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ABSTRACT
Finding nearest neighbors is an important topic that has attracted
much attention over the years and has applications in many fields,
such as market basket analysis, plagiarism and anomaly detection,
community detection, ligand-based virtual screening, etc. As data
are easier and easier to collect, finding neighbors has become a
potential bottleneck in analysis pipelines. Performing pairwise com-
parisons given the massive datasets of today is no longer feasible.
The high computational complexity of the task has led researchers
to develop approximate methods, which find many but not all of
the nearest neighbors. Yet, for some types of data, efficient exact
solutions have been found by carefully partitioning or filtering the
search space in a way that avoids most unnecessary comparisons.

In recent years, there have been several fundamental advances in
our ability to efficiently identify appropriate neighbors, especially
in non-traditional data, such as graphs or document collections. In
this tutorial, we provide an in-depth overview of recent methods
for finding (nearest) neighbors, focusing on the intuition behind
choices made in the design of those algorithms and on the utility of
the methods in real-world applications. Our tutorial aims to provide
a unifying view of “neighbor computing” problems, spanning from
numerical data to graph data, from categorical data to sequential
data, and related application scenarios. For each type of data, we
will review the current state-of-the-art approaches used to identify
neighbors and discuss how neighbor search methods are used to
solve important problems.

CCS CONCEPTS
• Information systems→Nearest-neighbor search; • Theory
of computation → Nearest neighbor algorithms.
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1 TUTORIAL OUTLINE
The tutorial (https://bit.ly/2VF5GFg) will first provide a formal defi-
nition of nearest neighbor search (NNS) and related problems and
a summary of classical space partitioning-based approaches and
their limitations. The importance of the NNS problem will be mo-
tivated by a series of application domains and methods that use
NNS as a black-box kernel. The notion of neighbor is central for
a plethora of problems and tasks in clustering, multi-label clas-
sification [11, 15, 17], anomaly detection, network/graph mining,
recommender systems [1, 14, 19], bioinformatics and computational
genomics [6, 9, 16], to name just a few. Depending on the domain,
the notions of neighbor and neighborhood are key to enabling the
modeling of a variety of phenomena; in the social network context,
for example, such phenomena range from homophily effects to
behavioral or state-transition dynamics, from information spread
to information inference. Modeling such phenomena is essential
for a number of classic problems in graph mining, such as com-
munity search, detection and evolution, link prediction, influence
propagation, trust inference [12]. We will showcase the use of NNS
methods as a key component in solving many of these problems.

The last few years have brought considerable advances in NNS
methods. Some recent methods have focused on the discovery
of new hash functions that, in the expectation, more closely re-
late objects [8, 13, 21]. Zhang and Zhang [21], for example, devel-
oped a hashing technique based on metric embeddings for edit
distance that significantly outperforms all previous methods for
DNA and other long string searches. Several works have shown
that data-dependent hashing can outperform distribution-agnostic
techniques. For metric spaces, a series of efficient approximate
search methods rely on a navigable small world graph with nodes
corresponding to the searched objects. Moreover, for objects best
represented as sparse vectors, a variety of index traversal strategies
achieve near-optimal search performance by leveraging the sparsity
in the data and ignoring the majority of the object comparisons that
are not similar enough [2–5, 13]. Anastasiu and Karypis, for exam-
ple, developed several effective filtering techniques that leverage
the Cauchy-Schwarz inequality applied to vector subspaces which
enabled exact nearest neighbor graph construction methods to out-
perform even approximate solutions that were tuned to achieve at
least 95% recall. Finally, some recent methods have expanded the
scope of the search problem. Yu et al. [20] studied the case where
the search has a limited computational budget, while Morales et
al. [10] define a time-dependent similarity function for computing
streaming similarity self-joins. In this tutorial, we will describe
these and other recent state-of-the-art methods and provide guid-
ance for choosing an appropriate method for finding neighbors in
different domains.
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2 TUTORS AND BIOGRAPHIES
David C. Anastasiu, Ph.D.: David C. Anastasiu is an Assistant
Professor in the Department of Computer Engineering at San José
State University. His research interests fall broadly at the intersec-
tion of machine learning, datamining, computational genomics, and
high performance computing. Much of his work has been focused
on scalable and efficient methods for analyzing sparse data, such as
methods for identifying near neighbors, for searching related bio-
chemical compounds, for characterizing how user behavior changes
over time, and for personalized and collaborative presentation of
Web search results. As a result of his algorithmic work in the area
of Data Science, Prof. Anastasiu was awarded the Next Generation
Data Scientist (NGDS) Award at the 2016 IEEE International Con-
ference on Data Science and Advanced Analytics (DSAA’2016). His
work has been published in many top-tier conferences and journals,
and he serves on the program committees of the most prominent
IEEE and ACM data science-related conferences. His research is
funded by NSF, Intel Labs, Flex, Infoblox, and NVIDIA Corporation.
The tutorial will present material from a combination of his own
research as it relates to efficient NNS methods and applications in
traffic analytics and computational genomics.
Huzefa Ragwala, Ph.D.: Huzefa Rangwala is a Professor in the
Department of Computer Science and Engineering, George Mason
University. He received his Ph.D. in Computer Science from the
University of Minnesota in 2008. His research interests include
machine learning, learning analytics, bioinformatics and high per-
formance computing. He is the recipient of the NSF Early Faculty
Career Award in 2013, the 2014 GMU Teaching Excellence Award,
the 2014 Mason Emerging Researcher Creator and Scholar Award,
the 2013 Volgenau Outstanding Teaching Faculty Award, 2012 Com-
puter ScienceDepartment Outstanding Teaching Faculty Award and
2011 Computer Science Department Outstanding Junior Researcher
Award. His research is funded by NSF, NIH, NRL, DARPA, USDA
and NVIDIA Corporation. The tutorial will present material from
a combination of his own research as it relates to multi-instance
learning and multi-task learning. He has presented well attended
tutorials at SIAM SDM 2016, 2017 and ACM KDD 2017.
Andrea Tagarelli, Ph.D.: Andrea Tagarelli is an Associate Profes-
sor of Computer Engineering at the University of Calabria, Italy.
He obtained his Ph.D. in Computer and Systems Engineering in
2006. His research interests include topics in data/text mining, ma-
chine learning, web and network science, information retrieval. He
was program co-chair for the 2018 IEEE/ACM ASONAM confer-
ence, and co-organizer of workshops and a mini-symposium on
clustering and other data-mining topics in premier conferences
in the field (ECIR-16, ACM SIGKDD-13, SIAM DM-14, PAKDD-12,
ECML-PKDD-11). He also presented well-attended tutorials on user
behavior analysis and mining problems in social networks at WIMS-
17, ACM UMAP-15, IEEE/ACM ASONAM-15. He is action editor
for the Computational Intelligence Journal and associate editor for
the Social Network Analysis and Mining Journal. The tutorial will
present material from several of his works related to community
detection and influence propagation.
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