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SIMULTANEOUS CONVEXIFICATION OF BILINEAR FUNCTIONS
OVER POLYTOPES WITH APPLICATION TO NETWORK

INTERDICTION∗

DANIAL DAVARNIA† , JEAN-PHILIPPE P. RICHARD† , AND MOHIT TAWARMALANI‡

Abstract. We study the simultaneous convexification of graphs of bilinear functions gk(x; y) =
yᵀAkx over x ∈ Ξ = {x ∈ [0, 1]n |Ex ≥ f} and y ∈ ∆m = {y ∈ Rm

+ |1ᵀy ≤ 1}. We propose a
constructive procedure to obtain a linear description of the convex hull of the resulting set. This
procedure can be applied to derive convex and concave envelopes of certain bilinear functions, to
study unary expansions of integer variables in mixed integer bilinear sets, and to obtain convex hulls
of sets with complementarity constraints. Exploiting the structure of Ξ, the procedure naturally
yields stronger linearizations for bilinear terms in a variety of practical settings. In particular, we
demonstrate the effectiveness of the approach by strengthening the traditional dual formulation of
network interdiction problems and report encouraging preliminary numerical results.
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1. Introduction. Bilinear functions occur in the modeling of various practical
problems in engineering and management. Pooling is one such example that encom-
passes several applications in chemical engineering, including the operation of refinery
processes and wastewater treatment; see [47] for a detailed description of applications,
and see [7, 31] for surveys. Bidimensional packing problems, which play important
roles in industrial cutting and packing applications, can also be modeled as bilinear
programs (BLPs); see [14]. Similarly, BLPs find applications in the paper industry
through trim-loss problems [20]. Other areas of application for BLPs can be found in
sports [37], modular designs [2], supply chain management [33], and sharp separation
process in networks with multicomponent streams [36]. Additional applications of
mixed integer BLPs in various production, location-allocation, and product distribu-
tion problems can be found in [1].

Network interdiction problems (NIPs) are Stackelberg games played on a network
where an interdictor (leader) seeks to impair to the greatest extent possible the op-
eration of the network otherwise controlled by an interdictee (follower). NIPs have
applications in homeland security [21], health care [6], and border control [32]. In-
terdiction problems defined on general networks are often formulated as linear bilevel
programs [11, 24] and are known to be strongly NP-hard; see [17]. In the literature,
these problems are often reformulated as single level mathematical programs by taking
the dual of the follower problem; see [41] for instance. The resulting model is a mixed
integer nonlinear program (MINLP) with linear constraints and a bilinear objective
function that is often reformulated as a mixed integer linear program (MILP) using
McCormick envelopes.
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In this paper, we study the simultaneous convexification of graphs of bilinear
functions gk(x;y) = yᵀAkx over x ∈ Ξ = {x ∈ [0, 1]n |Ex ≥ f} and y ∈ ∆m ={
y ∈ Rm+

∣∣1ᵀy ≤ 1
}

, where bold lowercase letters denote vectors. Although a descrip-
tion of the convex hull of the corresponding set can be derived using a specialization
of the reformulation-linearization technique [38, 40] or disjunctive programming [9],
these approaches necessitate the addition of new variables. We introduce a construc-
tive procedure to obtain a convex hull description in the original space of variables.
Developing techniques to obtain convex relations for MINLPs in the space of original
variables is an active vein of research; see [13, 18, 22, 43, 45] and the references therein
for various examples of these techniques. One of the advantages of our approach is
that it provides valuable insight into the structure of strong inequalities in the space
of original variables. For instance, it allows us to improve the traditional linearization
approach for single bilinear terms that is often used in NIPs. Further, it leads us
to develop inequalities that strengthen this improved linearization even further by
considering multiple bilinear terms simultaneously.

The problem of finding relaxation procedures for bilinear terms and functions has
been investigated in the past. In fact, the derivation of such relaxations is at the
core of the development of branch-and-bound algorithms for global optimization; see
[46] for an exposition. Since branch-and-bound algorithms require the construction
of convex relaxations over successively refined partitions of the feasible region, the
domain over which bilinear functions are defined is of particular significance. In this
context, a classical method to obtain a linear programming relaxation of a BLP is to
add a new variable z for each bilinear term xy and then relax the requirement z = xy.
McCormick [28] develops a polyhedral relaxation for the set defined by z = xy when
variables (x, y) are constrained to a box. Al-Khayyal and Falk [3] show that this re-
laxation is in fact the convex hull of the set. Meyer and Floudas [29] generalize these
results for trilinear monomials over a box domain. In [30], the same authors study
properties of convex envelopes of edge-concave functions and propose an algorithm to
compute facets of their envelopes over hyperrectangles in R3. Luedtke, Namazifar, and
Linderoth [27] show that McCormick relaxations for multilinear terms can give rise
to relaxations that are substantially larger than the convex hull. Stronger relaxations
that consider the entire bilinear functions have been investigated; see, for example,
[44, 46]. Nguyen, Richard, and Tawarmalani [34] provide a convex hull description
of the set z = xayb, where all variables (including z) belong to a box. While the
above studies focus on situations where variables are constrained to belong to simple
polyhedra, typically hyperrectangles, others consider special-structured functions over
more general polytopes. As an example of the latter, [45] derives convex envelopes
of functions that are extendable from vertices through polyhedral subdivisions. In
[26], the authors obtain envelopes of bivariate functions over polytopes by computing
supporting hyperplanes through the solution of a convex subproblem. Sherali and
Alameddine [39] derive an explicit characterization of the convex envelopes of bivari-
ate bilinear functions over D-polytopes, i.e., polytopes with no finite upward-sloping
edge. The authors also propose a partitioning scheme for non–D-polytopes based on a
triangular decomposition of the feasible region, over which the convex envelope can be
obtained. Other relaxation techniques that utilize semidefinite programming [5, 10]
and Lagrangian duals [12] have also been investigated.

The results we develop in this paper derive tight relaxations of bilinear functions
constructively in the space of the original problem variables when (i) multiple bilin-
ear terms in multiple constraints are considered simultaneously, and (ii) one of the
polytopes in the domain is general. Our convexification results can therefore be used
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to derive inequalities that are cognizant of the structure of the problem constraints;
i.e., they do not only apply to box constraints. As examples of the advantages of the
approach, we provide simple, explicit convex hull characterizations for sets involved
in the unary expansion of integer variables in mixed integer BLPs, we obtain explicit
descriptions for the envelopes of general bilinear functions over certain polytopes and
derive a convex hull description for a certain relaxation of NIPs. The latter results
are evaluated numerically and lead to significant improvements in the quality of their
relaxations.

The remainder of this paper is organized as follows. In section 2, we describe
our convexification procedure. In section 3, we present applications of the proposed
technique. We then show in section 4 how it can be used to strengthen the linearization
of the dual formulation of NIPs. In section 5, we present numerical results evaluating
the strength of inequalities derived in section 4. We conclude the paper in section 6
with remarks and directions of future research.

Notation. We use the following notation throughout the paper. Given a set
X ⊆ Rn, we denote its convex hull by conv(X). Further, given a set Z ⊆ Rn × Rm
with variables (x;y), we use projx(Z) to represent the projection of Z onto the
space of variables x. We use ej to denote a unit vector of suitable dimension whose
components are zero except for the jth entry, which is equal to 1. Finally, given
u ∈ R, we write u+ to denote max{u, 0}.

2. Convexification procedure. For M := {1, . . . ,m}, N := {1, . . . , n}, K :=
{1, . . . , κ}, and T := {1, . . . , τ}, we consider

S =
{

(x;y; z) ∈ Ξ×∆m × Rκ
∣∣yᵀAkx = zk ∀k ∈ K

}
,

where Ξ = {x ∈ [0, 1]n |Ex ≥ f} and ∆m =
{
y ∈ Rm+

∣∣1ᵀy ≤ 1
}

. In this definition,
Ak ∈ Rm×n, E ∈ Rτ×n, and f ∈ Rτ . We refer to the jth row (resp., jth column) of
Ak by Akj. (resp., by Ak.j).

It is easy to verify that S 6= ∅ if and only if Ξ 6= ∅. In the remainder of this paper,
we therefore assume that Ξ 6= ∅. We are interested in studying the convex hull of S,
which is a polytope; see the discussion following Proposition 2.1 or Corollary 2.7 in
[43]. If the bilinear constraints in the description of S contain linear and constant
terms, say yᵀAkx+ bkx+ cky+ dk = zk for coefficient vectors of suitable dimension,
we can use an affine transformation to reformulate them as yᵀAkx = z̄k, where
z̄k = zk − bkx − cky − dk. Because variables zk and z̄k are unrestricted in sign and
appear in a single constraint, it is easy to verify that a convex hull description of the set
with variables (x, y, z̄), together with the equality constraints z̄k = zk−bkx−cky−dk,
is sufficient to describe the convex hull of the original set.

We refer to valid inequalities of conv (S) that are expressed as/dominated by
conic combinations of inequalities defining Ξ and ∆m as vertical. In this section,
we describe a procedure that generates all nonvertical facet-defining inequalities of
conv (S) in the original space of variables. To motivate this procedure, we first derive
a nonvertical facet-defining inequality for the convex hull of a particular instance.

Example 1. Consider

Ŝ1 =
{

(x1, x2, y1, y2, z1, z2) ∈ Ξ1 ×∆2 × R2
∣∣ (2.1a), (2.1b)

}
,
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1804 D. DAVARNIA, J.-P. P. RICHARD, AND M. TAWARMALANI

where Ξ1 =
{
x ∈ [0, 1]2

∣∣ (2.1c)
}

, and where

2x1y1 − x2y1 − 5x2y2 = z1,(2.1a)
x2y2 = z2,(2.1b)

x1 + x2 ≥ 1,(2.1c)
x1 ≥ 0,(2.1d)
x2 ≥ 0,(2.1e)
x1 ≤ 1,(2.1f)
x2 ≤ 1.(2.1g)

It can be verified using PORTA [15] that a linear description of conv(Ŝ1) is given by
the inequalities describing Ξ1 and ∆2, together with

2y1 − z1 − 5z2 ≥ 0,(2.2a)
−x2 + y1 − y2 − z1 − 4z2 ≥ −1,(2.2b)

2x1 − x2 + y1 − 3y2 − z1 − 2z2 ≥ −1,(2.2c)
y2 − z2 ≥ 0,(2.2d)

z2 ≥ 0,(2.2e)
−x2 − y2 + z2 ≥ −1,(2.2f)

3x2 − 2y1 + z1 + 2z2 ≥ 0,(2.2g)
−2x1 + x2 − 2y1 + z1 + 4z2 ≥ −2,(2.2h)

y1 + z1 + 5z2 ≥ 0,(2.2i)
−2x1 − y1 + z1 + 5z2 ≥ −2.(2.2j)

We next describe a constructive procedure that leads to the derivation of (2.2h).
First, we aggregate (2.1a), (2.1b) and bound inequalities x2 ≥ 0 and 1−x1 ≥ 0 using
weights −1, −4, (1− y1− y2), and 2(1− y1− y2), respectively. As a result, we obtain
the bilinear aggregated inequality

(2.3) 2x1y2 − 2x1 + x2 − 2y1 − 2y2 + z1 + 4z2 ≥ −2.

Second, we relax the term 2x1y2 by 2y2 to obtain (2.2h). In the above derivation,
(i) we use real numbers as multipliers for the selected bilinear equalities, (ii) we use
combinations of variables y as multipliers for the selected inequalities in the descrip-
tion of Ξ, and (iii) we choose the weights of the selected inequalities so that 3 (one
less than the number of inequalities being aggregated) bilinear terms (namely, x1y1,
x2y1, and x2y2) are canceled, i.e., their coefficients reduce to zero in the aggregated
inequality (2.3).

Building on Example 1, we next present a procedure to derive a family of valid
inequalities for conv (S) that we call class-l± extended cancel-and-relax (EC&R) in-
equalities. To obtain these inequalities, we select a subset of the constraints in the
description of S and aggregate them with proper weights as follows:

1. We select l ∈ K to be the lowest index among the bilinear constraints used
in the aggregation. We refer to this constraint as the base equality. We also
select a sign indicator + or − to specify whether weight 1 or −1 is used for
the base equality during aggregation.
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CONVEXIFICATION OF BILINEAR FUNCTIONS 1805

2. We select L and L̄ as disjoint subsets of K \ {1, . . . , l}. Then, for each k ∈ L
(resp., k ∈ L̄), we multiply yᵀAkx−zk = 0 by β+

k (resp., −β−k ), where β+
k ≥ 0

(resp., β−k ≥ 0).
3. We select I1, . . ., Im and Ī as subsets of T whose intersection is empty. Then,

for each j ∈ M and for each t ∈ Ij (resp., t ∈ Ī), we multiply Et.x ≥ ft by
γjt yj , where γjt ≥ 0 (resp., by θt(1−

∑
i∈M yi), where θt ≥ 0).

4. We select J and J̄ as disjoint subsets of N . Then, for each index i ∈ J , we
multiply xi ≥ 0 by λi(1 −

∑
j∈M yj), where λi ≥ 0, and for each i ∈ J̄ , we

multiply 1− xi ≥ 0 by µi(1−
∑
j∈M yj), where µi ≥ 0.

We compactly record these sets as
[
L, L̄

∣∣I1, . . . , Im, Ī∣∣J, J̄], which we call an assign-
ment. We describe this assignment as being class-l±, where l is the index of the base
inequality and ± is its sign indicator. We next aggregate all aforementioned weighted
constraints. During the aggregation, we require that weights βk, γjt , θt, λi, and µi be
chosen in such a way that

(i) at least |L|+ |L̄|+
∑
j∈M |Ij |+ |Ī|+ |J |+ |J̄ | bilinear terms are canceled (i.e.,

their coefficient becomes zero),
(ii) at least one bilinear term that appears in the base equality l is canceled, and
(iii) for each i ∈ J ∪ J̄ , at least one bilinear term among xiy1, xiy2, . . . , xiym is

canceled.
The desired EC&R inequality is then obtained by relaxing the remaining bilinear terms
xiyj in the aggregated inequality using either xiyj ≥ 0 or yj−xiyj ≥ 0, depending on
the sign of their coefficients. We refer to the resulting linear inequality as a class-l±

EC&R inequality.
We refer to the above aggregation and relaxation process as the EC&R procedure

or EC&R for short. A simpler variant of this scheme, coined cancel-and-relax (C&R),
is given in [35] for the purpose of deriving the convex hulls of certain separable com-
plementarity sets. Such sets are faces of instances of S, where m = κ = 1 and A1x is
nonnegative for x ∈ Ξ.

Example 1 (continued). We next show that similar to (2.2h), inequalities (2.2a)–
(2.2g) and (2.2i)–(2.2j) can also be obtained using EC&R. For this instance, there are
four classes of EC&R inequalities, namely class-1± and class-2±. Each inequality in
class-l± is determined by an assignment

[
L, L̄

∣∣I1, I2, Ī∣∣J, J̄]. Table 1 describes how
inequalities (2.2a)–(2.2j) can be derived using EC&R. Recall that once the aggregated
bilinear inequality is obtained, the remaining bilinear terms xiyj are uniquely relaxed
into either 0 or yj , depending on the sign of their coefficients.

The previous example suggests that all nonvertical facet-defining inequalities of
conv(Ŝ1) can be obtained using EC&R. The next section is dedicated to proving that
this result holds for all instances of S.

2.1. Derivation of EC&R procedure. In this section, through a sequence
of intermediary results, we will prove Theorem 2.7 (stated below for the reader’s
convenience).

Theorem 2.7. A linear description of conv (S) is given by the inequalities defining
Ξ and ∆m, together with all class-l± EC&R inequalities for l ∈ K.

The description of the convex hull of S given in Theorem 2.7 is typically not
minimal; i.e., not all EC&R inequalities are facet-defining for conv (S). Further,
Theorem 2.7 does not preclude the aggregation of all bilinear constraints and all
linear constraints in the derivation of strong inequalities for conv (S). For instance,
in Example 1, (2.2c) requires all constraints to be aggregated. Intuitively, we can

D
ow

nl
oa

de
d 

09
/1

5/
17

 to
 1

28
.2

.1
0.

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1806 D. DAVARNIA, J.-P. P. RICHARD, AND M. TAWARMALANI

Table 1
Facet-defining EC&R inequalities for Ŝ1.

Ineq. Class; assignment Weights

(2.2a) 1+;
[
{(2.1b)}, ∅

∣∣∅, ∅, ∅∣∣∅, ∅] 5
(2.2b) 1+;

[
{(2.1b)}, ∅

∣∣∅, ∅, ∅∣∣∅, {2}] 4, (1− y1 − y2)
(2.2c) 1+;

[
{(2.1b)}, ∅

∣∣∅, {(2.1c)}, ∅
∣∣{(2.1d)}, {(2.1g)}

]
2, 2y2, 2(1− y1 − y2), (1− y1 − y2)

(2.2d) 2+;
[
∅, ∅
∣∣∅, ∅, ∅∣∣∅, ∅] NA

(2.2e) 2−;
[
∅, ∅
∣∣∅, ∅, ∅∣∣∅, ∅] NA

(2.2f) 2−;
[
∅, ∅
∣∣∅, ∅, ∅∣∣∅, {(2.1g)}

]
(1− y1 − y2)

(2.2g) 1−;
[
∅, {(2.1b)}

∣∣{(2.1c)}, ∅, ∅
∣∣{(2.1e)}, ∅

]
−2, 2y1, 3(1− y1 − y2)

(2.2h) 1−;
[
∅, {(2.1b)}

∣∣∅, ∅, ∅∣∣{(2.1e)}, {(2.1f)}
]

−4, (1− y1 − y2), 2(1− y1 − y2)
(2.2i) 1−;

[
∅, {(2.1b)}

∣∣∅, ∅, ∅∣∣∅, ∅] −5
(2.2j) 1−;

[
∅, {(2.1b)}

∣∣∅, ∅, ∅∣∣∅, {(2.1f)}
]

−5, 2(1− y1 − y2)

interpret the requirement that the number of cancellations be on par with the number
of constraints being aggregated as a mechanism to balance the weakness induced by
aggregation. It is therefore our conjecture that inequalities produced by aggregating
few constraints play an important role in computation. Example 1 supports this
conjecture in that only one of its nontrivial facet-defining inequalities requires all
constraints to be aggregated. This observation is computationally useful, as there is a
relatively small number of these inequalities, and they can be separated efficiently. In
the numerical experiments we report in section 5, we observe that inequalities derived
using few aggregations are indeed most useful at reducing gaps.

We first show an ancillary result that allows the use of disjunctive programming
[8] in studying conv (S).

Proposition 2.1. Let δ = (x;y; z) be an extreme point of conv (S). Then y ∈
{0, 1}m.

Proof. It is clear that δ ∈ S, as it is an extreme point of conv (S). Assume
by contradiction that yj ∈ (0, 1) for some j ∈ M . First, assume that 1

ᵀ
y < 1.

Then, consider δ1 = δ + δ̄ and δ2 = δ − δ̄, where δ̄ =
(
0; εej ;

∑
k∈K ε

(
Akj.x

)
ek
)

for a sufficiently small but positive ε. It is clear that δ1 and δ2 belong to S. This
yields the desired contradiction as δ = 1

2δ
1 + 1

2δ
2. Second, assume that 1

ᵀ
y = 1.

Therefore, there exists i ∈ M \ {j} such that yi ∈ (0, 1). We construct δ1 = δ + δ̄
and δ2 = δ− δ̄, where δ̄ =

(
0; ε

(
ej − ei

)
;
∑
k∈K ε

(
Akj.x−Aki.x

)
ek
)

for a sufficiently
small but positive ε. It is clear that δ1 and δ2 belong to S, yielding the desired
contradiction.

Proposition 2.1 implies that a variant of S where variables y are binary has the
same convex hull as that of S. As a result, a description of conv (S) can be obtained in
higher dimension using the special structure RLT (reformulation linearization tech-
nique), described in [38], or disjunctive programming [8]. In this paper, we refine
these results by presenting a constructive procedure to produce conv (S) in the orig-
inal space of variables. Understanding how strong inequalities for conv (S) can be
constructed in the original space of variables yields insight into useful families of cuts
for this set. It also allows for families of strong inequalities to be derived for more
complicated sets, as we illustrate in section 4 for the case of NIPs.
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It follows from Proposition 2.1 that conv (S) = conv(
⋃

ω∈{0,e1,...,em} S(ω)), where

S(ω) =

(x;y; z) ∈ Rn+m+κ

∣∣∣∣∣∣∣∣
y = ω
ω

ᵀ
Akx− zk = 0 ∀k ∈ K

Ex ≥ f
0 ≤ x ≤ 1

 .

This provides a direct proof that conv (S) is a polytope since it is now expressed as the
convex hull of a union of polytopes. A disjunctive programming formulation [8] for this
set is easily obtained. In this formulation, it can be seen that the convex multipliers
ζj , for each disjunct j 6= 0, and variables yj are equal, yielding the following.

Proposition 2.2. Define Q = {(x;y; z;u;v) |(2.4)}, where

(2.4)

±Akj.uj ∓ v
j
k ≥ 0 ∀(k, j) ∈ K ×M,

∓
(
zk −

∑
j∈M vjk

)
≥ 0 ∀k ∈ K,

Euj ≥ fyj ∀j ∈M,

E
(
x−

∑
j∈M u

j
)
≥ f

(
1−

∑
j∈M yj

)
,

0 ≤ uj ≤ 1yj ∀j ∈M,

0 ≤ x−
∑
j∈M u

j ≤ 1
(

1−
∑
j∈M yj

)
.

Then, conv (S) = proj(x;y;z)Q.

In the description of Q, variables uj and vjk play the roles of x and zk in disjunct
S(ej) scaled by ζj , i.e., uj = ζjx and vjk = ζjzk. Equalities are formulated as pairs of
inequalities of opposite directions. We introduce π̄ =

(
{αj+}j∈M ; {αj−}j∈M ;β+;β−;

{γj}j∈M ;θ; {ηj}j∈M ; {ρj}j∈M ;λ;µ
)

to compactly record the dual variables associ-
ated with the constraints of Q, where αj±,β± ∈ Rκ+, γj ,θ ∈ Rτ+, and ηj ,ρj ,λ,µ ∈
Rn+.

Proposition 2.3. For π =
(
β+;β−; {γj}j∈M ;θ; {ηj}j∈M ; {ρj}j∈M ;λ;µ

)
∈

R(m+1)(τ+2n)+2κ
+ , define

C=
{
π
∣∣∣∑k∈K A

k
ji

(
β+
k −β

−
k

)
+
∑
t∈T Eti

(
γjt−θt

)
+ηji−ρ

j
i−λi+µi=0 ∀(i, j)∈N×M

}
.

Then,

(2.5)
∑
i∈N

qi(π)xi +
∑
j∈M

rj(π)yj +
∑
k∈K

sk(π)zk ≥ t(π),

where

qi(π) =
∑
t∈T Etiθt + λi − µi,

rj(π) =
∑
t∈T ft

(
θt − γjt

)
+
∑
i∈N

(
ρji − µi

)
,

sk(π) = −
(
β+
k − β

−
k

)
,

t(π) =
∑
t∈T ftθt −

∑
i∈N µi

is facet-defining for conv (S) only if π is an extreme ray of C.
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Proof. From Proposition 2.2, we know that conv (S) = proj(x;y;z)Q. We refer to
the cone obtained by formulating the projection of Q relative to variables uj and v
as the projection cone of Q and denote it by C̄; see [8]. It is clear that C̄ is a subset
of R(m+1)(τ+2n+2κ)

+ . The projection of variables vjk yields the constraint

(2.6) − αj+k + αj−k = −β+
k + β−k ∀(k, j) ∈ K ×M.

Using these relations, the projection of variables uji yields the constraint

(2.7)
∑
k∈K

Akji
(
β+
k − β

−
k

)
+
∑
t∈T

Eti

(
γjt − θt

)
+ηji −ρ

j
i−λi+µi = 0 ∀(i, j) ∈ N×M.

Any weight vector π̄ satisfying (2.6) and (2.7) gives rise to valid inequality (2.5),
which is facet-defining for conv (S) only if π̄ is an extreme ray of C̄; see [9]. Select
such π̄, and define π to be the vector composed of all components of π̄ except αj±.
We show that π is an extreme ray of C. To this end, we prove that π̄ satisfies
β+
k β
−
k = 0 for k ∈ K. Assume by contradiction that there exists k ∈ K such that

β+
k > 0 and β−k > 0. Construct π̂ = π̄ +

(
0; 0; εek;−εek; 0; 0; 0; 0; 0; 0

)
and π̃ =

π̄ +
(
0; 0;−εek; εek; 0; 0; 0; 0; 0; 0

)
. It is simple to verify that π̂ and π̃ belong to C̄

for a sufficiently small but positive ε. Note also that π̂ and π̃ are not multiples of
π̄, as β+

k , β−k , and ε are all positive numbers. This contradicts the fact that π̄ is
an extreme ray of C̄ as π̄ = 1

2 π̂ + 1
2 π̃. A similar argument yields that π̄ satisfies

αj+k αj−k = 0 for (k, j) ∈ K ×M . Using (2.6), these relations imply that αj±k = β±k for
all (k, j) ∈ K ×M . This shows the result.

In what follows, we describe a finite collection of points of C that subsumes its
extreme rays. This collection, in turn, provides a description of conv (S), which might
not be minimal. We refer to the vectors of C that correspond to vertical inequalities
of conv(S) as vertical. Our next goal is to characterize nonvertical extreme rays of C.
We first give necessary conditions.

Proposition 2.4. If π is a nonvertical extreme ray of C, then (i) β+
k β
−
k = 0 for

k ∈ K, and (ii) there exists l ∈ K such that β+
k = β−k = 0 for k ∈ {1, . . . , l − 1} with

either β+
l > 0 or β−l > 0.

Proof. Case (i) follows from an argument similar to that given in the proof of
Proposition 2.3. We next show (ii). Assume by contradiction that β+ = β− = 0.
Then, ({γj}j∈M ;θ; {ηj}j∈M ; {ρj}j∈M ;λ;µ) belongs to the projection cone of the set

Euj ≥ fyj ∀j ∈M,

E
(
x−

∑
j∈M u

j
)
≥ f

(
1−

∑
j∈M yj

)
,

0 ≤ uj ≤ 1yj ∀j ∈M,

0 ≤ x−
∑
j∈M u

j ≤ 1
(

1−
∑
j∈M yj

)
,

which is itself the disjunctive programming formulation of the convex hull of the set

P̃ = {(x;y) ∈ Ξ× (∆m ∩ {0, 1}m)} .

Since conv(P̃) = Ξ×∆m, we conclude that π corresponds to a vertical inequality of
conv (S), yielding the desired contradiction.
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It follows from Proposition 2.4 that nonvertical extreme rays can be rescaled so
that either β+

l = 1 or β−l = 1 for some l ∈ K, and β+
k = β−k = 0 for k ∈ {1, . . . , l−1}.

Define Kl = K \ {1, . . . , l}. Since C is a cone contained in the positive orthant, such
a ray corresponds to an extreme point of either

Cl
+

=

{
πl

∣∣∣∣∣∑
k∈Kl

Akji
(
β+
k −β

−
k

)
+
∑
t∈T

Eti

(
γjt−θt

)
+ηji−ρ

j
i−λi+µi=−A

l
ji ∀(i, j)∈N×M

}
,

or

Cl
−

=

{
πl

∣∣∣∣∣∑
k∈Kl

Akji
(
β+
k −β

−
k

)
+
∑
t∈T

Eti

(
γjt−θt

)
+ηji−ρ

j
i−λi+µi=Alji ∀(i, j)∈N×M

}
,

where πl ∈ R(m+1)(τ+2n)+2(κ−l)
+ is defined similarly to π, but without elements β+

k

and β−k for k ∈ {1, . . . , l}. Conversely, it is easily verified that each extreme point
of Cl+ (resp., Cl−) corresponds to an extreme ray of C that is scaled so that β+

l = 1
and β−l = 0 (resp., β−l = 1 and β+

l = 0), and is such that β+
k = β−k = 0 for

k ∈ {1, . . . , l − 1}.
Using a proof technique similar to that used in [35], we give a characterization of

extreme points of Cl+ that correspond to nonvertical extreme rays of C. We refer to
such extreme points as nonvertical.

Proposition 2.5. Define

Ĉl
+

=



π̂l ∈ Rq+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃L, L̄ ⊆ Kl,
∃ I1, I2, . . . , Im, Ī ⊆ T,
∃ J, J̄ ⊆ N,
∃G ⊆ N ×M,
s.t.
|G| = |L|+ |L̄|+

∑
j∈M |Ij |+ |Ī|+ |J |+ |J̄ |,

β+
i = 0 ∀i ∈ Kl \ L
β−i = 0 ∀i ∈ Kl \ L̄
γji = 0 ∀j ∈M, i ∈ T \ Ij
θi = 0 ∀i ∈ T \ Ī
λi = 0 ∀i ∈ N \ J
µi = 0 ∀i ∈ N \ J̄
(2.5),
the coefficient matrix of (2.5) is nonsingular



,

where q = τ(m + 1) + 2(n + κ − l), and π̂l is defined similarly to πl, except that
components ηj and ρj are eliminated, and where∑

k∈L

Akjiβ
+
k −

∑
k∈L̄

Akjiβ
−
k +

∑
t∈Ij

Etiγ
j
t −

∑
t∈Ī

Etiθt(2.8)

−
∑

t∈J∩{i}

λt +
∑

t∈J̄∩{i}

µt = −Alji ∀(i, j) ∈ G.

If π̄l =
(
π̂l; {η̄j}j∈M ; {ρ̄j}j∈M

)
is a nonvertical extreme point of Cl+ , then π̂l ∈ Ĉl+ .

Conversely, if π̂l ∈ Ĉl+ , there exists a nonvertical extreme point of Cl+ of the form
π̄l =

(
π̂l; {η̄j}j∈M ; {ρ̄j}j∈M

)
for some

(
{η̄j}j∈M ; {ρ̄j}j∈M

)
∈ R2mn

+ .
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The idea of the proof, which is given in the appendix, is as follows. Any nonver-
tical extreme point of Cl+ is associated with a basic feasible solution (bfs) of this set.
The basis corresponding to this bfs has a triangular block representation (through
rearranging columns and rows) with two blocks on the diagonal. One of these blocks
is an identity matrix whose columns are composed of basic variables among ηj and ρj

for j ∈ M . The other diagonal block is a nonsingular square matrix whose columns
are composed of the remaining basic variables. We record the indices of these basic
variables in sets L, L̄, Ij , Ī, J, and J̄ . We record the indices of the rows of this non-
singular matrix in G. Examining the correspondence between bases of Cl+ and the
aforementioned nonsingular matrices, we obtain the characterization given in Propo-
sition 2.5.

Nonvertical extreme points of Cl− admit a characterization similar to that of
Proposition 2.5, except that the system of equations in Ĉl− has right-hand side Alji
instead of −Alji. The results of Propositions 2.3 and 2.5 are the basis for our claim
that nonvertical facet-defining inequalities of conv(S) can be obtained using EC&R.
However, in EC&R, we do not directly verify that the coefficient matrix in the de-
scription of Ĉl± is nonsingular. Instead, we only impose easily verifiable necessary
conditions for nonsingularity.

Corollary 2.6. Assume that π̂l ∈ Ĉl± . Then, (i) L∩L̄ =
⋂
j∈M Ij∩ Ī = J∩J̄ =

∅; (ii) if π̂l 6= 0, there exists (i, j) ∈ G such that Alji 6= 0; and (iii) for each i ∈ N
with λi > 0 or µi > 0, there exists j ∈M such that (i, j) ∈ G.

Proof. For (i) we only show that
⋂
j∈M Ij ∩ Ī = ∅, as the proofs for L ∩ L̄ = ∅

and J ∩ J̄ = ∅ are similar. Assume by contradiction that there exists i ∈
⋂
j∈M Ij ∩ Ī.

Then, the coefficient columns of γji , for j ∈M , and θi are linearly dependent, yielding
a contradiction. For (ii), assume by contradiction that Alji = 0 for all (i, j) ∈ G.
Then, the right-hand side of (2.5) is the zero vector. Since the coefficient matrix of
this system is nonsingular, its unique solution is π̂l = 0. This is a contradiction to
the fact that π̂l 6= 0. For (iii), assume by contradiction that there exists i ∈ N with
λi > 0 or µi > 0 such that (i, j) /∈ G for all j ∈M . Therefore, the coefficient column
of variable λi or µi in (2.5) is zero, a contradiction.

We are now ready to prove the main result of this section.

Theorem 2.7. A linear description of conv (S) is given by the inequalities defin-
ing Ξ and ∆m, together with class-l± EC&R inequalities for l ∈ K.

Proof. Consider a facet-defining inequality of conv (S). Assuming it is not verti-
cal, we show that it can be obtained using EC&R. It follows from Proposition 2.3 that
the coefficient vector of this facet-defining inequality corresponds to an extreme ray of
C. Proposition 2.4 shows that we can rescale this ray so that β±l = 1 for some l ∈ K
and β±k = 0 for k ∈ {1, . . . , l−1}. The studied ray corresponds to an extreme point of
Cl± , which we call π̄l. Proposition 2.5 shows that nontrivial components of π̄l, which
we refer to as π̂l, correspond to an element of Ĉl± . Select L, L̄, I1, . . . , Im, Ī, J, and J̄
accordingly. We take the components of π̂l not corresponding to these sets to be zero.
We claim that the given inequality can be obtained as a class-l± EC&R inequality
with assignment

[
L, L̄

∣∣I1, . . . , Im, Ī∣∣J, J̄] and weights π̂l (correspondingly ordered).
To this end, we show that the weights satisfy EC&R requirements. First observe
that, since π̂l is an element of Ĉl± , matrix (2.5) is nonsingular. It therefore satisfies
condition (i) of Corollary 2.6. This implies that L and L̄ are disjoint, I1, I2, . . . , Ī
do not have common elements, and J and J̄ are disjoint, as specified in the EC&R
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procedure. Further, weights π̂l are clearly nonnegative since they are extracted from
solutions of Ĉl± . Second, observe that in Ĉl± , (2.5) is satisfied for each (i, j) ∈ G.
This constraint corresponds to the projection of variable uji . Since variable uji can be
viewed as xiyj , (2.5) expresses that bilinear terms xiyj for (i, j) ∈ G cancel out in
the aggregated bilinear inequality obtained from elements of

[
L, L̄

∣∣I1, . . . , Im, Ī∣∣J, J̄]
with weights π̂l. Since |G| = |L| + |L̄| +

∑
j∈M |Ij | + |Ī| + |J | + |J̄ |, the number of

cancellations is as specified in requirement (i) of EC&R. Third, observe that condition
(ii) of Corollary 2.6 implies that if there exists a constraint among those correspond-
ing to

[
L, L̄

∣∣I1, . . . , Im, Ī∣∣J, J̄] that is aggregated with a nonzero weight, then at least
one bilinear term appearing in the base equality is canceled during aggregation. This
is expressed as requirement (ii) of EC&R. Similarly, condition (iii) of Corollary 2.6
shows that at least one bilinear term among xiy1, xiy2, . . . , xiym is canceled during
aggregation for each i ∈ J ∪ J̄ . This is given as requirement (iii) of EC&R. Finally,
observe that π̂l is only part of the vector π̄l. To obtain the complete set of dual
weights, it remains to show that the remaining components

(
{η̄j}j∈M ; {ρ̄j}j∈M

)
of

π̄l can also be obtained by EC&R. These values correspond to the projection of vari-
ables uji for (i, j) /∈ G. This corresponds to relaxing the remaining bilinear terms
xiyj with either xiyj ≥ 0 or yj − xiyj ≥ 0, since ηji and ρji are the dual weights for
constraints xiyj ≥ 0 and yj − xiyj ≥ 0, respectively.

Determining all EC&R weights for a given set S typically requires the solution
of a large number of linear systems of inequalities. In particular, it is not hard to
create families of problems where the number of possible EC&R weights increases
exponentially with the number of variables and constraints in the problem. This is
expected, as the set of these weights corresponds to a super set of all extreme rays of
C. One possible way to access specific EC&R weights is to solve a cut-generating LP
(CGLP) associated with the problem given in Proposition 2.3; see [9] for a discussion
on CGLPs. A practical difficulty in using this approach stems from the fact that the
dimension of the CGLP grows substantially with the number of variables y, which
dictates the number of disjuncts. For this reason, we next focus in sections 3 and 4
on problems with specific structures for which we are able to explicitly obtain the full
collection of combination weights without recourse to the solution of a CGLP.

2.2. Variations and properties. In this section, we establish certain properties
of EC&R inequalities and study specific set structures for which the application of
EC&R takes on a specialized and simpler form.

We first discuss a connection between EC&R and a simple technique to obtain
convex relaxations of S. Denote the bilinear constraints in the description of S by
gk(x;y) = zk for k ∈ K. For any ξ ∈ Rk, assume that the concave (resp., convex)
envelope of z̄ =

∑
k∈K ξkg

k(x;y) over Ξ ×∆m is described by z̄ ≤ mini∈Hξ h
ξ
i (x;y)

(resp., z̄ ≥ maxj∈H̄ξ h̄
ξ
j(x;y)), where functions h(x;y) (resp., h̄(x;y)) are linear.

Then, it is clear that the collection of all envelope inequalities
∑
k∈K ξkzk

≤ mini∈Hξ h
ξ
i (x;y) and

∑
k∈K ξkzk ≥ maxj∈H̄ξ h̄

ξ
j(x;y) for all ξ ∈ Rk yields the

convex hull of S; see [43] for instance. The EC&R procedure shows that only a finite
number of weights ξ are required to obtain the convex hull of S. Further, the EC&R
procedure specifies how these combination weights can be constructed. In particular,
consider an EC&R inequality with weights β± for bilinear constraints. Then, it is
easy to verify that this inequality is implied by the set of envelope inequalities, as de-
scribed above for ξ = β+−β−. This follows from the fact that the EC&R inequality
is valid for the convex hull of

∑
k∈K ξkzk =

∑
k∈K ξkg

k(x;y) over Ξ × ∆m, which
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is described by the envelope inequalities corresponding to ξ. Since the collection of
all EC&R inequalities describes the convex hull of S, we conclude that the set of all
envelope inequalities with ξ = β+−β− for all EC&R weights β± gives the convex hull
of S. We mention, however, that the collection of all envelope inequalities obtained
above can be much larger than the collection of all EC&R inequalities, even when
only EC&R-derived weights ξ = β+ − β− are used.

As mentioned before, not all EC&R inequalities are facet-defining for conv (S).
We next address the question of assessing the strength of an EC&R inequality.

Proposition 2.8. Consider a class-l± EC&R inequality h(x;y; z) ≥ h0. A point
(x̄; ȳ; z̄) ∈ S satisfies h(x;y; z) ≥ h0 at equality if and only if for each linear con-
straint in Ξ that is used in the aggregation, either x̄ is binding, or its dual multiplier
ȳj or 1 −

∑
j∈M ȳj is zero. We refer to these constraints as “complementary slack-

ness.” This definition also includes the bound constraints yj(1−xi) ≥ 0 and yjxi ≥ 0
associated with the linearization step in EC&R.

Further, let X be the set of points (x̄; ȳ; z̄) ∈ S, where (x̄; ȳ) satisfies complemen-
tary slackness. Then, h(x;y; z) ≥ h0 defines a face of conv (S) of dimension equal to
dim(X ).

Proof. For the first result, complementary slackness forces the constraints in the
aggregation to be equalities, and therefore the resulting EC&R inequality is tight.
Conversely, if one of the complementary slackness constraints is violated, the corre-
sponding weighted inequality participates in the aggregation as a strict inequality, and
therefore the resulting EC&R inequality cannot be tight. The second result follows
directly from the first.

Proposition 2.8 yields a procedure to determine the strength of an EC&R in-
equality by characterizing the points that are tight for the inequalities involved in
the aggregation. Since it suffices to include the extreme points of S in X , we can
systematically obtain this set as follows. We consider each of the m+1 vertices of the
simplex ∆m, and identify the linear constraints in Ξ that need to be tight to satisfy
complementary slackness. We obtain a linear set of constraints on variables x (a face
of Ξ) and a linear set of equalities for variables z. We can include this polytope or
its extreme points in X . Repeating this procedure for all m + 1 vertices of ∆m, we
obtain a description of X as a disjunctive union of m + 1 polytopes. Its dimension
determines the dimension of the face defined by the EC&R inequality.

The set X has a specific interpretation when S contains a single bilinear con-
straint. In this case, the convex hull of S corresponds to the convex and concave
envelopes of the bilinear function over its domain Ξ×W, together with the defining
inequalities of the domain. It is well known that the projection of the facets of the
convex (resp., concave) envelope over the domain gives rise to a polyhedral subdivi-
sion of the domain; see [45] for instance. Proposition 2.8 shows that the element of the
polyhedral subdivision corresponding to a facet-defining EC&R inequality can be ob-
tained as the convex hull of points (x;y) ∈ proj(x;y) X . In the very special case where
the bilinear set of interest is defined by z = xy with (x, y) ∈ [0, 1]2, we obtain, for
instance, that one of the two inequalities describing the convex side of the McCormick
envelope, z ≥ x + y − 1, is the EC&R inequality obtained by combining z = xy and
x ≤ 1 with weights 1 and (1 − y), respectively. It follows from Proposition 2.8 that
this inequality is tight when x = 1 or y = 1, i.e., it is tight over the simplex with
vertices (1, 0), (0, 1), and (1, 1). This recovers the well-known fact that this simplex
is part of the polyhedral partition defining the convex envelope of xy over [0, 1]2.
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EC&R can be specialized and/or simplified if additional structure is assumed
on the set S. In the next few remarks, we describe certain setups for which such
specializations/simplifications can be developed.

Remark 1. Assume that we wish to model epigraphs of some bilinear functions
in S rather than their graphs, i.e., yᵀAkx ≥ zk for k ∈ K̄ ⊆ K. Then, Theorem 2.7
can be adapted to state that during EC&R, when an inequality k ∈ K̄ is chosen as
the base inequality, it is sufficient to compute the corresponding class-k+, and when
inequality k is used during aggregation, it is included in L but not in L̄.

Remark 2. Assume that S contains a single variable y1, i.e., m = 1. In this
case, we may ignore the bound constraints on x variables in the aggregation step
and consider them instead in the relaxation step. This amounts to reducing the
assignment defining class-l± EC&R inequalities to

[
L, L̄

∣∣I, Ī] and to omit the sets
J and J̄ . We then require the number of canceled bilinear terms to be at least
|L| + |L̄| + |I| + |Ī|. Further, when relaxing the aggregated inequality, we now use
McCormick upper bounds xiy1 ≤ min{xi, y1} and McCormick lower bounds xiy1 ≥
max{0, xi + y1 − 1}, depending on the sign of coefficients. In this variant, each
aggregated bilinear inequality can be relaxed into multiple linear inequalities. The
validity of this variation follows from the fact that under the given assumption, the
columns of Cl± associated with variables λ and µ contain a single nonzero element,
and therefore play roles similar to η and ρ.

Remark 3. EC&R can be applied to construct the convex hull of sets that contain
complementarity constraints. In particular, consider the set

(2.9) Sc =
{

(x;y) ∈ Ξ×∆m

∣∣(cky) (bkx) = 0 ∀k ∈ K
}
,

where we assume that the nonnegativity of complementarity multipliers cky and bkx
is implied by the constraints in the description of Ξ and ∆m. Replacing the zeros
in the right-hand side of the complementarity constraints with variables z converts
Sc into an instance of S, which we denote by S̄c. It is clear that conv

(
S̄c
)

can
be constructed using EC&R. Since conv (Sc) is the face of conv

(
S̄c
)

where z = 0,
it is therefore sufficient to replace z by 0 in the EC&R inequalities constructed for
conv

(
S̄c
)

to obtain all nonvertical facet-defining inequalities of conv (Sc). The cancel-
and-relax procedure of [35] applies to the special case of Sc where κ = 1, m = 1, and
h1 = 0. In particular, all inequalities obtained from C&R can be derived as EC&R
inequalities using the procedure described above.

Remark 4. EC&R can be used to construct the convex hull, P, of graphs of
functions gk(x;w) = wᵀAkx over x ∈ Ξ and w ∈ W, where W is a polytope with
extreme points wj for j ∈ {1, . . . ,m + 1} that is not required to be a simplex. We
write W as T∆m, where T is an affine transformation and ∆m is a simplex. Then we
construct the convex hull, P̄, of hk(x;y) = yᵀ(T ᵀAk)x over Ξ × ∆m using EC&R,
and add w = Ty to recover the convex hull of gk(x;w) over Ξ ×W. We conclude
that P = T P̄ and P̄ can be obtained using EC&R.

3. Explicit derivation of hulls. In this section, we apply EC&R to construct
an explicit description for the convex hull of the graphs of structured bilinear functions
over certain polytopes. To this end, we use the following result for the case where Ξ
is a Cartesian product of polytopes.

Proposition 3.1. Consider

S× =
{

(x;y; z) ∈ Ξ×∆m × Rκ
∣∣ yᵀAkx = zk ∀k ∈ K

}
,
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where Ξ = Ξ1 × Ξ2 × · · · × Ξ%, and where Ξq =
{
xq ∈ [0, 1]n

q ∣∣Eqxq ≥ f q} for q ∈
Q = {1, . . . , %}. Then, a linear description of conv (S×) in a higher dimension is
given by the inequalities describing ∆m and Ξ, zk =

∑
q∈Q z

q
k for k ∈ K, together

with all class-l± EC&R inequalities of

Sq× =
{

(xq;y; zq) ∈ Ξq ×∆m × Rκ
∣∣∣∣ yᵀAq,kxq = zqk
∀k ∈ K

}
for all q ∈ Q. In this definition Aq,k is the matrix composed of columns of Ak corre-
sponding to variables xq.

Further, when κ = 1, a linear description of conv (S×) in the original space
of variables is given by the inequalities describing ∆m and Ξ, together with z1 ≤∑%
q=1 h

q(xq;y) and z1 ≥
∑%
q=1 h̄

q(xq;y), where zq1 ≤ hq(xq;y) and zq1 ≥ h̄q(xq;y)
are EC&R inequalities of Sq×.

The proof of Proposition 3.1 is given in the appendix. We use the result of
Proposition 3.1 to obtain a linear description for the convex hull of

Ŝ =

(x,y, z) ∈ [0, 1]n ×∆m × R

∣∣∣∣∣∣
∑
i∈N

∑
j∈M

aijxiyj = z

 ,

where aij ∈ R for (i, j) ∈ N ×M .

Proposition 3.2. A linear description of conv(Ŝ) is given by 1
ᵀ
y ≤ 1, bounds

on variables x and y, together with inequalities

z ≤
∑
i∈N

hl
i

(xi;y) ∀
(
l1, . . . , ln

)
∈

n∏
i=1

(
{0} ∪M+

i ∪M
−
i

)
,(3.1a)

z ≥
∑
i∈N

h̄l
i

(xi;y) ∀
(
l1, . . . , ln

)
∈

n∏
i=1

(
{0} ∪M+

i ∪M
−
i

)
,(3.1b)

where M+
i = {j ∈M | aij > 0} and M−i = {j ∈M | aij < 0} for i ∈ N , and

hl
i

(xi;y) =


∑
j∈M a+

ij yj if li = 0,∑
j∈M (aij − aili)+ yj + ailixi if li ∈M+

i ,∑
j∈M (aij − aili)+ yj + aili

∑
j∈M yj + ailixi − aili if li ∈M−i ,

(3.2a)

h̄l
i

(xi;y) =


∑
j∈M a−ij yj if li = 0,∑
j∈M (aij − aili)− yj + ailixi if li ∈M−i ,∑
j∈M (aij − aili)− yj + aili

∑
j∈M yj + ailixi − aili if li ∈M+

i .

(3.2b)

Proof. We consider Ŝi = {
(
xi,y, z

i
)
∈ [0, 1]×∆m × R |

∑
j∈M aijxiyj = zi} and

use Theorem 2.7 to obtain a linear description of conv(Ŝi) via class-1+ and class-1−

EC&R inequalities. These inequalities are generated from
∑
j∈M aijxiyj = zi with

weights ±1, respectively. Since there are no linear side constraints on variables xi,
we express the assignment for each EC&R inequality as

[
J, J̄

]
after omitting L, L̄,

I, and Ī. We first derive class-1+ inequalities. Since there is a single variable xi,
the EC&R assignment is either [∅, ∅], [{i}, ∅] , or [∅, {i}]. For the first assignment,
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the resulting aggregated bilinear inequality is
∑
j∈M aijxiyj ≥ zi, which leads to the

first case of (3.2a) after relaxation. For the second assignment, inequality xi(1 −∑
j∈M yj) ≥ 0 is aggregated with a proper positive weight to

∑
j∈M aijxiyj ≥ zi

so that at least one bilinear term among those of the base inequality is canceled.
The weight for xi(1 −

∑
j∈M yj) ≥ 0 must therefore be equal to aili for some li ∈

M+
i . The resulting aggregated inequality is then

∑
j∈M (aij − aili)xiyj + ailixi ≥

zi, which leads to the second case of (3.2a) when relaxed. Similarly, for the last
assignment, inequality (1 − xi)(1 −

∑
j∈M yj) ≥ 0 is aggregated with weight −aili

for some li ∈ M−i to
∑
j∈M aijxiyj ≥ zi so that at least one bilinear term among

those of the base inequality is canceled. The resulting aggregated inequality is then∑
j∈M (aij − aili)xiyj + aili

∑
j∈M yj + ailixi− aili ≥ zi, which leads to the third case

of (3.2a) after relaxation. Therefore, Proposition 3.1 and its following argument for
the case where κ = 1 imply (3.1a). The result for (3.1b) is proven similarly.

As discussed in [19], a common way of reformulating the product of a nonnegative
continuous variable and a nonnegative integer variable is to replace the integer variable
by an expansion involving binary variables. In particular, given a bilinear term x1w1 =
z1 where x1 ∈ [0, 1] and w1 ∈ {0, 1, . . . ,m} for some m ∈ Z, the unary reformulation
is

U =

(x1;y; z1) ∈ [0, 1]× {0, 1}m × R

∣∣∣∣∣∣
m∑
j=1

jx1yj = z1, 1ᵀy ≤ 1

 .

It is common in the literature to relax bilinear terms x1yj in the description of U with
their McCormick upper and lower bounds. This leads to an MILP reformulation of the
original problem. The resulting relaxation does not describe conv (U) when m ≥ 2;
see Proposition 2.2 in [19]. We denote by rlx(U) the continuous relaxation of U where
the binary restrictions on variables y are removed. EC&R allows for the derivation
of the convex hull of U , since it is easy to verify that conv (U) = conv (rlx(U)), and
since rlx(U) conforms to the structure of Ŝ studied in Proposition 3.2 where n = 1
and a1j = j. We obtain the following.

Corollary 3.3. A linear description of conv (U) is given by yj ≥ 0 for j ∈ M ,
1

ᵀ
y ≤ 1, 0 ≤ x1 ≤ 1, z1 ≤

∑m
j=1 jyj, z1 ≤

∑m
j=l+1(j − l)yj + lx1 for all l ∈ M ,

z1 ≥ 0, and z1 ≥
∑l−1
j=1(j − l)yj + l

∑m
j=1 yj + lx1 − l for all l ∈M .

Proof. Since n = 1, (3.2a) reduces to hl =
∑m
j=1 jyj for l = 0, and hl =∑m

j=l+1(j − l)yj + lx1 for l ∈ M+
1 = M . Similarly, (3.2b) reduces to h̄l = 0 for

l = 0, and h̄l =
∑l−1
j=1(j − l)yj + l

∑m
j=1 yj + lx1 − l for l ∈M+

1 = M .

4. Convex relaxations for network interdiction problems. The literature
classifies NIPs based on a variety of factors including their objective function, the
amount of certainty in the data, and the effect of interdiction on arcs and nodes; see
[16] for a comprehensive treatment. In this section, we study a deterministic variant
of NIPs defined on a network G(V,E) with node set V and arc set E, and where the
follower operates the network so as to maximize total flow rewards. This problem can
be formulated as

(P) w∗ = min
y∈Y∩{0,1}m

{
max
x∈Rm+

{
rᵀx

∣∣∣Nx = f , x ≤ u ◦ (1− y)
}}

,

where n = |V | and m = |E|. In this formulation, the outer minimization and inner
maximization problems are referred to as leader and follower problems, respectively.
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Variable yij , for (i, j) ∈ E, represents the binary decision of the leader of whether or
not arc (i, j) is destroyed/interdicted. Set Y, which we assume to be a polyhedron,
describes the set of restrictions on the leader’s interdiction actions. Variable xij
denotes the amount of flow transported through arc (i, j). Further, rij ∈ R and
uij ∈ R+ indicate the reward collected by the follower per unit of flow and the capacity
associated with arc (i, j), respectively. The first constraint of the follower problem
imposes the typical flow-balance requirements, where fi ∈ R is the supply/demand of
node i ∈ V , and N ∈ {−1, 0, 1}n×m is the node-arc incidence matrix of the network.
The second constraint models the fact that an interdicted arc cannot transport flow.
In this section, we use symbol ◦ to denote the Hadamard (componentwise) product
of vectors.

The generic definition we give for (P) captures many variants of NIPs studied in
the literature, including those where the follower problem is chosen to be a maximum
flow, a shortest path, or a maximum reliable path. Detailed descriptions of these
special cases can be found in [23, 32, 49]. Polyhedral approaches for solving NIPs
have been pursued in the literature with an aim to derive valid inequalities that can
be implemented inside branch-and-cut schemes; see [4, 42] for instance. The cuts
they derive apply when the follower solves a maximum flow problem. In contrast,
the results we present here apply to general NIPs of the form (P), including those
for which interdiction variables y are continuous; see [25]. Such problems are rarely
studied in the literature, probably because traditional linearization techniques relax
but do not reformulate these models into MILPs. Other polyhedral results for NIPs
are given in [17]. These results, however, are obtained for the KKT reformulation of
(P), which is an MILP with complementarity constraints.

The reformulation of (P) we study here, which is sometimes referred to as dual
reformulation, is the single level mathematical program obtained by replacing the
follower problem by its linear programming dual, assuming interdiction variables are
fixed; see [41] for instance. Introducing θ and γ as the dual variables for the first
and second constraints of the follower problem, we can write the dual reformulation
of (P) as

w∗ = min

fᵀθ + uᵀγ − uᵀ(γ ◦ y)

∣∣∣∣∣∣∣∣
N

ᵀ
θ + Iγ ≥ r

0 ≤ γ ≤ γ̇
θ. ≤ θ ≤ θ̇
y ∈ Y ∩ {0, 1}m

 ,(Q)

where bounds γ̇, θ. , and θ̇ on variables γ and θ are added under ensuing Assumption 1;
see, for instance , [17], where it is shown that ||r||1 is a valid choice for γ̇, −θ. , and θ̇.

Assumption 1. The follower problem is feasible for all y ∈ Y ∩ {0, 1}m.

If the follower problem is infeasible for some y ∈ Y ∩ {0, 1}m, then it is optimal
for the leader to choose such y. For this reason, Assumption 1 is often encountered
in the literature; see [41] for instance. We also note that, for many specific problems,
Assumption 1 is either trivially satisfied [49] or achieved through suitable modeling,
where artificial arcs that cannot be interdicted are introduced in the problem [25,
48]. We will illustrate such a modeling approach in section 5. Finally, we mention
that computational strategies to verify Assumption 1 can be devised; see [17] for an
example.

The dual reformulation (Q) is commonly expressed in higher dimension through
the introduction of a variable zij for each bilinear term γijyij that appears in the
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objective function

min
∑
i∈V

fiθi +
∑

(i,j)∈E

uijγij −
∑

(i,j)∈E

uijzij(4.1a)

s.t. γijyij = zij ∀(i, j) ∈ E,(4.1b)
θi − θj + γij ≥ rij ∀(i, j) ∈ E,(4.1c)
0 ≤ γij ≤ γ̇ij ∀(i, j) ∈ E,(4.1d)

0 ≤ θi ≤ θ̇i ∀i ∈ V,(4.1e)
0 ≤ yij ≤ 1 ∀(i, j) ∈ E,(4.1f)
y ∈ Y,(4.1g)
yij ∈ {0, 1} ∀(i, j) ∈ E.(4.1h)

In the above model, variables θ are translated so that their lower bounds equal zero.
Parameters θ̇ and r are redefined accordingly, and the constant term in the objective
(due to the transformation of variables θ) is ignored. We refer to this model as (Q̄)
and to its feasible region as D.

Many studies in the literature (see [41] for instance) replace (4.1b) with zij ≤ γij
and zij ≤ γ̇ijyij for (i, j) ∈ E since the objective coefficients of zij are negative. These
inequalities are sometimes referred to as linearized inequalities. The resulting model,
which we call (Q̄tr), is a reformulation of (Q̄), as linearized inequalities produce the
exact value of the bilinear term γijyij when yij is binary. Since (Q̄tr) is an MILP, it
can be solved with commercial linear programming–based branch-and-bound software.
We have shown in [17] that the linear programming relaxation of (Q̄tr) can be very
weak. In fact for the problems with nonnegative rewards, when the bounds γ̇ij are
large relative to rij , the optimal value of this relaxation becomes negative even though
w∗ is clearly nonnegative, as r is nonnegative and Assumption 1 holds.

In this section, we derive polyhedral results that provide relaxations of (Q̄) that
are stronger than those obtained through traditional linearization. The cuts we derive
have the advantage of being valid for both discrete and continuous NIPs, since the
convex hulls of the relaxations we study do not depend on interdiction variables being
binary or continuous. We first observe that the linearized inequalities, which are used
to relax (4.1b), are the facets of the convex hull of the following relaxation of D :

D(1)
(i,j) =

(γij , yij , zij) ∈ R3

∣∣∣∣∣∣
γijyij = zij
0 ≤ γij ≤ γ̇ij
0 ≤ yij ≤ 1

 ,

where (i, j) ∈ E. Relaxation D(1)
(i,j) captures few of the interactions between variables.

We next study a stronger relaxation of D associated with each arc (i, j) in view of
obtaining reformulations with stronger linear programming relaxations.

4.1. Relaxations of single bilinear terms. For arc (i, j) of E, we consider
the following relaxation of D :

D(i,j) =

(γ;θ; yij , zij) ∈ Rm+n × R2

∣∣∣∣∣∣
γijyij = zij
(4.1c)− (4.1e)
0 ≤ yij ≤ 1

 .

Set D(i,j) contains the single bilinear term associated with arc (i, j), together with
all linear side constraints of D, except for the budget requirement. Clearly, D(i,j)
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contains more side constraints of D than D(1)
(i,j). As a result, identifying facet-defining

inequalities of its convex hull yields stronger linear programming relaxations of Q̄.
Next, we will assume without loss of generality that (i, j) = (1, 2). Because the

structure of D(1,2) conforms to S with m = κ = 1, Theorem 2.7 implies the following.

Corollary 4.1. A linear description of conv
(
D(1,2)

)
is given by the linear side

inequalities of D(1,2), together with class-1± EC&R inequalities.

In applying Corollary 4.1, we can use the simpler variant of EC&R presented in
Remark 2, in which sets J and J̄ are not included in the assignment but the full
set of McCormick inequalities is used to relax the bilinear terms remaining in the
aggregated bilinear inequality. Since L = L̄ = ∅, as there is only one bilinear equality,
the assignment reduces to

[
I, Ī
]
. In particular, I (resp., Ī) refers to the constraints

(4.1c) that are multiplied with y12 (resp., 1− y12) .
Deriving all EC&R inequalities requires identifying all possible combinations of

constraint weights that meet the EC&R conditions. We show next that constraints
used in the derivation of facet-defining EC&R inequalities are aggregated with weight
1.

Proposition 4.2. Consider a class-1± facet-defining EC&R inequality of
conv

(
D(1,2)

)
with assignment

[
I, Ī
]
. Then, the aggregation weights of the constraints

in
[
I, Ī
]

are equal to 0 or 1.

Proof. We only show the result for class-1+, as the proof for class-1− is similar.
Weights used in the derivation of a facet-defining EC&R inequality of conv

(
D(1,2)

)
correspond to an extreme point of C1+

. Rearranging the columns of the coefficient
matrix of the system defining C1+

, we obtain

(4.2)
[
N −N I I −I −I 0 0 0 0
I −I 0 0 0 0 I I −I −I

]
,

where N is the node-arc incidence matrix of the network, the first and second row
blocks correspond to bilinear terms θiy12 and γijy12, respectively, while the first and
second columns correspond to the weights of constraints multiplied by y12 and 1−y12,
respectively. Further, the right-hand side of the system defining C1+

is −e12 ∈ Rm+n,
where e12 is the vector whose components are all zero except for that corresponding
to γ12y12, which is equal to 1. Let B be a basis for (4.2). It follows from Cramer’s
rule that all elements of B−1 belong to {0,−1, 1}, since (4.2) is totally unimodular
(TU). Therefore, the components of −B−1e12 belong to {0,−1, 1}. We conclude that
the components of basic feasible solutions to C1+

are equal to 0 or 1.

Remark 5. When sets I or Ī contain constraints that are aggregated with weight
0, we can reduce the assignment by dropping those constraints. In the remainder of
this section, we only consider assignments

[
I, Ī
]

whose aggregation weights are equal
to 1.

Our next goal is to provide, in Proposition 4.6, a characterization of all class-1±

EC&R inequalities. We first obtain class-1± EC&R inequalities with assignment [∅, ∅].
Using the fact that each bilinear term in the aggregated inequality is relaxed using
McCormick inequalities, as stated after Corollary 4.1, a direct application of EC&R
yields the following.

Corollary 4.3. Class-1+ EC&R inequalities for D(1,2) with assignment [∅, ∅]
are z12 ≤ γ12 and z12 ≤ γ̇12y12, while class-1− EC&R inequalities with assignment
[∅, ∅] are z12 ≥ 0 and z12 ≥ γ12 + γ̇12y12 − γ̇12.

D
ow

nl
oa

de
d 

09
/1

5/
17

 to
 1

28
.2

.1
0.

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVEXIFICATION OF BILINEAR FUNCTIONS 1819

The inequalities described in Corollary 4.3 are the well-known linearized inequali-
ties used in the description of (Q̄tr). Before characterizing class-1± EC&R inequalities
with nonempty assignment [I, Ī], we introduce the following.

Definition 4.4. Given a directed subgraph S of a directed graph G(V,E), we refer
to S̄ as the undirected graph obtained by transforming the arcs of S into edges.

Definition 4.5. In G(V,E), we refer to P as a (1, 2)-path if it is a directed sub-
graph of G that contains arc (1, 2), and P̄ is a path. Similarly, we refer to P as a
(1, 2)-cycle if it is a directed subgraph of G that contains arc (1, 2), and P̄ is a cycle.

Given a (1, 2)-path/cycle P of G, we refer to the number of its arcs as |P|. We
record the fact that (4.1c), for (i, j) ∈ E, belongs to I or Ī by including the pair 〈i, j〉
in the corresponding set. Given a (1, 2)-path (resp., (1, 2)-cycle) P, we refer to ~P as
the unique directed path (resp., cycle) that can be obtained from P by reversing (if
necessary) the orientation of arcs (i, j) 6= (1, 2) of P. We say that arc (i, j) 6= (1, 2) of
P is backward if it is reversed in ~P. Otherwise, we say that it is forward.

Proposition 4.6. Consider a facet-defining class-1± EC&R inequality of
conv

(
D(1,2)

)
with assignment

[
I, Ī
]
, where I ∪ Ī 6= ∅. Define P to be the directed

subgraph of G(V,E) induced by the arcs (i, j) for which 〈i, j〉 belongs to I ∪ Ī. Then P
is a (1, 2)-path or a (1, 2)-cycle satisfying (i) 〈1, 2〉 ∈ Ī for class 1+, and 〈1, 2〉 ∈ I for
class 1−, and (ii) forward arcs of P belong to I if and only if 〈1, 2〉 ∈ I, and backward
arcs of P belong to I if and only if 〈1, 2〉 ∈ Ī.

Proof. Since I and Ī are not both empty by assumption, requirement (ii) of EC&R
implies that γ12y12 be canceled during aggregation since it is the only bilinear term
contained in base equality γ12y12 = z12. This shows that P contains arc (1, 2). Since
γ12 appears only in the dual constraint (4.1c) associated with arc (1, 2), condition (i)
must be satisfied for γ12y12 to be canceled. We now show that P has a single (weakly
connected) component. Assume by contradiction that there exists a component, P1,
disjoint from the one that contains arc (1, 2). Similarly, we refer to the collection
of remaining components as P2. It follows from Remark 5 that the weights of the
constraints corresponding to arcs in P1 and P2 are equal to 1. Since the EC&R
inequality under consideration is facet-defining, weights correspond to components of
a bfs of the system of equations that describes C1± . The equations defining basic
variables can be written as

(4.3)


N1 A1 0 0 0 0 C1

B1 0 Ā1 0 0 0 0
0 0 0 N2 A2 0 C2

0 0 0 B2 0 Ā2 0
0 0 0 0 0 0 C3





1
ν1
ν̄1

1
ν2
ν̄2

0


=


0
0
0
±e12

0

 ,

where the columns and rows of the basis matrix have been suitably reordered. In
(4.3), the first row block (resp., third row block) corresponds to bilinear terms θiy12
for nodes i that belong to P1 (resp., P2), while the second row block (resp., fourth row
block) corresponds to bilinear terms γijy12 for arcs (i, j) that belong to P1 (resp., P2).
Similarly, the first column block (resp., fourth column block) represents positive or
negative multiples of dual network constraints corresponding to arcs in P1 (resp., P2),
while the second, third, fifth, and sixth column blocks contain positive or negative
multiples of columns of identity matrices. The last row block corresponds to the
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remaining bilinear terms, while the last column block corresponds to dual constraints
that have weights 0 and are added to complete the basis. Further, e12 is a unit vector
whose elements are all zeros except that corresponding to γ12y12, which is equal to 1.
It is now easy to verify that the linear combination of the columns of the basis matrix
with weights (1;ν1; ν̄1; 0; 0; 0; 0) yields the zero vector. This shows that the columns
are linearly dependent, which is a contradiction.

Requirement (i) of EC&R implies that at least |I|+|Ī| bilinear terms cancel during
aggregation. Counting the cancellation of γ12y12, there must be at least |I|+ |Ī|−1 =
|P| − 1 bilinear terms canceled. In the description of D(1,2) variables γij appear
in a single dual network constraint, and therefore no combination of dual network
constraints leads to the cancellation of terms γijy12 for (i, j) 6= (1, 2). As a result,
only bilinear terms θiy12 can be canceled. To cancel θiy12, at least two dual constraints
that contain variable θi must be used during aggregation. This implies that nodes
of P leading to cancellation must have degree at least 2 in P. We next consider all
possible structures for P̄.

First, assume that P̄ contains no cycles, i.e., P̄ is a tree. Let deg(i) represent
degree of node i in P̄, and let l and k be the number of leaf and nonleaf nodes of P̄,
respectively. We write

2|P̄| =
∑

i:node of P̄

deg(i) =
∑
i:leaf

deg(i) +
∑

i:nonleaf

deg(i) ≥ l + 2k ≥ l + 2 (|P̄| − 1) ,

where the last inequality follows from the cancellation requirement of EC&R. The
above chain of relations shows that l ≤ 2. Since P̄ is a tree, l ≥ 2 as |P̄| ≥ 1. We
conclude that l = 2, which shows that P̄ is a path. Since P contains arc (1, 2), it is
a (1, 2)-path. Finally, to cancel bilinear term θiy12 during aggregation, the two dual
constraints containing θi must be members of I or Ī so that this bilinear term appears
with opposite signs and equal weights in the aggregated inequality, which is captured
by condition (ii).

Second, assume that P̄ contains cycles. We first show that it has exactly one cycle
and that this cycle contains arc (1, 2). Assume by contradiction that there exists
a cycle P̄2 in P̄ that does not contain (1, 2). We denote the directed subgraph of P
associated with P̄2 by P2. We refer to the subgraph of P obtained by removing P2 as
P1. After suitable reordering of its columns and rows, the basis matrix of C1± can be
written as

(4.4)


N0 N1 N2 A 0 0 0
B0 0 0 0 Ā0 0 0
0 B1 0 0 0 Ā1 0
0 0 B2 0 0 0 Ā2

 .
In (4.4), the first row block corresponds to bilinear terms θiy12, while the third row
block (resp., fourth row block) corresponds to bilinear terms γijy12 for arcs (i, j) that
belong to P1 (resp., P2). The second row block corresponds to bilinear terms γijy12 for
arcs that do not belong to P1 or P2. Further, N1 and N2 are matrices whose columns
are ±1 multiples of the columns of node-arc incidence matrices corresponding to P1
and P2, respectively. The first column block corresponds to dual constraints with zero
weights that are added to complete the basis. Matrix B2 is square and composed of
columns of I and −I, and so is Ā2. Since (4.4) is a basis, the submatrix obtained by
eliminating its last column and last row blocks must be nonsingular. However, since
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N2 corresponds to the node-arc incidence matrix of a cycle, its columns are linearly
dependent. This is a contradiction. This shows that all cycles in P̄ contain arc (1, 2).
Furthermore, observe that if P̄ has two distinct cycles containing (1, 2), then it also
has a cycle that does not contain (1, 2), which is a contradiction. We conclude that P̄
has a single cycle and that this cycle contains arc (1, 2).

To complete the proof we next argue that P̄ does not contain leaves. Assume by
contradiction that it contains l leaves where l ≥ 1. Let k represent the number of
nonleaf nodes in P̄. On the one hand, in order to cancel a sufficient number of bilinear
terms during aggregation we must have that k ≥ |P̄|− 1. On the other hand, consider
any spanning tree T̄ of P̄. It holds that l + k = |T̄| + 1 ≤ |P̄|, where equality holds
because a tree has one less arc than it has nodes, and the inequality follows from the
fact that T̄ ( P̄. Therefore, we conclude that |P̄| − 1 ≤ k ≤ |P̄| − l. Since l ≥ 1,
equality must hold throughout, showing that l = 1. Therefore, P̄ is the union of a
cycle containing arc (1, 2) and a single path. We refer to the node where they meet
as t. Clearly, the degree of node t is 3. Since Proposition 4.2 establishes the fact that
the aggregation weights of the three constraints associated with arcs connected to t
are equal to 1, the corresponding bilinear term θty12 does not cancel. Consequently,
the cancellation requirement of EC&R is violated, yielding the desired contradiction.
We conclude that l = 0, and therefore P̄ is a single cycle that contains arc (1, 2),
showing that P is a (1, 2)-cycle. It is then easy to verify that in order for bilinear
terms corresponding to the nodes of this (1, 2)-cycle to cancel, condition (ii) must be
satisfied.

The following partial converse to Proposition 4.6 can easily be established.

Lemma 4.7. For any (1, 2)-path or (1, 2)-cycle in G(V,E), we can construct a
class-1± EC&R inequality with assignment

[
I, Ī
]

satisfying conditions (i) and (ii) of
Proposition 4.6.

We next describe the form of the aggregated bilinear inequalities obtained for
(1, 2)-paths/cycles of G(V,E). In particular, the class-1± inequalities corresponding
to (1, 2)-cycle P with assignment [I, Ī] are obtained by relaxing the aggregated bilinear
inequality

(4.5)
∑

〈i,j〉∈I\{〈1,2〉}

γijy12 −
∑

〈i,j〉∈Ī\{〈1,2〉}

γijy12

+

 ∑
〈i,j〉∈Ī

rij −
∑
〈i,j〉∈I

rij

 y12 +
∑
〈i,j〉∈Ī

(θi − θj + γij)∓ z12 ≥
∑
〈i,j〉∈Ī

rij ,

using McCormick inequalities. Observe that we use McCormick inequalities to lin-
earize γijy12 terms for (i, j) 6= (1, 2) since such terms appear in (4.5), while they do
not appear in (4.1b). The coefficient of variable z12 reflects the class sign. Each bi-
linear inequality (4.5) generated from a (1, 2)-cycle P can be relaxed into 2|P|−1 linear
inequalities. We refer to these inequalities as cycle inequalities. Similarly, the class-
1± inequalities corresponding to (1, 2)-path P and assignment [I, Ī] are obtained by
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1822 D. DAVARNIA, J.-P. P. RICHARD, AND M. TAWARMALANI

relaxing the aggregated bilinear inequality

(4.6)
∑

i∈{l1,l2}

sgn(i)θiy12 +
∑

〈i,j〉∈I\{〈1,2〉}

γijy12 −
∑

〈i,j〉∈Ī\{〈1,2〉}

γijy12

+

 ∑
〈i,j〉∈Ī

rij −
∑
〈i,j〉∈I

rij

 y12 +
∑
〈i,j〉∈Ī

(θi − θj + γij)∓ z12 ≥
∑
〈i,j〉∈Ī

rij .

In (4.6), l1 and l2 are leaf nodes of P, sgn(i) = 1 if 〈i, j〉 ∈ I or 〈j, i〉 ∈ Ī for some j,
and sgn(i) = −1 otherwise. Each bilinear inequality (4.6) generated from a (1, 2)-path
P can be relaxed into 2|P|+1 linear inequalities, which we refer to as path inequalities.

Corollary 4.3, Proposition 4.6, and Lemma 4.7 yield the following result.

Theorem 4.8. A description of conv
(
D(1,2)

)
is given by the linear inequalities in

the description of D(1,2), those in Corollary 4.3, and all the path and cycle inequalities.

Example 2. Consider the network represented in Figure 1.

3

1

4

2

Fig. 1. Network of Example 2.

To derive all class-1± EC&R inequalities with nonempty assignments, we enu-
merate all (1, 2)-paths/cycles in the network and compute their corresponding EC&R
assignments for class-1+; see Table 2. Assignments for class-1− are obtained by
flipping the role of I and Ī. To illustrate the derivation procedure, we obtain the
aggregated bilinear inequalities for one path and one cycle in the list. First, consider
the (1, 2)-path composed of arcs (1, 2) − (4, 2) − (4, 3). To obtain the corresponding
assignment for class-1+, condition (i) of Proposition 4.6 requires that 〈1, 2〉 ∈ Ī. Fur-
ther, since arc (4, 2) is backward and (4, 3) is forward, condition (ii) assigns 〈4, 2〉 to
I and 〈4, 3〉 to Ī. We obtain the assignment [I, Ī] = [{〈4, 2〉} , {〈1, 2〉 , 〈4, 3〉}]. Using
(4.6), we write

− θ1y12 + θ3y12 + γ42y12 − γ43y12

+ (r12 + r43 − r42)y12 + (θ1 − θ2 + γ12) + (θ4 − θ3 + γ43)− z12 ≥ r12 + r43.

This bilinear inequality can be relaxed into 24 linear inequalities using McCormick
upper bounds for bilinear terms θ3y12 and γ42y12, and McCormick lower bounds for
θ1y12 and γ43y12.

We next consider the (1, 2)-cycle composed of arcs (1, 2)− (4, 2)− (4, 3)− (3, 1).
Since this cycle contains the path (1, 2) − (4, 2) − (4, 3), it suffices to observe that
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CONVEXIFICATION OF BILINEAR FUNCTIONS 1823

Table 2
Class-1+ EC&R assignments for Example 2.

P Arcs of P Assignments

(1, 2)-path (1, 2) [∅, {〈1, 2〉}]
(1, 2)− (2, 3) [∅, {〈1, 2〉, 〈2, 3〉}]
(1, 2)− (4, 2) [{〈4, 2〉} , {〈1, 2〉}]
(1, 2)− (3, 1) [∅, {〈1, 2〉, 〈3, 1〉}]
(1, 2)− (1, 4) [{〈1, 4〉} , {〈1, 2〉}]
(1, 2)− (2, 3)− (4, 3) [{〈4, 3〉} , {〈1, 2〉, 〈2, 3〉}]
(1, 2)− (4, 2)− (4, 3) [{〈4, 2〉} , {〈1, 2〉, 〈4, 3〉}]
(1, 2)− (3, 1)− (4, 3) [∅, {〈1, 2〉, 〈3, 1〉, 〈4, 3〉}]
(1, 2)− (1, 4)− (4, 3) [{〈1, 4〉, 〈4, 3〉} , {〈1, 2〉}]
(4, 2)− (1, 2)− (3, 1) [{〈4, 2〉} , {〈1, 2〉, 〈3, 1〉}]
(1, 4)− (1, 2)− (2, 3) [{〈1, 4〉} , {〈1, 2〉, 〈2, 3〉}]

(1, 2)-cycle (1, 2)− (2, 3)− (3, 1) [∅, {〈1, 2〉, 〈2, 3〉, 〈3, 1〉}]
(1, 2)− (1, 4)− (4, 2) [{〈1, 4〉, 〈4, 2〉} , {〈1, 2〉}]
(1, 2)− (2, 3)− (4, 3)− (1, 4) [{〈4, 3〉, 〈1, 4〉} , {〈1, 2〉, 〈2, 3〉}]
(1, 2)− (4, 2)− (4, 3)− (3, 1) [{〈4, 2〉} , {〈1, 2〉, 〈4, 3〉, 〈3, 1〉}]

arc (3, 1) is forward to obtain the assignment [I, Ī] = [{〈4, 2〉} , {〈1, 2〉, 〈4, 3〉, 〈3, 1〉}].
Using (4.5), we write

γ42y12 − γ43y12 − γ31y12 + (r12 + r43 + r31 − r42)y12

+ (θ1 − θ2 + γ12) + (θ4 − θ3 + γ43) + (θ3 − θ1 + γ31)− z12 ≥ r12 + r43 + r31.

This bilinear inequality can be relaxed into 23 linear inequalities using McCormick
upper bounds for bilinear term γ42y12, and McCormick lower bounds for γ43y12 and
γ31y12.

As argued in section 2, our intuition is that inequalities obtained using fewer
aggregations during EC&R are stronger than those obtained with large numbers of
aggregations. This insight would therefore imply that the most useful inequalities in
the description of conv

(
D(1,2)

)
in Theorem 4.8 are those that correspond to small

paths and small cycles. This intuition is corroborated in section 5 where small-path
and small-cycle inequalities are shown to account for most of the gap reduction that
can be achieved by adding all path and all cycle inequalities.

4.2. Simultaneous relaxation of multiple bilinear terms. The relaxation
D(1,2) we studied in section 4.1 has a single bilinear term. Its convex hull is governed
by the paths and cycles of the network. If a second bilinear term was to be added to the
model, we could generate inequalities using EC&R on the second bilinear term, where
side constraints are the paths and cycles inequalities obtained from using EC&R on
the first bilinear term. This sequential application of EC&R would yield inequalities
that are cognizant of more than a single bilinear term but still inherit the path and
cycle structure present in the inequalities of conv

(
D(1,2)

)
. Since variables z appear

with negative coefficients in the objective function (4.1a), we are interested in cutting
planes that provide upper bounds on these variables. For this reason, we focus on
class-1+ path/cycle inequalities as the input for a procedure that generates stronger
families of valid inequalities by combining path/cycle inequalities with weights yj or
1− yj so that sufficiently many bilinear terms cancel.
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Proposition 4.9. Consider the path (resp., cycle) inequality∑
(i,j)∈E

αijγij +
∑
i∈N

βiθi + µ y12 − z12 ≥ η(4.7)

associated with a (1, 2)-path (resp., (1, 2)-cycle) P. Let F0 be the subset of forward
arcs (not including (1, 2)) whose associated bilinear terms −γijy12 were relaxed into
0 when obtaining (4.7). Then, for any subset F ′ ⊆ F0, inequality∑

(i,j)∈E

αijγij +
∑
i∈N

βiθi + µ y12 + µ+
∑

(i,j)∈F ′
yij − z12 −

∑
(i,j)∈F ′

zij ≥ η(4.8)

is valid for conv (D).

Proof. We prove the result by induction on the cardinality of F ′. When |F ′| = 0,
(4.8) reduces to (4.7). The basis of induction is therefore verified, as path/cycle
inequalities are valid for conv (D). Assume now that the result has been established
for all F ′ ⊆ F0 with |F ′| ≤ ς < |F0|. We prove that the result holds for F ′′ ⊆ F0
with |F ′′| = ς + 1. Fix (k, l) ∈ F ′′ and define F ′ = F ′′\{(k, l)}. It is easy to verify
that ∑

(i,j)∈E

αijγij +
∑
i∈N

βiθi + µ ykl − zkl ≥ η(4.9)

is valid for conv
(
D(k,l)

)
since it is the path/cycle inequality associated with P with

respect to forward arc (k, l), where bilinear terms −γijykl for all (i, j) ∈ {(1, 2)} ∪
F0 \ {(k, l)} are relaxed into 0. Consider now∑

(i,j)∈E

αijγij +
∑
i∈N

βiθi + µ ykl − zkl −
∑

(i,j)∈F ′∪{(1,2)}

γijykl ≥ η,(4.10)

which is obtained by applying the same relaxation on the aggregated bilinear in-
equality (4.5) or (4.6) that yields (4.9) with the difference that bilinear terms −γijykl
for (i, j) ∈ F ′ ∪ {(1, 2)} are not relaxed to 0. This bilinear inequality is valid for
conv

(
D(k,l)

)
and therefore for conv (D). Now consider the conic combination of

(4.1b) for all (i, j) ∈ F ′ ∪ {(1, 2)} with weights ykl, together with (4.8) and (4.10)
with weights (1 − ykl) and ykl, respectively, while replacing y2

kl by ykl and zklykl by
zkl since these two terms are equal for solutions of D where ykl ∈ {0, 1}. We obtain∑

(i,j)∈E

αijγij +
∑
i∈N

βiθi + µy12 + µ+
∑

(i,j)∈F ′
yij − z12 −

∑
(i,j)∈F ′′

zij

+ µykl(1− y12)− µ+
∑

(i,j)∈F ′
yijykl −

∑
(i,j)∈F ′∪{(1,2)}

yklγij(1− yij) ≥ η.

Relaxing bilinear terms −µ+yijykl and trilinear terms −yklγij(1 − yij) to 0, while
relaxing µykl(1− y12) to µ+ykl, yields (4.8) for F ′′. This inequality is therefore valid
for conv (D), thereby proving the inductive hypothesis.

We refer to (4.8) as multipath/-cycle inequalities. It follows from the proof of
Proposition 4.9 that multipath/-cycle inequalities are valid for the set described by
(4.1b)–(4.1f) and (4.1h). It is clear that the convex hull of (4.1b)–(4.1f) and (4.1h)
is identical to that of (4.1b)–(4.1f), as extreme points of the latter set assume bi-
nary values for variables y. We conclude that, similarly to path/cycle inequalities,
multipath/-cycle inequalities are valid both for discrete and continuous NIPs.
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k

i

l

j

Fig. 2. Network structure for Example 3.

Example 3. For the network structure depicted in Figure 2, the class-1+ aggre-
gated inequality (4.5) associated with the (i, j)-cycle P = (i, j)− (k, j)− (k, l)− (i, l)
is

γilyij + γkjyij − γklyij + µyij + (θi − θj + γij) + (θk − θl + γkl)− zij ≥ rij + rkl,

(4.11)

where µ = (rij + rkl − ril − rkj). Let F0 = {(k, l)} be the subset of forward arcs of P
not including (i, j). Proposition 4.9 allows us to derive multicycle inequalities for any
of the four cycle inequalities corresponding to (4.11), where −γklyij is relaxed into
0 and γilyij and γkjyij are relaxed using McCormick upper bounds. For instance,
consider the cycle inequality

γil + γkj + µyij + (θi − θj + γij) + (θk − θl + γkl)− zij ≥ rij + rkl.

Proposition 4.9 yields the multicycle inequality

γil + γkj + µyij + µ+ykl + (θi − θj + γij) + (θk − θl + γkl)− zij − zkl ≥ rij + rkl.

There are exponentially many families of inequalities (4.8), each composed of expo-
nentially many members. This follows from the facts that (i) there are exponentially
many path/cycle inequalities that can be obtained by relaxing (4.5) or (4.6) into (4.7);
and (ii) for each path/cycle inequality, there are exponentially many subsets F of for-
ward arcs in the given path/cycle. Given an (i, j)-path/cycle inequality (4.7) and
a point (γ∗;θ∗;y∗; z∗), we can determine the most violated inequality of the form
(4.8) in linear time as follows. If µ ≤ 0, then we set F ′ = F0. If µ > 0, then we set
F ′ = {(k, l) ∈ F0 |µy∗kl − z∗kl < 0}. Proposition 4.9 therefore provides a rich collection
of valid inequalities that contain multiple variables z. We show in section 5 that these
inequalities are very useful in our computational experiments.

5. Computational results. In this section, we present numerical results aimed
at evaluating the computational potential of the results we developed in section 4 on
families of discrete NIPs. In particular, we study the strength of linear programming
relaxations of (Q̄) obtained after adding certain (multi)path and (multi)cycle inequal-
ities described in Propositions 4.6 and 4.9. Computational results are obtained on a
machine with a Windows 8 (64-bit) operating system, 8 GB RAM, and 2.20 GHz
Core i7 CPU. The implementation is done in VC++ with CPLEX 12.5.

5.1. Test instances. We consider an NIP where the follower solves a trans-
portation problem on the complete bipartite network G(V1∪V2, E). The follower can
be thought of as a manufacturer with |V1| plants and |V2| markets. Each plant i ∈ V1
has a given output (fi) and each market j ∈ V2 has a given demand (−fj). We as-
sume that the output of each plant can be increased at penalty p+

i and that any unit
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not transported receives a penalty of p−i . Similarly, we assume that the base demand
of each market can be increased or decreased by reducing prices or by appropriately
compensating shorted markets at penalties p+

j and p−j , respectively. Let uij be the
maximum amount that can be transported from plant i to market j, and let rij be
the follower’s profit from each such unit. The objective of the leader is to destroy
up to B arcs of the network so as to minimize the maximum reward the follower can
achieve. The follower’s problem can therefore be formulated as

max


∑

(i,j)∈E rijxij −
∑

i∈V1
(p−i s−i + p+

i s+
i )

−
∑

j∈V2
(p−j s−j + p+

j s+
j )

∑
j∈V2

xij − s+
i + s−i = fi ∀i ∈ V1

−
∑

i∈V1
xij − s−j + s+

j = fj ∀j ∈ V2

0 ≤ xij ≤ uij(1− yi,j) ∀(i, j) ∈ E

s+
i ≥ 0, s−i ≥ 0 ∀i ∈ V1

s+
j ≥ 0, s−j ≥ 0 ∀j ∈ V2


.

We observe that (i) the follower’s problem is feasible for all interdiction scenarios; (ii)
its dual contains explicit bounds on the variables θi and θj (i.e., −p−i ≤ θi ≤ p+

i and
−p+

j ≤ θj ≤ p−j ); and (iii) this dual is exactly of the form (Q), so that the results of
section 4 apply. In our computation, we therefore use θ̇i = p+

i , θ. i = −p−i , θ̇j = p−j ,
and θ. j = −p+

j . Assuming p+
j , p

−
i ≥ 0, it is easy to show that γ̇ij = θ̇j − θ. i + rij is an

upper bound for γij for each (i, j) ∈ E; see [17].
We generate 10 instances of the problem described above as follows. We choose

|V1| = |V2| = n = 16 and B = n
2 . Reward rij and capacity uij are randomly

generated from the uniform discrete distributions [1, 50] and [10, 50], respectively. We
set p+

i = p−i = maxj∈V2 rij and p+
j = p−j = maxi∈V1 rij . This choice ensures that the

penalty for each node matches the highest possible reward that can be achieved from
the node, thereby yielding instances where the network operator has an incentive to
use actual supply to meet actual demand. To generate the supply/demand vector
f , we use the following procedure that balances supply with demand and sets them
so that the capacity of a fraction of outgoing (resp., incoming) arcs is used up if the
entire supply is exhausted (resp., demand is met). More precisely, for each node i ∈ V1
(resp., j ∈ V2), we first select an interval [Li, Ui] (resp., [Lj , Uj ]) that will contain fi
(resp., −fj). We compute Ui (resp., Uj) as the sum of the capacities of the n

2 outgoing
arcs of node i (resp., incoming arcs of node j) with smallest capacities. We compute
Li (resp., Lj) as the sum of the capacities of the

⌊
n
5

⌋
outgoing arcs of node i (resp.,

incoming arcs of node j) with smallest capacities. We generate f̄i (resp., −f̄j) from
the (discrete) uniform distribution over [Li, Ui] (resp., [Lj , Uj ]). We distribute

∑
i f̄i

randomly (without splitting units) between the markets as demand to obtain f̃j . We
set fj = min{f̃j , f̄j}. Then we distribute the supply

∑
j |fj − f̃j | among the plants

(without splitting units) to obtain f̃i and compute fi = f̃i+f̄i. The procedure thereby
guarantees that demand and supply are balanced.

5.2. Numerical results. We first study the effect on the linear programming
relaxation bound of adding (multi)path and cycle inequalities. We solve the linear
programming relaxation of the problem, and add violated cuts one at a time, each
time resolving the modified LP. We use CPLEX in its default settings.

In Table 3, we evaluate the strength of short-paths and short-cycle inequalities,
as we wish to confirm our intuition that EC&R inequalities that aggregate few con-
straints, i.e., those induced by short paths and short cycles, are most useful. To this
end, we compare the bounds obtained from short-path/cycle inequalities with the
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Table 3
Path/cycle inequalities for relaxations with a single bilinear term.

# Trd-Lnz 1-Disj Time P/C Time Gap
1 9740.9 12134.4 123.7 12078.6 20.3 97.7
2 11360.9 14061.3 132.7 14000.1 26.7 97.7
3 10260.4 12243.6 132.6 12177.1 20.1 96.6
4 10773.4 13310.6 129.7 13244.6 26.3 97.4
5 10346.0 12726.8 123.8 12615.9 19.8 95.3
6 10924.8 13343.0 133.8 13215.8 22.6 94.7
7 10846.6 13308.2 126.9 13212.5 18.0 96.1
8 10791.8 13424.5 125.8 13338.1 20.8 96.7
9 12396.6 15004.3 129.6 14920.4 18.9 96.8

10 9435.8 11640.8 119.0 11526.6 22.4 94.8

bounds obtained using cuts from CGLPs for conv
(
D(i,j)

)
. The second column con-

tains the value of the linear programming relaxation for the traditional formulation
that uses linearized inequalities. The third column presents the bound obtained after
adding all violated cuts for conv

(
D(i,j)

)
for each (i, j) ∈ E. These cuts are generated

through the solution of a CGLP obtained from a disjunctive programming formula-
tion of D(i,j) with two disjuncts (one for each binary value of variable yij). These
cuts are added over multiple rounds until the bound improvement between rounds
becomes negligible. The third column therefore estimates the maximum possible im-
provement from path and cycle inequalities. The fifth column contains the bound
obtained by adding path inequalities for (i, j)-paths of length 2, and cycle inequalities
associated with (i, j)-cycles of length 4, for each (i, j) ∈ E. We associate inequalities
with quadruplets (i, j, p, c), where (i, j) is the arc, p is an index in the ordering of
paths, and c is an index in the ordering of cycles. We traverse these inequalities in
lexicographic increasing order once during the whole procedure. Each time we find
a violated inequality (of the form (4.5) or (4.6) as appropriate), we add the most
violated linearization of this inequality before resolving the resulting LP. Then, we
continue our search through the lexicographic list of inequalities. The seventh column
indicates that, on average for our instances, at least 96% of the total gap improvement
can be attributed to short paths and cycles. This gap is computed as the difference
between the values of columns 5 and 2 divided by the difference between the values of
columns 3 and 2. This observation has interesting computational ramifications that
we will explore next. The fourth and sixth columns record the times needed to com-
pute the corresponding bounds. These numbers are not directly comparable, since
they relate to different number of rounds.

In Table 4, we consider multiple bilinear terms simultaneously. In particular, we
generate valid inequalities for conv

(
D(i,j),(k,l)

)
, where D(i,j),(k,l) is obtained by includ-

ing γklykl = zkl and 0 ≤ ykl ≤ 1 in the description of D(i,j). We then determine how
much of this bound improvement is due to the inequalities of Proposition 4.9. Since
we observed in Table 3 that paths of length 2 and cycles of length 4 yield inequalities
that are effective at closing gaps, we consider only multipath/-cycle inequalities based
on such paths and cycles. Similarly to Table 3, we compare the bounds obtained from
short multipath/-cycle inequalities with the bounds obtained using cuts from CGLPs
for conv

(
D(i,j),(k,l)

)
. The second column contains the value of the linear programming

relaxation for the traditional formulation that uses linearized inequalities. The third
column presents the bound obtained after adding all violated cuts for conv

(
D(i,j),(k,l)

)
for each pair of distinct arcs (i, j) and (k, l) of E. These cuts are generated through
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Table 4
Multipath/-cycle inequalities for relaxations with two bilinear terms.

# Trd-Lnz 2-Disj Time M-P/C Time Gap
1 9740.9 12965.7 6130.1 12747.3 15.0 93.2
2 11360.9 15040.2 6026.8 14911.8 16.6 96.4
3 10260.4 13076.3 5771.0 12926.5 21.3 94.6
4 10773.4 14046.0 5352.2 13871.6 16.5 94.7
5 10346.0 13645.7 6360.2 13458.5 16.6 94.3
6 10924.8 14173.1 5375.5 13995.9 16.4 94.5
7 10846.6 14146.0 6034.2 13826.1 16.8 90.3
8 10791.8 14192.7 6073.4 14065.1 19.4 96.2
9 12396.6 15945.0 6068.5 15707.8 22.5 93.2

10 9435.8 12534.6 5869.9 12349.2 15.9 94.0

the solution of a CGLP from a disjunctive programming formulation of D(i,j),(k,l)
with four disjuncts (one for each binary value of the pair yij and ykl). The fourth
column presents the time needed to obtain this bound. The fifth column in Table 4
shows the bound improvement obtained using multipath/-cycle inequalities. For each
pair of distinct arcs (i, j) and (k, l), we derive two families of inequalities. If (i, j)
and (k, l) are adjacent, they form a path of length 2. Since these two arcs are not
oriented in the same direction, the corresponding multipath inequality is a regular
path inequality of length 2. If (i, j) and (k, l) are not adjacent, there is a unique cycle
of length 4 that contains these arcs, as depicted in Figure 2. For the most violated
multicycle inequality, we add the corresponding multicycle cut; see Example 3. After
multicycle inequalities are considered, we generate regular cycle inequalities of length
4 as for Table 3. Each of the cuts generated is therefore derived from a model having
at most two bilinear equalities. We perform a single round of the above cut generation
procedure. The sixth column presents the time needed to obtain the corresponding
bound. The last column shows that, on average, 94% of the total gap improvement
is due to short multipath/-cycle inequalities. This gap is computed as the difference
between the values of columns 5 and 2 divided by the difference between the values of
columns 3 and 2. This result is promising, because these inequalities can be generated
quickly.

Finally, we seek to evaluate whether the strengthened linear programming relax-
ations that are obtained by using multipath and multicycle inequalities yield improve-
ment in the global solution of our test instances through branch-and-bound. These
results are reported in Table 5. The second column contains the value of the linear pro-
gramming relaxation bound of the traditional dual formulation that uses linearized in-
equalities, while the third column reports optimal values. The following three columns
present results obtained by running CPLEX in its default mode. None of the instances
were solved to provable optimality within the time limit of 10,000 seconds. The fourth
column describes the bound obtained by CPLEX after adding default cuts at the root
node and before starting branch-and-bound. The fifth column shows the gap closed
by adding these CPLEX cuts at the root node. This gap is computed as the difference
between the values of columns 4 and 2 divided by the difference between the values
columns 3 and 2. The sixth column presents the best lower bound achieved by CPLEX
at termination. The last three columns relate to an implementation where multipath
and multicycle inequalities are added at the root node through CPLEX cut callbacks,
and CPLEX branch-and-bound is used thereafter. The seventh column gives the cor-
responding root bound. This bound is obtained using one round of cut generation,
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Table 5
Implementation of multipath/-cycle inequalities inside CPLEX.

# Trd-Lnz Opt CPX root Gap CPX bnd M-P/C root Gap B&B time
1 9740.9 13933.0 10366.4 14.9 13705.5 12956.7 76.7 1498.2
2 11360.9 16067.0 12108.4 15.9 15886.5 14998.6 77.3 899.4
3 10260.4 14172.0 10635.1 9.6 13938.9 13035.2 70.9 2703.5
4 10773.4 15111.0 11459.0 16.6 14854.4 14000.0 74.6 1553.1
5 10346.0 14678.0 11005.8 15.2 14453.0 13491.3 72.6 2263.0
6 10924.8 15164.0 11612.7 16.2 15030.2 14041.0 73.5 1928.3
7 10846.6 15293.0 11483.1 14.3 15076.7 14106.2 73.3 1931.1
8 10791.8 15145.0 11544.7 17.3 14904.4 14112.2 76.2 1216.0
9 12396.6 17218.0 13182.0 16.3 16763.3 15842.6 71.5 3141.7

10 9435.8 13474.0 9944.2 12.6 13288.1 12550.8 77.1 1171.4

as in Table 4. The only difference is that CPLEX default cuts are not deactivated.
The eighth column shows the gap closed by adding multipath/-cycle cuts and CPLEX
cuts at the root node. We observe that these cuts significantly improve the gap clo-
sure compared to default CPLEX cuts, as reported in the fifth column. The last
column reports the time (in seconds) needed for CPLEX to solve the problem to opti-
mality when multipath/-cycle cuts are generated at the root node. We conclude that
multipath/-cycle inequalities significantly improve gap closure as well as solution times
for these problem instances.

6. Conclusion. In this paper, we develop a convexification procedure for certain
sets with bilinear constraints. This technique generalizes the cancel-and-relax (C&R)
procedure of [35] initially proposed to study sets with separable complementarity con-
straints. We obtain a description of the simultaneous convex hull of graphs of bilinear
functions over the Cartesian product of two polytopes, one of which is a simplex.
The structure we consider allows for the study of unary expansions in mixed integer
BLPs, simultaneous convexification of bilinear functions over independent polytopes,
and sets with complementarity constraints. The procedure gives insight into the struc-
ture of strong inequalities for this disjunctive set in the space of original variables. We
use it to study the dual reformulation of NIPs. We provide a convex hull description
of a suitable problem relaxation with one bilinear term that can be viewed as a tool
for improving traditional linearization techniques for NIPs. We build on the insight
gathered while studying this model to propose a family of inequalities that consider
multiple bilinear terms. Our computational results show that these inequalities sig-
nificantly reduce the gap of traditional linear programming relaxations and improve
our ability to solve these problems to optimality.

7. Appendix. In this appendix, we provide the proofs that were omitted from
the main body of the paper.

Proof of Proposition 2.5. We first show the direct implication. Let π̄l =(
π̂l; {η̄j}j∈M ; {ρ̄j}j∈M

)
be a nonvertical extreme point of Cl+ . It can therefore be

obtained as a bfs of Cl+ . We refer to the basic variables associated with π̄l by Φ(π̄l).
Consider any (i, j) ∈ N ×M . Since the coefficient columns associated with ηji and
ρji are linearly dependent, at most one of these variables belongs to Φ(π̄l). Define
G ⊆ N ×M so that (i, j) ∈ G if and only if neither of the variables ηji and ρji belongs
to Φ(π̄l). It follows that the number of basic variables among ηj and ρj for all j ∈M
is mn − |G|. Next, define L ⊆ Kl (resp., L̄ ⊆ Kl) so that i ∈ L (resp., i ∈ L̄) if
and only if β+

i (resp., β−i ) belongs to Φ(π̄l). Also, introduce J ⊆ N (resp., J̄ ⊆ N)
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so that i ∈ J (resp., i ∈ J̄) if and only if λi (resp., µi) belongs to Φ(π̄l). Finally,
define Ij for j ∈ M (resp., Ī) so that i ∈ Ij (resp., i ∈ Ī) if and only if γji (resp.,
θi) belongs to Φ(π̄l). Given the above definitions, the total number of basic variables
is mn − |G| + |L| + |L̄| +

∑
j∈M |Ij | + |Ī| + |J | + |J̄ |. Note that the size of Φ(π̄l)

is mn since the coefficient matrix used in the definition of Cl+ has full row rank as
the columns corresponding to variables ηji form an identity matrix. We conclude that
|G| = |L| + |L̄| +

∑
j∈M |Ij | + |Ī| + |J | + |J̄ |. Setting nonbasic variables to zero in

the equations of Cl+ , we obtain (2.5). After reordering columns and rows of the basis
matrix associated with Φ(π̄l) and after changing the sign of some of its columns if
necessary, it can be rewritten as

(7.1)

[
Ψ 0
Ψ̄ I

]
.

In (7.1), Ψ is a square submatrix induced by the rows of the coefficient matrix de-
scribing Cl+ corresponding to (i, j) ∈ G, i.e., the coefficient matrix of system (2.5).
Further,

[
Ψ̄
∣∣I] is the submatrix induced by rows of the coefficient matrix describing

Cl+ corresponding to (i, j) /∈ G, and the columns of I are present because either
ηji or ρji belongs to basis Φ(π̄l). Since Φ(π̄l) forms a basis, matrix (7.1) must be
nonsingular. We conclude that Ψ is nonsingular.

We next prove the reverse direction. Given π̂l ∈ Ĉl+ , we construct π̄l =(
π̂l; {η̄j}j∈M ; {ρ̄j}j∈M

)
for some

(
{η̄j}j∈M ; {ρ̄j}j∈M

)
∈ R2mn

+ and show that it is
an extreme point of Cl+ . We set η̄ji = ρ̄ji = 0 for all (i, j) ∈ G. We then compute, for
each (i, j) /∈ G,

ξji =
∑
k∈L

Akjiβ
+
k −

∑
k∈L̄

Akjiβ
−
k +

∑
t∈Ij

Etiγ
j
t −

∑
t∈Ī

Etiθt −
∑

t∈J∩{i}

λt +
∑

t∈J̄∩{i}

µt +Alji.

(7.2)

For each (i, j) /∈ G, we set η̄ji = −ξji and ρ̄ji = 0 if ξji < 0. Similarly, we set ρ̄ji = ξji
and η̄ji = 0 if ξji ≥ 0. It follows from the construction of η̄j and ρ̄j that π̄l belongs to
Cl+ . We now show that π̄l is an extreme point of Cl+ by describing a basis Φ(π̄l) that
has π̄l as associated bfs. To construct this basis, we pick all variables associated with
elements of the sets L, L̄, Ij , Ī, J, and J̄ . We also include variables η̄ji for (i, j) /∈ G such
that ρ̄ji = 0, and variables ρ̄ji for the remaining (i, j) /∈ G. The number of variables
selected is therefore equal to mn. Reordering columns and rows of the corresponding
coefficient matrix and changing their signs when required, we obtain matrix (7.1),
which is nonsingular because Ψ is. This proves that π̄l is a bfs to Cl+ .

We next give an ancillary result that is used in the proof of Proposition 3.1, which
ensues.

Proposition 7.1. Consider

Ŝ× =
{

(x;y; z) ∈ Ξ×∆m × R
∑
q κ

q
∣∣∣ yᵀAq,kxq = zqk ∀(q, k) ∈ Q×Kq

}
,

where Ξ = Ξ1 × Ξ2 × · · · × Ξ%, where Ξq =
{
xq ∈ [0, 1]n

q ∣∣Eqxq ≥ f q} for q ∈ Q =
{1, . . . , %}, and where Kq = {1, . . . , κq}. Define

T q(S) =
{

(x;y; z) ∈ Rn+m+
∑
q κ

q
∣∣∣ (xq;y; zq) ∈ S

}D
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for q ∈ Q. Then, conv(Ŝ×) =
⋂
q∈Q T

q(conv(Ŝq×)), where

Ŝq× =
{

(xq;y; zq) ∈ Ξq ×∆m × Rκ
q
∣∣∣ yᵀAq,kxq = zqk ∀k ∈ Kq

}
.

Proof. We first show the direct inclusion. It is clear that Ŝ× =
⋂
q∈Q T

q(Ŝq×).
Therefore, conv(Ŝ×) ⊆

⋂
q∈Q conv(T q(Ŝq×)) = T q(conv(Ŝq×)), where the equality holds

as T q is a linear operator. For the reverse inclusion, select ω = ({xq}q∈Q;y; {zq}q∈Q) ∈⋂
q∈Q T

q(conv(Ŝq×)). We show that ω ∈ conv(Ŝ×). By definition, we have that
ωq = (xq;y; zq) ∈ conv(Ŝq×) for all q ∈ Q. Therefore, ωq can be obtained as a
convex combination of extreme points of conv(Ŝq×). Proposition 2.1 implies that
the y component of each of these extreme points belongs to the set {ej}j∈M∪{0}
where e0 = 0. We can then write ωq =

∑m
j=0

∑Ωqj
ιq=1 σ

q
j,ιq

(xqj,ιq ; e
j ; zqj,ιq ), where

(xqj,ιq ; e
j ; zqj,ιq ) is an extreme point of Ŝq× and σqj,ιq is its convex combination mul-

tiplier. In this definition, Ωqj denotes the number of extreme points of Ŝq× whose y

component is ej . Then we have that
∑Ωqj
ιq=1 σ

q
j,ιq

= yj for each q ∈ Q and j ∈M ∪{0},
as there is a unique convex representation for y in terms of ej . This shows that
Ωqj = 0 if and only if Ωq̄j = 0 for any distinct q and q̄ in Q. Therefore, we com-

pute that ω =
∑m
j=0

∑Ω1
j

ι1=1
∑Ω2

j

ι2=1 · · ·
∑Ω%j
ι%=1

Π%q=1σ
q
j,ιq

y%−1
j

({xqj,ιq}q∈Q; ej ; {zqj,ιq}q∈Q). In

this relation, it follows from the construction that points ({xqj,ιq}q∈Q; ej ; {zqj,ιq}q∈Q)

belong to Ŝ×, and that the weights
Π%q=1σ

q
j,ιq

y%−1
j

form a set of convex combination

multipliers.

Proof of Proposition 3.1. Through addition of variables zqk, we can write S× in a
higher dimension as

S1
× =

{
(x;y; z) ∈ Ξ×∆m × Rκ(1+%)

∣∣∣∣ yᵀAq,kxq = zqk ∀(q, k) ∈ Q×K∑
q∈Q z

q
k = zk ∀k ∈ K

}
.

Since variables zk are free and are defined as a linear combination of other variables,
we conclude that conv

(
S1
×
)

is equal to the convex hull of

S2
× =

{
(x;y; z) ∈ Ξ×∆m × Rκ(1+%)

∣∣∣ yᵀAq,kxq = zqk ∀(q, k) ∈ Q×K
}
,

intersected with
∑
q∈Q z

q
k = zk for all k ∈ K. Applying Proposition 7.1 to S2

×, we
obtain the result. For the case where κ = 1, EC&R inequalities of Sq× are obtained
as class-1±. This implies that the coefficient of variables zq1 is ±1 in these inequal-
ities. The result follows from that of the first part, while applying Fourier–Motzkin
elimination to project out variables zq1 .
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[15] T. Christof and A. Löbel, PORTA − POlyhedral Representation Transformation Algorithm,
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/, 2012.

[16] R. A. Collado and D. Papp, Network Interdiction—Models, Applications, Unexplored Di-
rections, RUTCOR research report RRR 4-2012, Rutgers Center for Operations Research
Rutgers University, Piscataway, NJ, 2012.

[17] D. Davarnia, J.-P. P. Richard, and M. Tawarmalani, On the Strength and Structure of the
KKT Formulation of Network Interdiction Problems, Tech. report, University of Florida,
2015.
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