The price elasticity of demand for  
VMT  is equal to the percentage change in vehicle-miles traveled over the percentage 
change in the price per mile.  If households are very responsive to changes in price, then 
the price elasticity of demand is large in absolute value, and demand is “elastic.”  Under 
these circumstances a small increase in the gas tax would result in a proportionally 
larger decrease in miles-traveled.  If, on the other hand, households are not very 
responsive to price changes, then the price elasticity of demand is closer to zero, and 
demand is “inelastic.” If this were the case, then an increase in the gas tax would result 
in a proportionally smaller decrease in  VMT.   
 
   Table 7-10: Short-run Price and Income Elasticities of Demand  
                      for Vehicle-Miles-Traveled and Gasoline 

Elasticity of VMT with respect to price per mile -.67 
Elasticity of VMT with respect to net income .23 
Elasticity of gasoline with respect to price per mile -.60 
Elasticity of gasoline with respect to net income .20 

 
Income elasticities are defined similarly: the income elasticity of demand for  

VMT  is equal to the percentage change in  VMT  divided by the percentage change in 
income.  If the income elasticity if less than one, then on average, households with 
higher incomes spend lower proportions of their income on  VMT.  Wealthier 
households would therefore pay less in gas taxes as a proportion of their income than 
poorer households.  A gas tax under these circumstances would be regressive.  If, on the 
other hand, the overall income elasticity is greater than one, the gas tax overall would 
be progressive.52 
 The short-run elasticities53 presented in Table 7-10 includes the effects of a 
change in gasoline price on net income, defined simply as the difference between 
                                                
52  Quite possibly the effect of income on gasoline purchases is not uniform across the income scale.  
Households with  very low income may buy no gasoline at all.  Then households with fairly low income 
spend a relatively high fraction of income on gasoline, so the gasoline tax is regressive beyond that 
point—since increases in income beyond that point tend to reduce the fraction spent on gasoline.   
 
53  Generally, because each different household in a cross-section is thought to be in long-run equilibrium 
after adjustments to its price and income, elasticities estimated using such data are thought to represent 
long-run elasticities. Our elasticities are therefore larger in absolute value than those obtained by 
estimation using time-series data.  However, because the elasticities that we report here assume that 
households do not change vehicles in response to the gas tax, they do not incorporate the fullest possible 
long-run responses, and so we call them “short-run” elasticities. 
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income and total fuel cost.  The elasticities are evaluated at the means of price per mile, 
income, and fuel efficiency.    

The demand for  VMT  is quite inelastic.  Because of how vehicle bundles are 
defined, these price elasticities are not strictly comparable to estimates from previous 
studies.  However, the results presented here are generally larger in absolute value than 
others.54  The income elasticity estimates are similar to those found in the two previous 
studies that define income as net annual income.  In contrast, we use total expenditure 
to represent a more stable or long-run concept of permanent income.55  

Since the estimated income elasticities are less than one, the gas tax overall 
appears to be regressive.  However, as pointed out by Poterba (1991), a large proportion 
of households in the lower income deciles do not spend any money on gasoline.  To 
give a more complete picture of the potential distributional effects of a gas tax in 
California, Table 7-11 presents average gasoline expenditures as a percent of total 
expenditure for the 642 Californian households in the sample, by decile.   
 
  Table 7-11: Average Share of Income Spent on Gasoline in California, by Decile 

Decile Average Gasoline Expenditure as 
Percent of Total Expenditures,  

all Households 

Average Gasoline Expenditure as  
Percent of Total Expenditures,  

Vehicle Owners Only 
1 2.7 5.5 
2 2.9 5.6 
3 4.4 4.9 
4 4.7 3.2 
5 3.2 4.0 
6 3.4 3.7 
7 3.1 3.0 
8 2.9 2.8 
9 2.7 2.7 

10 1.9 2.0 
 
 The first column lists average total expenditure shares spent on gasoline for all 
California households.  Decile 1 is the poorest income group, and decile 10 is the 

                                                                                                                                          
 
54 For example, Walls et al. (1994) has  VMT  price elasticity estimates that range from  -0.120 to -0.583.  
Berkowitz et al. (1990) estimate a  VMT  price elasticity of  -.21.  Similarly, Mannering and Winston 
(1985) find a  VMT price elasticity of -.228, and Hensher et al’s (1992) results range from -.28 to -.39.  
Sevigny’s (1998) estimates are the only ones that are larger than ours:  she finds  VMT elasticities that 
range from -.85 to -.94. 
 
55 The first, Mannering and Winston (1985) finds a  VMT income elasticity of  .04 on average.  The other, 
Hensher et al, finds  VMT  elasticities ranging from .05 to .14.  The only other study to define income as 
total expenditures (but not net income) is Archibald and Gillingham (1981).  Their  VMT   income 
elasticity estimates range from .23 to .47 and their elasticities of gasoline with respect to income range 
from  .29 to .56. 
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richest. These results confirm Poterba’s finding that a gas tax would be regressive only 
across upper-income groups, in this case only in the top half of the income distribution.  
The second column lists average shares across deciles of only those households that 
own vehicles, and shows that among car-owners, a gas tax would generally be 
regressive.   

   
III. Conclusion 

 
 In this chapter, we estimate a model of the choice of vehicle bundle and vehicle-
miles-traveled.  Since these two choices are related to each other, we use predicted 
probabilities of vehicle bundle-choice in addition to vehicle-bundle-choice variables in 
the estimation of the demand for miles.  We use data on over 5000 households from the 
1994 Consumer Expenditure Survey, combined with fuel efficiency numbers estimated 
using data from the California Air Resources Board Light-Duty Surveillance Program, 
and state-level gas prices from the ACCRA cost of living indexes.   
 By dividing vehicle choices into 19 possible bundles categorized by number of 
vehicles, vintage, and engine size, we can isolate the effects of income and other 
household characteristics on demand for these bundle attributes.  However, combining 
the choice of the number of vehicles with choices of vehicle attributes into one decision 
ignores the fact that these decisions are typically made in related, but separate stages.  
Households may first decide how many cars to own, then vintage, and then size.  If so, 
then a “nested logit” would be a more natural structure for sequential vehicle choice.  
This technique estimates each stage separately. 
 In addition, the first-stage estimation of vehicle bundle choice is limited by the 
data.  While the CEX contains excellent data on expenditures and reasonably detailed 
information on vehicles, it does not contain information on many of the attributes that 
affect vehicle choice.  Previous studies have found that vehicle choice is affected by 
shoulder room, acceleration, horsepower, luggage space, safety, and reliability.  None 
of these variables are in the CEX.  To capture the effects of these attributes on choice 
probabilities, and thus demand for miles, one could have to combine the CEX data with 
information on vehicles from other sources.  On the other hand, it is not clear that this 
effort would much affect the estimated regressivity of a gas tax. 

Results from the first-stage estimation of bundle choice indicate that households 
with higher incomes prefer newer, larger vehicles.  Thus a newness subsidy is likely to 
be regressive, while a size tax (subsidy) is likely to be progressive (regressive).  
Households with heads who are male, older, or less-educated, or who live in regions 
other than the Northeast would be hardest hit by a size tax (and would benefit most 
from a size subsidy).  White, more-educated, male-headed households would benefit the 
most from a newness subsidy.  

Our estimate of the short-run price elasticity of demand for miles is -.67.  This 
estimate is larger than those found in most previous studies.  The gasoline price 
elasticity estimate is -.60.  The income elasticity estimate is .23, which indicates that 
VMT  is a necessity, and therefore that a gas tax may be regressive.  However, for the 
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lower half of the California income distribution, the average share of total expenditures 
on gasoline  increases  as total expenditures increase.  This is because many lower 
income households in California do not own any vehicles.  Only across upper income 
groups is the gasoline tax regressive.  
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Chapter 8 
 

Policy Implications and Directions for Future Research 
 
 After reviewing the status of air quality in California and existing policies to 
deal with vehicle emissions, this monograph takes multiple approaches to analyzing 
those existing policies and other proposals.  The goal is to control vehicle emissions in 
California in a way that balances competing objectives and constraints.  First, the 
combination of vehicle emissions policies should be economically efficient.  Because 
different households have different preferences over vehicle characteristics and mileage, 
an effective mix of abatement strategies will differ across households.  This efficient 
mix of strategies is achieved by an ideal tax on emissions (Pigou, 1932), but vehicle 
emissions may be too difficult to measure and thus to tax.  Second, therefore, 
environmental policy needs to balance economic efficiency with administrative 
complexity and feasibility.  We look at incentive-based taxes and subsidies on market 
transactions that are easier to measure and enforce, like a tax on gasoline and a subsidy 
for buying a cleaner vehicle.  Third, policymakers must be concerned with redistributive 
effects of these taxes and subsidies.  Since households differ in terms of tastes and 
incomes, taxes and subsidies will affect them differently.  Additionally, policymakers 
need to be concerned with political feasibility, revenue considerations, and other 
objectives. 
 Our research in this monograph takes three approaches to these problems.  First, 
we build a theoretical model to prove mathematically the conditions under which 
certain combinations of available taxes and subsidies on market transactions are 
equivalent to the ideal-but-unavailable tax on emissions.  We find that a complicated 
gas tax works fine, if a computer chip on the gas pump can identify the emissions 
characteristics of the vehicle being filled.  Conversely, a tax on the vehicle 
characteristics can work fine, if it can be made to depend on miles driven.  Even those 
policies may be difficult to implement, however. Assuming that those policies are also 
unavailable, we then turn to a set of tax rates that are uniform across consumers.  We 
consider a gas tax that depends only on the cleanliness of the fuel and number of 
gallons, a size tax that depends only on the size of the engine, and a newness subsidy 
that depends on the age of the car.  These tax and subsidy rates do not depend on 
characteristics of the consumer or number of miles driven.  These “realistic” policies do 
not perform perfectly, but they can be designed to come as close as possible to the 
efficient outcome of the first-best emissions tax. 

In our second approach, we build a numerical general-equilibrium computer 
model that specifies the driving behavior of 1261 different individuals, to capture 
heterogeneity and to calculate the effects of alternative policies.  We find that the 
uniform tax rates on gas, engine size, and vehicle newness can achieve a welfare gain 
that is 71 percent of the full welfare gain of the ideal-but-unavailable emissions tax.  
The glass is more than half full, in the sense that available policies attain most of the 
benefits.  This model is also used to evaluate subsets of tax rates.  The tax on engine 
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size turns out to be relatively unimportant, and the tax on gasoline turns out to be the 
single most important portion of this combined policy.  The gas tax alone captures 62 
percent of the full welfare gain from the emissions tax.  A subsidy to buying a newer 
vehicle helps reduce emissions because newer cars have lower emissions rates. 

In our third approach, we use econometric methods to measure statistically the 
parameters of demand for vehicle-miles-traveled (VMT) and for car characteristics like 
engine size and vehicle newness.  Like other earlier estimates, our results suggest that a 
tax on gasoline is regressive, since low-income working families spend a fraction of 
their income on gasoline that is higher than for other families with more income.  Since 
we simultaneously estimate demand for car characteristics, we are also able to show that 
a subsidy to newness might also be regressive.  Higher income families tend to buy 
newer cars, and so they would tend to benefit from this subsidy. 
 The first chapter of this monograph provides a more complete summary of these 
results, and other chapters provide more detail.  The purpose of the rest of this 
concluding chapter, then, is to discuss five main policy implications and to suggest 
directions for future research. 
 
I. Policy Implications 

 
A tax on gasoline is a key component of effective vehicle pollution control policy. 
 

If policymakers wish to reduce vehicle pollution by complementing existing 
regulations with market-based incentives, and an emissions tax is not feasible, then a 
tax on gasoline can effectively encourage households to drive fewer miles and to drive 
more fuel-efficient vehicles.  Since reduction of gasoline consumption is the most direct 
method of emissions reduction, a gas tax is the most powerful emissions-reducing 
market incentive. 
 
A subsidy for buying a newer vehicle can play an important role in emissions reduction. 
 
 Regulations that require new vehicles to be cleaner have also increased new 
vehicle prices.  These higher prices discourage consumers from buying newer, cleaner 
cars.  A natural complement to vehicle regulations, then, would be a subsidy to the 
purchase of newer automobiles.  This subsidy would counteract the effect that 
regulations have on new vehicle prices, and it would reward consumers for driving cars 
that emit lower emissions per mile.  Such a subsidy could be paid upon purchase of a 
new vehicle, or upon retirement of an old vehicle.   
 
A tax on engine size is not a necessary component of vehicle pollution control policy. 
 
 Cars with larger engines may be dirtier for two reasons.  First, for any given 
level of gasoline use, they may emit more pollution per gallon.  Second, they also use 
more gasoline per mile.  It turns out that nearly all of the effect of size on emissions is 



Fullerton & West, Public Finance Solutions to Vehicle Emissions Problems in California  

 97

due to its effect on fuel efficiency; for a given amount of gasoline, the additional impact 
of engine size on emissions per mile is negligible.  Consumers that drive inefficient 
vehicles pay more in gas tax than do consumers with efficient vehicles.  A gas tax 
alone, then, forces consumers to face the environmental costs of larger engines.  A 
separate tax on engine size is not necessary.  
 
Simple policies can get most of the gains of ideal but complicated policies. 
 
 To reduce vehicle emissions, policymakers must encourage consumers to 
change two simple behaviors: reduce miles and buy cleaner cars.  The policies that 
encourage these behaviors can also be simple, and still get most of the gains that would 
be attained using more complicated policies.  The glass is more than half full: A 
uniform gas tax and a uniform subsidy paid upon purchase of a new car or upon 
retirement of an old car, can attain more than half of the welfare gains of an ideal tax on 
emissions. 
 
Market-based incentives that reduce car pollution will likely be regressive. 
 
 Low-income households spend a fraction of their income on gasoline that is 
higher than for other families with more income.  Low-income families also own older 
cars.  Because of this, market-incentives that discourage gasoline consumption and 
encourage the purchase of newer cars will likely be regressive.   
 
II.  Directions for Future Research  
 
 We have learned that policymakers are stuck between a rock and a hard place.  
To some extent, they seem forced to choose between improving air quality and 
protecting low-income families.  A major goal of future research, then, is to find ways 
to avoid that conflict: can other policy combinations better achieve both goals 
simultaneously?  Is it really necessary to raise taxes on low-income families in order to 
improve air quality for everyone?  In general, the approaches described in this 
monograph can be used to answer these questions better, perhaps with additional work 
to improve the models. 
 First, the three approaches described here could be better integrated into a single 
comprehensive model.  As a first step, the econometrically-estimated parameters of 
Chapter 7 could be employed in the numerical computer simulation model of Chapter 6.  
Then, instead of using estimated parameters of Chapter 7 to “infer” the distributive 
effects of each policy, we would use the estimated parameters in that model to calculate 
these effects of each policy.  This step is not simple, because the specification of all 
consumers’ demand behaviors must be consistent with utility-maximization in a way 
that allows us to calculate utility-based welfare measures, and it must be consistent with 
production and resource constraints for an overall general equilibrium in the economy.  
But successful implementation of this approach would provide a general-purpose 
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model, one that would allow researchers to calculate the distributive effects of any 
specific proposal or combination of policies.  We could then calculate the effects of 
policy combinations designed to improve air quality while protecting low-income 
families.  A gas tax, with or without a newness subsidy, could be combined with a wage 
subsidy or other transfer to low-income working families who now spend a high 
fraction of their income on gasoline and other automobile expenditures.  A targeted 
wage subsidy would encourage work effort while providing enough means to pay for 
transportation to work, while the other environmental components of this policy 
combination would encourage all workers to switch from high-emissions cars to low-
emissions cars, to drive a bit less, and even to take public transportation.   
 Second, the model could be augmented to consider revenue implications of all 
these environmental taxes and subsidies.   Raising new tax revenue might be politically 
unpopular, and so a politically-feasible combination of policies might be designed with 
revenue neutrality.  The extra revenue from an increased gas tax could be used to pay 
for the newness subsidy and for the wage subsidy in a way that best meets multiple 
goals simultaneously without raising new revenue on the backs of low-income families.  
The model could be made to solve for second best tax rates that meet these revenue and 
distributional objectives. 
 Third, the model could be modified to consider other distorting taxes on labor 
and capital incomes that currently affect labor supply, investment, and productivity.  
This effort would require the model to specify labor supply functions and investment 
decisions in a way that is based on maximization of utility defined over leisure time at 
home, consumption of current market commodities, and future consumption made 
possible by savings.  All taxes on labor and capital incomes have distorting effects on 
those behaviors, as do sales taxes and other taxes on consumption.  Resulting excess 
burdens have been measured in computable general equilibrium models like the one 
envisaged here.  Then a set of pollution-control taxes could be designed not with 
revenue neutrality, but with added revenue devoted to the reduction of these other 
distorting taxes on labor or capital incomes.  Indeed, the “double-dividend hypothesis” 
is much discussed in the economics literature and suggests that environmentally-
motivated taxes could both improve the environment and improve the workings of the 
tax system.  The basic idea is to replace taxes on “goods” like labor and capital with 
taxes on “bads” – like polluting behavior.  The extended model could be used to 
evaluate this kind of proposal as well. 
 Fourth, the model could be extended to include specific consideration of existing 
and proposed command and control (CAC) regulations.  Currently the existence of 
those regulations is implicit in our model.  Indeed, these regulations are the reason in 
our model for the effectiveness of the subsidy to buying a newer car, because these 
regulations are the reason that newer cars are cleaner.  A more-general model could 
evaluate changes in these CAC regulations along with changes in tax or subsidy rates, 
perhaps to find the best overall combination of such policies.  Besides certification 
standards, fleet composition, and reformulated gasoline policies, other possible air 
quality policies include accelerated vehicle retirement and other programs.  In addition, 
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all of these policies and regulations have their own distributive effects among 
consumers, since they affect production costs and prices paid by different consumers for 
different types of gasoline, cars, and other products. 
 Fifth, the model could be extended to consider other specific behaviors that 
affect vehicle emissions.  The model used here captures household decisions about gas 
cleanliness and mileage, pollution control equipment, engine size, and vehicle newness.  
These are the major determinants of the emissions rate for each vehicle, but they are not 
the only determinants.  The model could include other vehicle characteristics that affect 
emissions, specific fuel characteristics that affect emissions, and aspects of driving that 
affect emissions.  As mentioned above, emissions are increased by aggressive driving 
and by the number of cold start-ups.  Drivers could be encouraged in some fashion to 
modify these habits, to accelerate evenly, and to undertake more of their errands 
together on fewer trips. 
 Finally, a comprehensive evaluation of air quality policies might require a model 
with specified linkages between vehicle emissions and stationary or other sources of air 
pollution.  If vehicle emission policy is to subsidize the purchase and use of zero-
emission vehicles (ZEV) like electric cars, for example, then the needed electricity 
might well be generated using emission-producing fossil fuels such as oil or coal.  It 
would then be important to find the effects of the ZEV policy not only on vehicle 
emissions in one set of locations, but also on other stationary-source emissions in other 
locations.  And since each location has different tolerances or damages from such 
emissions, the model could then be used to calculate net effects or changes in total 
environmental damages – as well as revenue implications, distributional implications, 
and other effects of these policies. 
 While all of these considerations represent limitations on the current state of 
research presented in this monograph, they also represent productive opportunities for 
future research.  And despite these limitations, the research presented here has provided 
concrete conclusions about the usefulness of incentive-based policies within a 
comprehensive set of air quality policies for California. 
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