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A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH,
nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Biore-
mediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal
medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source.
Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected
in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-
negative motile regular rods 2.0 to 3.4 �m long and 0.7 to 0.9 �m in diameter. Strain FRCl was positive for
indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-
Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine
decarboxylase, for phenylalanine deaminase, for H2S production, and for gelatin hydrolysis. Strain FRCl was
capable of using O2, NO3

�, S2O3
2�, fumarate, and malate as terminal electron acceptors and of reducing U(VI)

in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4%
similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses
suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subter-
ranea sp. nov.

Microbial immobilization of uranium has been intensively
studied (3, 29). Uranium is a long-lived radionuclide that poses
ecological and human health hazards. The mining and process-
ing of uranium for nuclear fuel and nuclear weapon production
have resulted in the generation of significant amounts of ra-
dioactive waste. It is critical that the uranium in radioactive
wastes be effectively immobilized in order to prevent ground-
water contamination (26, 45, 50). Microbial reduction of sol-
uble hexavalent uranium U(VI) to tetravalent uranium U(IV),
which precipitates as the mineral uraninite, has been proposed
as one of the methods for uranium immobilization (33).

Two major groups of microorganisms reported to reduce
U(VI) at a near-neutral pH are dissimilatory Fe(III)-reducing
microorganisms (16, 24, 33, 43) and sulfate-reducing microor-
ganisms (6, 32, 34, 37, 46). Batch, column, and field experi-
ments conducted with U(VI)-contaminated groundwater and
sediments have shown that indigenous metal-reducing micro-
organisms can be stimulated and effectively used for uranium
immobilization (1, 2, 4, 13–15). In studies in which dissimila-
tory metal reduction was stimulated in sediments at a near-
neutral pH, molecular analysis revealed that indigenous
Fe(III)-reducing bacteria belonging to the Geobacteraceae

family predominated during uranium reduction in laboratory
incubations (20) and in an in situ uranium bioremediation field
trial (4). While microorganisms as potential agents for U(VI)
bioremediation at a near-neutral pH have been rather well
studied, organisms that might participate in U(VI) bioreme-
diation at a moderately acidic pH (pH 4) have not previously
been described.

In this paper, we describe the isolation of a facultatively
anaerobic, acidotolerant bacterium, strain FRCl, from a low-
pH, nitrate- and uranium-contaminated sediment at site FW-
024 at the Natural and Accelerated Bioremediation Research
(NABIR) Field Research Center in Oak Ridge, Tenn. Urani-
um-contaminated groundwater plumes at the NABIR Field
Research Center originate from the former S-3 Waste Dis-
posal Ponds, covering a total area of about 1.44 ha, which
received liquid wastes from 1951 until 1983. These liquid
wastes had a pH of �2 and consisted primarily of nitric acid
plating wastes, which were the source of the nitrate, various
metals, and radionuclides (7, 42). Uranium is the contaminant
of primary concern in this aquifer. Strain FRCl has been en-
riched from this site at pH 4.5 with nitrate as the electron
acceptor, hydrogen as the electron donor, and acetate as the
carbon source. Additionally, strain FRCl was capable of reduc-
ing U(VI) in a cell suspension and was a component of the
U(VI)-reducing enrichment culture FRCk, derived from the
same sediment (44). Characteristics of strain FRCl are dis-
cussed in relation to its ecological niche. Phylogenetic analysis

* Corresponding author. Mailing address: Department of Microbi-
ology, University of Massachusetts, Morrill Science Center IVN, Am-
herst, MA 01003. Phone: (413) 545-9651. Fax: (413) 545-1578. E-mail:
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revealed that this strain represents a new species in the genus
Salmonella.

MATERIALS AND METHODS

Sediment sampling. Sediment was collected from the saturated zone of a
low-pH area of the aquifer at site FW-024 at the NABIR Field Research Center
in Oak Ridge, Tenn. This site has previously been described in detail (44). The
sediment was aerobic and contained 65 �mol of bicarbonate-extractable U(VI)

per kg. The pore water contained 0.81 �M U(VI), 8.5 mM nitrate, 10.9 mM
sulfate, 0.49 mM acetate, and 0.11 mM citrate and had a pH of 4.0. Sediment was
collected on 3 April 2001 from horizons A1 to C1 below the water table. After
collection, the sediment was stored at 4°C before it was shipped to the laboratory
on 11 April 2001. In the laboratory, the sediment was stored aerobically at 16°C
for 2 weeks before enrichment cultures were initiated.

Enrichment and isolation of strain FRCl. Anaerobic (5, 36) and aerobic
techniques were used for the enrichment and isolation of strain FRCl. All
medium additions are given as final concentrations. Low-pH anaerobic enrich-
ments were initiated in 27-ml pressure tubes containing 9 ml of modified fresh-
water (MFW) medium and 0.5 g of the sediment. MFW medium contained
NH4Cl (0.25 g/liter), NaH2PO4 � H2O (4.2 g/liter), KH2PO4 (0.18 g/liter), a
vitamin solution (10 ml/liter), and a mineral solution (10 ml/liter) (30). The pH
was adjusted to 4.5 with 1 M HCl. Nine milliliters of MFW medium was dis-
pensed into each 27-ml anaerobic pressure tube (Bellco Glass Inc.) and bubbled
with N2. The tubes were capped with butyl rubber stoppers and sterilized by
autoclaving. All cultures were incubated at 30°C. A reducing agent (cysteine or
FeCl2 at 0.5 or 0.7 mM, respectively) was added after the medium was auto-
claved. Strain FRCl was enriched with H2 as the electron donor, acetate (10 mM)
as the carbon source, and KNO3 (5 mM) as the electron acceptor. After 1 month,
the culture was serially diluted with the same anaerobic medium. The culture in
the last positive dilution was purified by repeated plating onto aerobic agar plates
with MFW medium containing 5 mM acetate as the electron donor. Following
purification, strain FRCl was maintained aerobically by using nutrient broth
(Difco) supplemented with acetate or glucose to a final concentration of 5 or 20
mM, respectively, or anaerobically by using MFW medium for low-pH cultures
and bicarbonate-buffered freshwater (FW) medium for circumneutral-pH cul-
tures (30).

Isolate characterization. Routine microbiological tests normally used to char-
acterize strains of Enterobacteriaceae were performed according to standard
methods (11, 12). The growth of the isolate was tested at temperatures between
5 and 42°C and at pHs between 4 and 10 in anaerobic medium supplemented
with 5 mM acetate as the electron donor, 5 mM nitrate as the electron acceptor,
and yeast extract at a final concentration of 0.02%. The following compounds
were added to FW medium supplemented with acetate (20 mM) to test for
potential electron acceptors: oxygen, nitrate (10 mM), nitrite (10 mM), Fe(III)
nitriloacetic acid (10 mM), Fe(III) pyrophosphate (10 mM), thiosulfate (10 mM),
sulfite (10 mM), sulfate (10 mM), fumarate (40 mM), malate (20 mM), and
anthraquinone-2,6,disulfonate (AQDS, 5 mM). AQDS reduction was monitored
as a change in the color of the medium from an opaque pink to a bright orange.
Fe(III) reduction was monitored as the accumulation of Fe(II). Growth on the
other electron acceptors was monitored by measuring turbidity at 540 nm. The
ability of washed cell suspensions to reduce U(VI) was determined as previously

FIG. 1. Electron micrograph of negatively stained strain FRCl
grown to the mid-exponential phase with hydrogen as the electron
donor and nitrate as the electron acceptor.

FIG. 2. Effect of temperature and pH on growth of strain FRCl. (Left) Optimal growth temperature for strain FRCl. Generation times were
calculated from the slopes of the growth curves (not shown) at pH 7. (Right) Influence of pH on the growth of strain FRCl. Generation times were
calculated from the slopes of the growth curves (not shown) at 30°C. All growth experiments were done with acetate as the electron donor, nitrate
as the electron acceptor, and 0.02% yeast extract. The results represent the means for triplicate cultures.
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described (32, 33) by using uranyl acetate as the electron acceptor, acetate as the
electron donor, and a reaction buffer containing NaHCO3 (2.5 g/liter), NH4Cl
(0.25 g/liter), NaH2PO4 � H2O (0.006 g/liter), and KCl (0.1 g/liter). Cells were
added to the reaction buffer to give a final protein concentration of 0.01 mg/ml.

To test for potential electron donors, the following compounds were added to
FW medium: hydrogen, acetate, lactate, butyrate, citrate succinate, methanol,
ethanol, glycerol, and butanol. Experiments to screen potential electron donors
were performed in FW medium bubbled with N2/CO2 (80:20) and supplemented
with 10 mM nitrate as the electron acceptor. Nitrate reduction was monitored by
measuring turbidity at 540 nm. Electron donors were added to the medium from
sterile anoxic stock solutions to give a final concentration of 10 to 20 mM.
Controls included no donor and donor alone.

16S rDNA sequencing and phylogenetic analysis. Molecular analysis of strain
FRCl and Trabulsiella guamensis ATCC 49490 was performed by using standard
16S ribosomal DNA (rDNA) methodology as previously described (20). The 16S
rDNA was amplified by using the bacterial forward primer 8F and the universal
reverse primer 1525R. These primers and the conserved internal primers 338F,
519F, 519R, 907R, and 1392R were used to obtain the nearly complete sequence.
Sequences from Salmonella species and other genera were obtained from Gen-
Bank for phylogenetic analysis. Phylogenetic analysis was performed by using the
PAUP programs available in the Wisconsin sequence analysis package (Accelrys
Inc., San Diego, Calif.). Placement of sequences was determined by distance,
parsimony, and maximum-likelihood analyses. Phylogenetic trees were con-
structed by distance analysis (with the Jukes-Cantor correction). Bootstrap anal-
ysis was used to confirm the placements of strain FRCl and T. guamensis.

Analytical techniques. Cell sizes were determined with the imaging software
program SimplePC (Compix Inc., Cranberry Township, Pa.). Cells were counted
by using acridine orange staining and epifluorescence microscopy as previously
described (19). Organic acids were quantified by high-performance liquid chro-
matography. Nitrate and nitrite concentrations were measured with DX-100 ion
chromatography (Dionex Corp., Sunnyvale, Calif.) with a Dionex AS4-SC Ion-
Pac column. Fe(II) was quantified by the ferrozine assay (31). U(VI) was quan-
tified by kinetic phosphorescence analysis (Chemchec Corp., LaBrea, Calif.)
after dilution in 100 mM anaerobic bicarbonate solution. In order to determine
total uranium [U(VI) plus U(IV)], U(IV) in the bicarbonate solution was con-
verted to U(VI) by bubbling with air for 15 min.

Nucleotide sequence accession numbers. The 16S rDNA sequences of strain
FRCl and T. guamensis have been deposited in GenBank under accession num-
bers AY373829 and AY373830, respectively.

RESULTS AND DISCUSSION

Isolate characteristics. The cells of strain FRCl were motile,
regular rods 2.0 to 3.4 �m long and 0.7 to 0.9 �m in diameter
with rounded ends. Cells had one lateral flagellum (Fig. 1).
With acetate as the electron donor and nitrate as the electron
acceptor, growth was most rapid at 30 to 37°C. There was no
growth at temperatures below 10°C or above 42°C (Fig. 2, left
graph). Optimal growth occurred at pH 6.5 to 9.0, and no
growth was observed with initial pH values lower than 4.0 and
higher than 9.5 (Fig. 2, right graph). Strain FRCl was able to
raise an initial pH of 4 to 4.5 to one appropriate for growth
(pH 4.7). The biochemical reactions of strain FRCl in standard
tests used for the Enterobacteriaceae are shown in Table 1.

With acetate serving as the electron donor, strain FRCl was
capable of reducing the following electron acceptors: nitrate,
thiosulfate, fumarate, and malate. Nitrate was reduced to ni-
trite. The following electron acceptors were tested but not
utilized: sulfate, sulfite, nitrite, Fe(III) nitriloacetic acid, and
Fe(III) pyrophosphate. With nitrate as the electron acceptor,
strain FRCl was capable of oxidizing the following electron
donors: hydrogen, acetate, lactate, citrate, butyrate, succinate,
methanol, ethanol, glycerol, and butanol.

Phylogenetic analysis. Ribosomal DNA from strain FRCl
was amplified by PCR. BLAST and similarity analyses indi-
cated that strain FRCl was similar to Salmonella bongori (nu-
cleotide identity, 96.4%), Enterobacter cloacae (nucleotide
identity, 96.3%), and uncultured soil bacteria (clones 336-1,
624-1, and 816-1) from agriculture soil (48). An environmental
isolate resembling S. bongori, T. guamensis (35), for which the
16S rDNA sequence was not previously available, was se-
quenced. Phylogenetic analysis of these and other related se-
quences was performed by using 1,422 bases for comparison.
The placement of strain FRCl was consistent in distance, par-
simony, and maximum-likelihood analyses. The results of these
analyses indicated that strain FRCl was phylogenetically most
closely related to S. bongori (Fig. 3). On the basis of the

TABLE 1. Biochemical reactions of strain FRCl

Test Reactiona

Gram stain �
Oxidase (24 h) �
Indole production �
Methyl red �
Voges-Proskauer �
Citrate (Simmons) �
Hydrogen sulfide production �
Urea hydrolysis �
Phenylalanine deaminase (24 h) �
Lysine decarboxylase �
Arginine dihydrolase �
Ornithine decarboxylase �
Motility �
Gelatin hydrolysis, 22°C �
KCN, growth �
Malonate utilization �
D-Glucose, acid production �
D-Glucose, gas production �

Acid production
D-Adonitol �
L-Arabinose �
Cellobiose �
Dulcitol �
Glycerol �
myo-Inositol �
Lactose �
Maltose �
D-Mannitol �
D-Mannose �
Melibiose �
�-Methyl-D-glucoside �
Raffinose �
L-Rhamnose �
D-Sorbitol �
Sucrose �
Trehalose �
D-Xylose �

Tartrate, Jordans Grows but does not
produce acid

Esculin hydrolysis �
Acetate utilization �
Nitrate reduction �
Nitrite reduction �
Deoxyribonuclease, 25°C �
Lipase �
ONPGb test �
Pigment �, yellow
Catalase production �
Oxidation-fermentation Fermentation

a �, negative at the end of the appropriate incubation period; �, positive at
24 h or at the time of the test.

b ONPG, o-nitrophenyl-�-D-galactopyranoside.
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phenotypic differences between strain FRCl and S. bongori
(Table 2), it is suggested that strain FRCl is a representative of
a novel species in the genus Salmonella. The suggested epithet
is Salmonella subterranea.

Growth at moderately acidic pH. Acid tolerance appears to
be common among Salmonella spp. The growth of Salmonella
spp. was documented at pH 3.7 to 4.4 (17, 25, 27, 51). The
ability of Salmonella spp. to increase the initial pH of the
medium has previously been documented (51). It was postu-
lated that strain FRC may be able to cause a similar increase
in pH.

Both acetate and citrate were present in the pore water (pH
4) at the site from which FRCl was isolated. The cultivation of

strain FRCl in the presence of acetate and citrate at an acidic
pH can be divided into two stages (Fig. 4). In the first stage
(hours 0 to 47), strain FRCl adjusted the initial pH of the
medium (pH 4.4 � 0.0) to one appropriate for growth (pH 4.7
� 0.0) (Fig. 4A). While the pH was being adjusted (hours 0 to
47), the optical density (OD) of the culture doubled, but the
number of cells decreased (from 7.11 � 106 to 6.00 � 106

cells/ml) (Fig. 4B). Although there was no growth in the first
47 h, acetate was consumed (Fig. 4C) and the morphology of
the cells changed (Fig. 5). While the cells of strain FRCl grown
at a near-neutral pH were 2.7 � 0.7 �m long and 0.8 � 0.1 �m
in diameter (Fig. 5A), the cells in acidic medium were larger:
they were 3.9 � 1.2 �m long and 1.5 � 0.3 �m in diameter

FIG. 3. Phylogenetic analysis of FRC isolate. The tree was constructed by distance analysis with Jukes-Cantor correction by using 1,422 bases
for comparison. Numbers next to branches indicate bootstrap values.
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(Fig. 5B). It has been shown that the peptidoglycan, a major
stress-bearing structure in gram-negative bacteria, is rather
flexible and can be extended fourfold the length of its most
compact conformation (22, 23).

It is generally thought that undissociated acids freely diffuse
across the cell membrane, which causes anion accumulation in
the cytoplasm, resulting in increased internal osmotic pressure
of the cell (40). According to the Henderson-Hasselbalch
equation, at pH 4.4 (the starting pH for the growth of FRCl),
69% of the acetic acid (and only 4.8% of the citric acid) was in
the undissociated form. This potential for an increase in the
internal osmotic pressure of the cells at pH 4.4 due to the
uptake of acetate correlates with both the change in the mor-
phology of the cells, demonstrated in Fig. 5, and the discrep-
ancy between the optical density and the cell number during
hours 0 to 47 (Fig. 4B).

The second growth stage started after 47 h and represented
the growth of strain FRCl concurrent with an increase in pH to
a final pH of 6.9 at 117 h. The cell size of strain FRCl did not
decrease during this growth phase. At this stage, strain FRCl
preferentially used citrate as the electron donor (Fig. 4C).
Acetate, succinate, fumarate, and a number of unidentified
acids were produced as the result of citrate oxidation (Fig. 4C
and data not shown). Studies with Escherichia coli and Salmo-
nella spp. suggest that acetate is not a preferred substrate for
these microorganisms and that the expression of genes for
acetate utilization is usually subject to strong catabolite repres-
sion in the presence of sugars or acids of the tricarboxylic acid
cycle, including citrate (9).

U(VI) reduction by cell suspension of strain FRCl. Analysis
of 16S rDNA sequences indicated that strain FRCl was a
component of the U(VI)-reducing enrichment culture FRCk,
which was established with sediments from the Oak Ridge
study site with hydrogen and acetate as the electron donors

(44). The original enrichment culture was established at pH 4.5
and then transferred to neutral-pH medium, resulting in en-
richment culture FRCk. FRCk consisted of two species, a
Geobacter sp. and strain FRCl (44). While U(VI) reduction by
Geobacter spp. is well documented (16, 33), it was unclear what
role strain FRCl might have played in the culture. Two roles
were postulated for strain FRCl: (i) it could be important for
mediating pH in the initial low-pH enrichment, and/or (ii) it
could reduce U(VI).

When a washed cell suspension of strain FRCl was added to
buffer (pH 6.8) with acetate as the electron donor and U(VI)
as the electron acceptor, U(VI) was reduced to U(IV) over
time (Fig. 6). There was no U(VI) reduction in controls with-
out cells or with killed cells. The U(VI)-reducing activity of
strain FRCl [0.14 �M U(VI) per mg of protein per min] was
comparable to the U(VI)-reducing activity of Geobacter sul-
furreducens strain PCA [0.18 �M U(VI) per mg of protein per
min] (28). This finding suggested that strain FRCl may be
important for U(VI) reduction.

Ecological niche of S. subterranea. Salmonella spp. are fre-
quently isolated from aquatic (8, 39) and sedimentary environ-
ments (10, 18, 47) and are able to multiply in soil (38) and
estuarine environments (41). However, soils and sediments are
typically regarded as transitional environments for Salmonella
spp. prior to the infection of a host (49). The finding that strain
FRCl was closely related to uncultured soil bacterium clones
(48) suggests that there might be a branch of Salmonella spp.

FIG. 4. Aerobic growth of strain FRCl in the presence of citrate
and acetate. The results represent the means for triplicate cultures.

TABLE 2. Differentiation between strain FRCl, S. bongori,
and E. cloacae

Test
Test result

Strain FRCl S. bongoria E. cloacaea

Indole production � � �
Methyl red � � �
Voges-Proskauer � � �
Urea hydrolysis � � vb

Lysine decarboxylase � � �
Malonate utilization � � �
Arginine dihydrolase � � �
H2S production � � �
Citrate (Simmons) � � �

Acid production
Cellobiose � � �
Dulcitol � � �
Lactose � � �
Melibiose � � �
�-Methyl-D-glucoside � � �
Raffinose � � �
D-Sorbitol � � �
Sucrose � � �

Pigment �, yellow � �

a From reference 21.
b v, reaction was variable.
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that are better adapted to living in soils than most of their
enteric relatives.

The ability of the members of the genus Salmonella to sur-
vive at low pH may provide them an advantage over other
organisms in mildly acidic sedimentary environments, such as
the acidic sediments at the NABIR Field Research Center in
Oak Ridge, Tenn. Another important feature of these organ-
isms is their ability to mediate the pH to a more neutral range
in which they can grow (reference 51 and this study). The high
silt (55.8%) and clay (19.3%) contents of the sediments from
the FW-024 site (44) result in low water permeability, which
may enhance the development of microenvironments. Despite
the flux of the low-pH groundwater, the pH in such microen-
vironments may differ from that of the bulk sediment. There-
fore, in low-permeability acidic sediments, Salmonella spp.
could be responsible for the creation of microenvironments
with higher pHs, in which other microorganisms may also
thrive. The fact that Salmonella sp. strain FRCl was isolated
from acidic uranium- and nitrate-contaminated sediment and
was recovered in both uranium- and nitrate-reducing enrich-
ment cultures, coupled with its ability to carry out uranium and

nitrate reduction in pure culture, suggests that it has the po-
tential to play a role in uranium bioremediation at mildly acidic
pHs. However, whether strain FRCl is important for nitrate
and U(VI) reduction as well as for mediating pH in situ re-
mains to be investigated.

Description of S. subterranea sp. nov. S. subterranea (Sub
.ter.ra	ne.a. L. adj. subterranea, -us, underground, subterra-
nean). Cells are regular motile rods 2.0 to 3.4 �m long and 0.7
to 0.9 �m in diameter with rounded ends. Cells have one
lateral flagellum. Optimal growth occurs at pH 6.5 to 9.0, and
no growth was documented with initial pH values lower than
4.0 or higher than 9.5. Growth is most rapid at 30 to 37°C, and
no growth occurs at temperatures below 10°C or above 42°C.
Positive for indole production, by methyl red test, and for
ornithine decarboxylase; negative by Voges-Proskauer test, for
phenylalanine deaminase, for lysine decarboxylase, for argi-
nine dihydrolase, for urea hydrolysis, for H2S production, and
for gelatin hydrolysis. Uses O2, NO3

�, S2O3
2�, fumarate, and

malate as electron acceptors. Reduces U(VI) in cell suspen-
sion. Type strain FRCl was isolated from a subsurface nitrate-
and U(VI)-contaminated sediment. Strain FRCl has been de-
posited in the American Type Culture Collection (accession
number ATCC BAA-836).
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FIG. 5. Cells of strain FRCl in the low-pH aerobic culture after
inoculation (A) and at 47 h (B).

FIG. 6. U(VI) reduction by the cell suspension of strain FRCl. The
results represent the means for triplicate cell suspensions.
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