Article
Irreversible steps in the ferritin synthesis induction pathway..
Journal of Biological Chemistry
(1994)
Abstract
The ability of cells to re-repress ferritin synthesis after removal of an inducing agent (iron or heme) was investigated. Re-repression was found to be a slow process, requiring approximately 4 (after iron removal) to 10 h (after heme removal) for completion. Desferrioxamine mesylate (Desferal) had only a slight effect on the rate of re-repression, whereas cycloheximide was strongly inhibitory, indicating that new protein synthesis is required for re-repression. Re-repression occurred at a slow but significant rate in the presence of both Desferal and cycloheximide. These results indicate that, in the absence of an iron chelator, the induction of ferritin synthesis is essentially irreversible. The kinetics of the previously reported covalent modification of IRE-binding protein (IRE-BP) were then examined, to see whether this phenomenon might account (at least in part) for the irreversibility of induction. It was found that the heme- or iron-dependent disappearance of 98-kDa IRE-BP occurred rapidly (within 1 h), and was equally rapidly reversed upon removal of heme after a 1-h exposure. By contrast, after a 4-h exposure to heme, little 98-kDa IRE-BP could be regenerated after heme removal. These results suggest that the slow, irreversible covalent modification of IRE-BP correlates closely over time with the induction of ferritin synthesis. The covalent modification of IRE-BP depends on cell growth rate, and is most readily detected in rapidly growing cells.
Disciplines
Publication Date
February 11, 1994
Citation Information
L. S. lingGoess, David P Mascotti, M. Bhattacharyya-Pakrasi, H. Gang, et al.. "Irreversible steps in the ferritin synthesis induction pathway.." Journal of Biological Chemistry Vol. 269 Iss. 6 (1994) Available at: http://works.bepress.com/david_mascotti/10/