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Abstract. Climatic changes are affecting the distribution and viability of species worldwide, and the
effects may be greatest for heat-sensitive organisms in populations situated near the species’ equatorial
range limit. We studied the population dynamics of a cold-adapted large herbivore, moose (Alces alces shi-
rasi), in a population located at the extreme southern range limit of the species in Utah, USA, using a long-
term dataset of aerial counts conducted between 1958 and 2013. We used a modeling approach that
acknowledges the uncertainty in the number of moose counted. To determine how climate influenced this
population, we tested four models corresponding to different hypotheses suggested by previous studies of
moose population dynamics: (1) High summer rainfall increases population growth, (2) severe winters
reduce population growth, (3) high summer and winter temperatures cause heat stress which reduces pop-
ulation growth, and (4) snow conditions favorable to winter ticks reduce population growth. We then
ranked these models against two additional hypotheses that tested the combined effects of the best-
performing models. The best-supported model included summer rainfall and the number of days with
snow cover in late winter, which described the conditions influencing winter tick numbers, a common par-
asite of moose in the region. Reproductive female ticks drop off their hosts at the end of winter to lay eggs,
and fewer ticks survive in years with abundant snow cover. Positive effects of snow and rainfall indicated
that moose population growth was higher following summers with more rainfall and late winters with
more days of snow cover, the latter because those conditions likely reduced winter tick numbers. In accor-
dance with global patterns in which altered precipitation regimes are influencing the dynamics of many
species, the top-performing model suggested that both summer and winter precipitation acted together to
explain the most variation in moose population growth. Our analysis demonstrates the multiple pathways
by which climate and population density can affect the dynamics of temperate species living at their equa-
torial range limits, including potential parasite-mediated effects.
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INTRODUCTION

A substantial body of research indicates that
climatic changes are altering the distribution and
viability of species across many taxa worldwide
(Bellard et al. 2012). Evidence that species in the
Northern Hemisphere have shifted their ranges
toward higher latitudes and elevations (Chen
et al. 2011) indicates that populations at the
southern range periphery are at high risk from
environmental stress. Anticipating the responses
of species to future environmental change is chal-
lenging, however, because there is enormous tax-
onomic variation in species response to changes
in climate (Pearce-Higgins 2015), and certain spe-
cies may be able to compensate for changing
environments (Doak and Morris 2010). This is
partly because climate can affect organisms
through different pathways: either by directly
affecting individual physiological processes or
indirectly through changes in ecosystem pro-
cesses (Stenseth et al. 2002). Consequently, the
effects arising from either pathway may depend
on the life history of the organism (Chen et al.
2011).

Large herbivores inhabiting seasonal environ-
ments have forged an intricate relationship with
climate over evolutionary time (Coulson et al.
2000, Forchhammer et al. 2002, Post and Forch-
hammer 2002), and empirical evidence indicates
both direct and indirect climate effects on their
population dynamics. Direct influences of warm-
ing temperatures can cause individuals to alter
foraging strategies in response to high ambient
temperatures (Owen-Smith 1998, Aublet et al.
2009), in some cases at the expense of body mass
(van Beest and Milner 2013). Indirect effects of
warming can create mismatches between the tim-
ing of reproduction and energy balance stem-
ming from phenological advancement of
vegetation growth (Post and Forchhammer 2008,
Moyes et al. 2011). Further complexity occurs
when indirect effects of climate influence compe-
tition for limited resources and population den-
sity acts to modulate the effect of climate
(Bonenfant et al. 2009). The influences of climate
on large herbivores are therefore nuanced and
difficult to predict. Populations within a given
species may even experience disparate responses
to the same climate pattern (Grøtan et al. 2009).
This would especially hold true if the local

climates differed between populations with
respect to some species-specific optimum.
Moose (Alces alces) are a species that have

evolved specific climatic tolerances, favoring cool
and wet environments (Kelsall and Telfer 1974,
Renecker and Hudson 1986). Populations in
North America occupy a large region spanning
>30° latitude and in which the climate varies dra-
matically (Telfer 1984). Moose demographic rates
often relate positively to precipitation (Thompson
1980, Murray et al. 2006, Monteith et al. 2015)
and negatively to warm-season temperatures
(Crête and Courtois 1997, Murray et al. 2006,
Grøtan et al. 2009) across their distribution. The
effects of winter climatic conditions, however, are
more inconsistent. Severe winters are limiting to
moose in the northern reaches of their distribution
(Thompson 1980, Crête and Courtois 1997, Keech
et al. 2000, Sivertsen et al. 2012), but a southern-
edge population in Minnesota has shown just the
opposite—that warm winter temperatures nega-
tively affect moose survival (Lenarz et al. 2009;
but see Mech and Fieberg 2014 and Mech et al.
2018). Monteith et al. (2015) showed that warmer
annual temperatures decreased recruitment rates
of southern moose populations in the western
United States. Moose are also susceptible to
diverse climate-related diseases and parasites
(Murray et al. 2006), and the degree of susceptibil-
ity may vary across the species’ range.
Moose located near the species’ southern range

limit offer a unique case study to investigate the
effects of climate on peripheral populations of
cold-adapted species (Ditmer et al. 2017). Several
studies of moose at their southern range limit in
the central United States have shown declines in
recent decades due in part to climate change
(Murray et al. 2006, Lenarz et al. 2009, 2010) con-
sistent with global patterns of climate-caused
impacts on wild populations (Chen et al. 2011).
By contrast, moose in the western United States
have expanded their range southward during the
last century despite warming temperatures
(Darimont et al. 2005, Wolfe et al. 2010). Many of
these recently colonized populations experienced
phases of rapid growth after exploiting new
habitats but have since stabilized or begun to
decline (Monteith et al. 2015). Thus, the long-
term viability of these recently established popu-
lations at the species’ southern range limit is not
known.
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We used aerial count data spanning 56 yr to
test hypotheses about the influence of climate
and population density on the population
growth of a harvested moose population in Utah
that occurs at the species’ extreme southern range
limit. We tested four hypotheses about the effects
of climate on moose population growth: Summer
rainfall increases population growth, severe win-
ters reduce population growth, high tempera-
tures during both summer and winter induce
heat stress and reduce population growth, and
late winters with few days of snow cover, that is,
conditions favoring winter tick abundances,
reduce population growth (Fig. 1, Table 1). We
then constructed two additional models com-
posed of the top-ranking individual climate vari-
ables to evaluate whether population dynamics
were better explained by more than one climate
effect. By quantifying the effects of climate and
population density on moose in Utah, we hope
to shed light on the factors affecting populations
of heat-sensitive northern ungulates at their
equatorial range limit.

METHODS

Study area
We analyzed data collected in northern Utah,

USA (39.7° to 41.9° N,�109.2° to 112.2° W; Fig. 2).
Much of the suitable moose habitat within the

study area occurs within the Uinta-Wasatch-Cache
and Ashley National Forests. Prominent mountain
ranges in the study area included the Wasatch and
Uinta Mountains. Habitat was representative of
the intermountain west and Rocky Mountains and
included riparian communities, shrub-dominated
uplands, and coniferous forests (Wolfe et al. 2010).
Riparian habitats were generally dominated by
willow (Salix spp.) communities, whereas uplands
were characterized by Gambel oak (Quercus gambe-
lii), sagebrush (Artemisia spp.), and mountain
mahogany (Cercocarpus spp.). Forested habitats
were dominated by Douglas fir (Pseudotsuga men-
ziesii), lodgepole pine (Pinus contorta), subalpine fir
(Abies lasiocarpa), and quaking aspen (Populus
tremuloides). Additional climate and habitat details
are provided by Wolfe et al. (2010) and Ruprecht
et al. (2016).

Data
In 1957, the Utah Division of Wildlife

Resources (UDWR) initiated winter aerial sur-
veys to obtain minimum statewide abundances
of various big game species. Moose had only
recently colonized the state and were believed to
be present in only one management unit (Wolfe
et al. 2010). Over time, moose expanded into
neighboring management units and presently
occupy at least 16 management units. However,
many of these units have been colonized only

Fig. 1. A schematic diagram describing the life history of winter ticks and their relationship with climate, and
ultimately how this could influence moose population growth.
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recently, so sufficient count data for the current
study were only available from the 10 units in
the northeastern part of the state where moose
first established (Fig. 2). Surveys were initially
conducted with fixed-wing aircraft (1957–1962)
and subsequently with helicopters (1963–2013).
At first, surveys were conducted every year and
later switched to an irregular schedule in which
only a subset of units was annually surveyed
conditional on good survey conditions (i.e., ade-
quate snow cover). Each unit was surveyed on
average every third year. All suitable habitat
within each management unit was surveyed
according to expert opinion of biologists, and
routes were flown as consistently as possible
across years. Observers counted every moose
they sighted and classified moose by sex and age
class (juvenile or adult) when possible. We ana-
lyzed the total number of moose counted

regardless of sex or age because censoring counts
of unknown sex or age class would introduce
substantial bias. Wolfe et al. (2010) provide more
details on survey methodology.

Model specification
Failing to acknowledge uncertainty in the num-

ber of animals counted can introduce bias into
population growth models with density depen-
dence (Freckleton et al. 2006, Lebreton and Gime-
nez 2013). Further, the periodic nature of the
surveys meant that missing data years were com-
mon. To accommodate these issues, we used state-
space models which in some cases can separate
noise arising from biological processes from that
which arises due to imperfect detection (Buckland
et al. 2004, Dennis et al. 2006), hereafter “process
error” and “observation error.” State-space models
can be implemented using both frequentist and

Table 1. Descriptions of models for each of four hypotheses about the effects of climate on moose population
dynamics.

Hypothesis Rationale Parameters References

Summer rainfall Higher rainfall in summert�2 increases forage
abundance, which in turn increases
reproductive success in yeart�1. Density-
dependent food competition suggests an
interaction between rainfall and population
size. We expect the interaction term to be
negative such that the positive effect of rainfall
on population growth will be reduced as
moose density increases.

Jul–Aug rainfall(t�2) + Jul–
Aug rainfall(t�2) 9 N
moose(t�1)

Thompson (1980),
Murray et al. (2006),
Monteith et al. (2015)

Winter severity Winter mortality increases in years with deep
snow due to higher energetic costs of
locomotion and limited access to browse.
Density-dependent food competition suggests
an interaction between snow depth and
population size. We expect the interaction term
to be negative such that the negative effect of
snow depth on population growth increases as
moose density increases.

Winter snow
depth(t�1) + Winter snow
depth(t�1) 9 N moose(t�1)

Thompson (1980), Mech
et al. (1987), Crête and
Courtois (1997), Solberg
et al. (1999), Keech et al.
(2000), Murray et al.
(2006)

Heat stress Elevated winter and summer temperatures
increase heat stress mortality. Heat stress
operates via density-independent
physiological costs including increased
respiration and heart rate and diminished
feeding rate.

# Days > 0°C winter(t�1) + #
Days > 32°C summer(t�1)

Crête and Courtois (1997),
Murray et al. (2006),
Lenarz et al. (2009),
Monteith et al. (2015)

Winter ticks Years with poor snow cover favor winter tick
survival and reproduction, which increases
tick-related moose mortality in subsequent
years (Fig. 1). We expect the number of days
with snow cover will increase population
growth. Correlation between tick abundance
and host density implies an interaction
between number of days with snow and
moose population size. We expect the
interaction to be negative such that the
positive effect of snow cover will be reduced
as moose density increases

# Days snow Feb–
Mar(t�2) + # Days snow
Feb–Mar(t�2) 9 N
moose(t�1)

Drew and Samuel (1986),
Garner and Wilton (1993),
DelGiudice et al. (1997),
Samuel (2007)

 ❖ www.esajournals.org 4 February 2020 ❖ Volume 11(2) ❖ Article e03058

RUPRECHT ET AL.



Bayesian approaches, but we opted to use a Baye-
sian analysis because of the ease in accommodat-
ing missing data (K�ery and Schaub 2011).

We used a discrete-time Gompertz population
growth model (Eq. 1) because it has been widely
used in state-space models of time series of ani-
mal counts and exhibits several desirable quali-
ties. It estimates the strength of density
dependence (bN moose) by incorporating an
autoregressive term describing the effect of the
population size from the previous year (Nt�1).
When bN moose < 0 in our formulation of the
Gompertz model, population density decreases
population growth; when bN moose > 0, popula-
tion density increases population growth (i.e., an
Allee effect), and when bN moose = 0, density
independence is assumed (Dennis et al. 2006).

The parameter brmax is estimated from the model
and is equivalent to the maximum intrinsic rate
of increase (Dennis et al. 2006), that is, the maxi-
mum growth rate a given species could attain if
resources were unlimited (Hone et al. 2010). We
denoted the raw counts as Y and the population
estimates as N. The model is indexed by the sub-
script i representing each of the 10 surveyed
management units, and the subscript t denoting
each of the 56 yr spanning the survey period
(1958–2013).

Ni;t ¼ Ni;t�1 � e brmaxþbNmoose�log Ni;t�1ð Þþbclimate�climatet�1ð Þ� �
�Harvesti;t�1 ¼ g Ni;t�1

� � ð1Þ

We included a term in Eq. 1 to account for
known annual harvests of moose (Colchero et al.

Fig. 2. Management units (gray shading) in northeastern Utah, USA, in which population counts of moose were
conducted, 1958–2013. Unit names are as follows: 1, Cache; 2, Ogden; 3, Morgan-Rich; 4, East Canyon; 5, Chalk
Creek; 6, North Slope (Summit); 7, North Slope (Daggett); 8, Wasatch Mountains; 9, Kamas; and 10, South Slope.
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2009, Koons et al. 2015). The parameters bclimate

measure the effect of climate variables. For short-
hand, we refer to Eq. 1 as g(Ni,t�1) and note that
this function predicts the mean of the posterior
distribution for the number of moose (Ni,t). A
lognormal error term (r2

p) estimates the process
error, or error not explained by the deterministic
portion of the Gompertz model (Eq. 2).

Ni;t � lognormal log g Ni;t�1
� �� �

;r2
p

� �
(2)

Our raw data represented the minimum
counts of moose which are almost certainly less
than the true population size since it is usually
not possible to count every animal on the land-
scape. Failing to account for this systematic
undercounting could bias results. Further, our
surveys were conducted using fixed-wing air-
craft (1957–1962) and helicopters (1963–2013)
and the two types of aircraft likely yielded differ-
ent rates of detection. We therefore chose to
model the observation process as a binomial ran-
dom variable such that the observed count data
Yi,t represented the true, latent population size
Ni,t after it was modified by detection probability
p, and we allowed p to vary according to man-
agement unit and aircraft type (i.e., fixed-wing
vs helicopter; Eq. 3). The estimates of population
size (Ni,t) were rounded to the nearest integer
away from zero in order to conform to the sup-
port of the binomial distribution.

Yi;t � binomial Ni;t;pi
� �

(3)

This study did not have sufficient data to esti-
mate detection probability so we adopted the
moose sightability model developed from heli-
copter survey data by Anderson and Lindzey
(1996). That study occurred in western Wyoming
between 150 and 250 km from our study area.
We believe the proximity and similar habitat jus-
tify the use of their sightability model for the
years in our study surveyed by helicopter. The
best model developed by Anderson and Lindzey
(1996) included canopy cover as the single
covariate influencing moose detection probabil-
ity. Our survey data lacked the associated data
on canopy cover for each moose detected which
precluded the application of their sightability
model at the individual level. Instead, we
applied the model to the management unit level
and, in doing so, made the simplifying

assumption that each moose was observed at the
average level of canopy cover in that unit.
We used satellite-derived data to estimate

canopy cover for each of the 10 management
units in our study to predict the detection proba-
bility of moose in each unit using the Anderson
and Lindzey (1996) model. The resulting predic-
tions of detection probabilities included variance
which we sought to acknowledge instead of
assuming that sightability was fixed at the pre-
dicted values. We therefore used moment match-
ing (Hobbs and Hooten 2015) to find the
parameters of the beta distributions matching the
means and variances of the predicted detection
probabilities and let this beta random variable
serve as the prior distribution for p in the bino-
mial observation model. Formulating the prior
distribution in this way directly informs detec-
tion probability while also acknowledging uncer-
tainty in the Anderson and Lindzey (1996)
model, providing a flexible observation model.
We have no prior information on moose

sightability from fixed-wing aircraft in similar
habitat types as our study. However, a previous
study compared fixed-wing and helicopter
searches for moose and found that fixed-wing
surveys detected just 56% of the moose counted
by helicopter searches in the same area (Gosse
et al. 2002). We therefore specified a prior distri-
bution for fixed-wing detection probability to be
0.56 9 the helicopter detection probabilities.
Fixed-wing surveys occurred when moose were
believed to occupy only one management
unit, so pfixed-wing is a single parameter whereas
phelicopter is estimated separately for each unit.
We chose vague priors for two parameters for

which we had no prior information: process error
(r2

p) and the effects of climate (bclimate). We used
more informative priors for two parameters that
we could reliably estimate from ecological theory
or could be derived from empirical data: strength
of density dependence (bN moose) and rmax in
moose (brmax). We followed the approach of
Koons et al. (2015) in defining a prior distribu-
tion for bN moose to exclude values that exceed
the mathematical limitations of the effect of pop-
ulation density on growth rate in the Gompertz
model (Dennis et al. 2006). Also following Koons
et al. (2015), we estimated an informative prior
for brmax (x ¼ 0:304, standard deviation
[SD] = 0.08) based on the mean of five previous
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studies which provided estimates of rmax in
moose (Bergerud 1981, Keith 1983, Van Ballen-
berghe 1983, Cederlund and Sand 1991, Sinclair
2003). Informing the parameters with reliable
prior information aids identifiability of other
model parameters including process and obser-
vation errors (Lebreton and Gimenez 2013,
Koons et al. 2015).

Finally, we summed the unit-level population
sizes in each year to estimate population-wide
abundance (Eq. 4).

Ntotal;t¼
X10
i¼1

Ni;t (4)

A directed acyclic diagram of the model structure
is provided as a visual aid in the appendix
(Appendix S1: Fig. S1). The full model, including
prior distributions, is specified by the following
statement in which items in bold represent matrices:

½N; b;r2
pjYi;t;harvesti;t� /

Process Model:

Y10
i¼1

Y56
t¼2

lognormal Ni;tj log g Ni;t�1; b
� �� �

;r2
p

� �
�

Observation Model:

Y10
i¼1

Y6
t¼1

binomial Yi;tjNi;t; pfixed wing
� ��

Y10
i¼1

Y56
t¼7

binomial Yi;tjNi;t; pi;helicopter
� ��

Parameter Models:

uniform r2
pj0; 2

� �
�

normal brmaxj0:304; 0:082
� ��

normal bNmoosej0; 22
� �

Tð�2; 2Þ�

normal bclimatej0; 102
� ��

beta p1;helicopterj36:3; 17:1
� ��

beta p2;helicopterj40:8; 9:2
� ��

beta p3;helicopterj16:9; 28:3
� ��

beta p4;helicopterj37:7; 15:0
� ��

beta p5;helicopterj32:5; 21:5
� ��

beta p6;helicopterj38:4; 12:9
� ��

beta p7;helicopterj34:6; 19:3
� ��

beta p8;helicopterj32:5; 215
� ��

beta p9;helicopterj30:0; 23:5
� ��

beta p10;helicopterj34:6; 19:3
� ��

beta pfixedwingj36:3; 17:1
� ��0:56

Modeling approach
We first reviewed the literature documenting

the effects of climate on North American moose
populations, and from this knowledge base, we
developed four hypotheses that most plausibly
explained how climate may affect moose popula-
tion growth in our study area (Table 1). We used
climate variables from the National Oceanic and
Atmospheric Administration’s (NOAA) Annual
Climatological Summary dataset (National Cen-
ters for Environmental Information, NESDIS,
NOAA, US Department of Commerce). We cal-
culated each climate variable as the mean of mea-
surements from 7 climate stations within the
study area. The winter severity model included
data from January to March (winter), and the
heat stress model included data from June to
August (summer). The summer precipitation
model included data from July to August which
is when the least rain falls in our study area. The
winter tick model included data from February
to March which is when adult female ticks drop
from their hosts and lay eggs to replenish the tick
population for the subsequent year (Fig. 1).
We used a two-step approach to model selection.

We first ranked the importance of each climate
model individually. Next, we constructed models
consisting of combinations of the highest ranked
individual climate models to determine whether
population dynamics were better explained by
multiple mechanisms. To avoid overfitting of mod-
els and producing spurious results, we did not
compare all subsets of climate variables.
Aerial counts were conducted between Decem-

ber and February according to good survey con-
ditions (i.e., adequate snow cover; Wolfe et al.
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2010), but for consistency, we assumed each
count was conducted in January of year t; accord-
ingly, any climate variable in the preceding
12 months was defined as a lag of one year
because it was a different calendar year. For
example, for a count conducted in January 2013,
a winter variable with a lag of one year corre-
sponded to climatic conditions between January
and March of 2012. We standardized all climate
variables to have mean = 0 and SD = 1 to assist
with model convergence and interpretation. The
coefficient estimates for each climate variable are
therefore on the same scale and directly compa-
rable. We also calculated the proportion of the
posterior that has the same sign as the mean
which we denote as f (Kellner 2018). This quan-
tity represents our confidence that the parameter
is indeed positive or negative and not null.

Model implementation
To estimate posterior distributions of the

parameters of interest, we conducted Markov
chain Monte Carlo (MCMC) simulations in JAGS
(v. 4.3.0; Plummer 2012) accessed from program
R using the jagsUI package (Kellner 2018). For
each model, we ran three chains each consisting
of 100,000 iterations with the first 50,000 dis-
carded as burn-in and thinned the sample to
retain every 50th simulation. Model convergence
was assessed visually using traceplots and by
ensuring that the bR value for each parameter of
interest was less than 1.1 (Gelman 1996). If mod-
els did not reach convergence after 100,000 itera-
tions, we updated the model with additional
iterations until convergence was satisfactory. We
assessed model goodness-of-fit using posterior
predictive checks (Gelman 2004, K�ery and
Schaub 2011, Hobbs and Hooten 2015). To do
this, we generated hypothetical count data (i.e.,
Y.newi,t) from the model and used a chi-square
statistic to compare the observed and expected
values from the original and new datasets at
every MCMC iteration, that is,

Yi;t � Y:esti;t
� �2

Y:esti;t
and

Y:newi;t � Y:esti;t
� �2

Y:esti;t

where Y.esti,t � Ni,t 9 pi. Calculating the propor-
tion of iterations in which the chi-square statistics
arising from the original and hypothetical data-
sets are more extreme than one another provides
a measure of goodness-of-fit; a value of 0.5 indi-
cates perfect fit, and values close to 0 or 1 suggest
a lack-of-fit. We then ranked the candidate mod-
els using posterior predictive loss (PPL; Gelfand
and Ghosh 1998, Hooten and Hobbs 2015), where
PPL ¼ P10

i¼1
P56

t¼1 yi;t � E yi;tjdata
� �� �2þP10

i¼1
P56

t¼1 Var yi;tjdata
� �

. The first term compares
the observed data with the posterior predictive
mean and provides a measure of model fit, and
the second term represents posterior predictive
variances and adds a penalty for model complex-
ity (Gelfand and Ghosh 1998, Fieberg et al. 2013,
Hooten and Hobbs 2015). Lower PPL scores indi-
cate better model performance.

RESULTS

Posterior predictive checks indicated adequate
fit for all models; that is, values were >0.4 and
<0.6. These results imply that each candidate
model was capable of generating data consistent
with the observed data. Additionally, each model
successfully converged such that bR values for
each parameter were ≤1.1.
The northern Utah moose population exhibited

variable population growth between 1958 and
2013 (Fig. 3). In general, a period of sustained
growth was observed as the population grew
from low density after the species colonized the
area until ca. 1990, at which point the population
presumably reached carrying capacity and the
trend was subsequently punctuated by several
periods of decline. Each of the 10 individual man-
agement units also experienced variable popula-
tion dynamics over the course of the study
(Appendix S1: Fig. S2).
In the first round of model selection comparing

only the univariate climate hypotheses, the sum-
mer rainfall model ranked the highest based on
posterior predictive loss scores, followed by the
winter tick model, the winter severity model, and
finally the heat stress model. We next fit two
additional models composed of multiple climate
mechanisms identified to be important from the
first round and compared them to the single cli-
mate hypothesis models. The new models
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combined summer rainfall + winter ticks, and
summer rainfall + winter severity. The summer
rainfall + winter ticks model (PPL = 23,488.2;
Table 2) ranked the highest out of the entire can-
didate set, that is, those considering both single
and multiple climate mechanisms.

In the top model, the parameter describing the
ability of the population to grow from low den-
sity, brmax, was estimated at 0.291 (95% Bayesian
credible interval [BCI] = 0.194, 0.391; Table 3),
which was slightly lower than the mean of the
rmax values in previous studies that we provided
as a prior. Population growth rate was negatively
influenced by moose density in the previous year
(bN moose = �0.041, 95% BCI = �0.060, �0.023,
f = 1; Table 3), suggesting density dependence
was operating in the population.

Summer rainfall had a positive effect on popu-
lation growth (bsummer rainfall = 0.141, 95%
BCI = �0.119, 0.401, f = 0.84; Table 3), which
was reduced with increasing population density
(bsummer rainfall 9 N moose = �0.023, 95%
BCI = �0.073, 0.030, f = 0.79; Fig. 4a). Popula-
tion growth was also higher following winters
with more days of snow, that is, when conditions
were detrimental to winter ticks (b days

snow = 0.116, 95% BCI = �0.170, 0.391, f = 0.79;

Table 3). The interaction term describing how
population density modified the winter tick
effect was weak (b# days snow 9 N moose = �0.003,
95% BCI = �0.055, 0.052, f = 0.55; Fig. 4b), sug-
gesting the influence of winter tick conditions
was largely independent of moose population
density.

DISCUSSION

Our results suggest that the lagged effects of
both summer and winter precipitation acted in
tandem to influence the dynamics of this moose
population. Specifically, the combination of sum-
mer rainfall and snow conditions influential to
winter ticks acted as the primary driver of moose
population growth. Our best model implies that
moose population growth will be highest 2 yr
after winters with more days of snow cover dur-
ing January–March followed by a summer with
abundant precipitation. This result suggests that
a parasite-mediated effect may have nearly as
strong of an influence on moose population
dynamics in Utah than climate factors tradition-
ally thought to influence moose such as winter
severity or summer rainfall. Our analysis found
little support for the effects of heat stress which

Fig. 3. Time series of estimated moose abundances in Utah, USA, 1958–2013. Each thin gray line represents a
draw from the estimated posterior distribution of moose abundance, and the thick line represents the mean pos-
terior value of moose abundance. Vertical bars represent the known number of moose harvested in each year.
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are thought to be detrimental to moose across
their range but especially at southern latitudes
(Murray et al. 2006, Monteith et al. 2015, Ditmer
et al. 2017).

Our analysis demonstrates that summer rain-
fall played an important role in moose popula-
tion dynamics in our study area. Specifically,
total precipitation in July and August increased
subsequent population growth. Years with
abundant rain during these months likely acted

to prolong the growing season and provide
moose access to a higher quality and/or quan-
tity of forage for a longer period of time. This
likely allowed moose to enter winter in better
nutritional condition and buffered them against
malnutrition during the time when resources
were most limiting. Consistent with density-de-
pendent food limitation, the interaction
between summer rainfall and number of moose
suggests that population growth is highest at
low moose densities and high rainfall, but the
positive effect of rainfall diminishes as popula-
tion size increases (Fig. 4a). Numerous studies
have determined summer precipitation to be
an important factor influencing moose popula-
tions (Thompson 1980, Murray et al. 2006,
Monteith et al. 2015), so this was not an unex-
pected finding.
A more surprising result was that the snow

conditions influencing winter ticks had nearly as
strong of an influence as summer rainfall. How-
ever, the detrimental effects of winter ticks on
North American moose have long been known.
One study in Alberta, Canada, estimated the
mean number of winter ticks on a moose was
>32,000, though numbers can reach nearly

Fig. 4. The relationship between lambda and climate predicted by the top model with harvest held constant at
its median value. In both panels, the broken green line represents a low density of moose (2.5% quantile of pre-
dicted abundance) and the solid blue line represents a high density of moose (97.5% quantile of predicted abun-
dance). Shaded bands represent the 95% Bayesian credible interval for the predicted effect. Units on the x-axis
are represented in terms of the number of standard deviations from the mean of the climate variable. (a) The rela-
tionship between summer rainfall 1.5 yr before surveys were conducted, which describes density-dependent
resource limitation. (b) The relationship between number of days with snow between February and March two
years before surveys were conducted, a proxy for conditions detrimental to winter ticks.

Table 2. Model selection results describing the effect of
climate on moose population growth in northern
Utah, USA, 1958–2013.

Model Posterior predictive loss

Summer rainfall + winter ticks 23,488.2
Summer rainfall 23,646.2
Winter ticks 23,762.3
Winter severity 23,771.5
Summer rainfall + winter severity 23,824.1
Heat stress 23,913.2

Notes: Results are presented for the four univariate climate
hypotheses in addition to two multivariate climate hypothe-
ses. Models were evaluated using posterior predictive loss
and are ranked in terms of relative performance.
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150,000 on a single moose (Samuel and Welch
1991). Engorged ticks can negatively affect
moose and other hosts through a number of
pathways including behavioral modifications,
blood loss, anemia, and possibly transmission of
toxins (Samuel and Welch 1991). Moose actively
groom themselves in response to irritation aris-
ing from engorged ticks, and this behavior may
result in less time spent foraging or resting
(Samuel and Welch 1991). Grooming is thought
to be effective in reducing tick numbers but may
have bioenergetic and thermoregulatory conse-
quences if time spent foraging is reduced or if
significant hair is lost in the process. Several
studies have shown that the cumulative effects of
tick infestations can reduce body fat stores and
hamper weight gain (Addison and McLaughlin
1988, Addison et al. 1994, Musante et al. 2007).
Winter ticks may be the most prominent mortal-
ity factor for adult (Bergeron and Pekins 2014)
and juvenile (Jones et al. 2017) moose in New
Hampshire. Current research on the demogra-
phy of moose in Utah has also correlated high
winter tick loads on adult female moose with
lower reproductive success including poorer calf
survival among dams with high tick loads
(UDWR, unpublished data). The agency has also

observed lower tick loads on moose following
years with a heavy snowpack.
Few studies have correlated winter tick out-

breaks with population crashes in moose despite
the serious metabolic detriments of tick infesta-
tions to moose on an individual level. A notable
exception is the well-studied Isle Royale moose
population which has experienced several peri-
ods of decline coincident with epizootics of win-
ter ticks (DelGiudice et al. 1997). Other tick-
related die-offs have been noted in Algonquin
Provincial Park, Ontario (Garner and Wilton
1993), and Elk Island National Park, Alberta
(Samuel 2007). However, no studies to our
knowledge have assessed the importance of con-
ditions related to winter ticks on moose popula-
tion growth.
The positive effect of winter snow cover on

subsequent moose population growth is consis-
tent with literature regarding winter tick popula-
tion dynamics. Numerous studies suggest a
direct link between late winter weather condi-
tions and future tick abundances. Specifically,
snow cover in late winter reduces survival and
reproduction of ticks; when ticks drop off their
hosts during this time and land on snow, their
chances of surviving and reproducing are

Table 3. Parameter estimates for the best-performing model including summer rainfall and number of days with
snow in late winter plus interactions with moose density.

Parameter Mean SD Lower 95% BCI Upper 95% BCI f

b(rmax) 0.291 0.050 0.194 0.391 1
b(N moose(t�1)) �0.041 0.010 �0.061 �0.023 1
b(# days snow(t�2)) 0.116 0.141 �0.170 0.391 0.793
b(# days snow(t�2) 9 N moose(t�1)) �0.003 0.027 �0.055 0.052 0.550
b(summer rainfall(t�2)) 0.141 0.136 �0.119 0.401 0.842
b(summer rainfall(t�2) 9 N moose(t�1)) �0.023 0.027 �0.073 0.030 0.793
p, fixed-wing 0.388 0.034 0.298 0.449 1
p, helicopter, unit 1 0.693 0.060 0.321 0.802 1
p, helicopter, unit 2 0.767 0.060 0.644 0.875 1
p, helicopter, unit 3 0.380 0.064 0.253 0.515 1
p, helicopter, unit 4 0.695 0.068 0.560 0.811 1
p, helicopter, unit 5 0.535 0.066 0.405 0.662 1
p, helicopter, unit 6 0.747 0.060 0.625 0.856 1
p, helicopter, unit 7 0.635 0.067 0.502 0.760 1
p, helicopter, unit 8 0.584 0.067 0.450 0.715 1
p, helicopter, unit 9 0.542 0.068 0.411 0.671 1
p, helicopter, unit 10 0.639 0.065 0.505 0.759 1
rprocess 0.340 0.024 0.298 0.390 1

Notes: Each estimate of p (detection probability) refers to a different management unit where 1 = North Slope Summit,
2 = North Slope Daggett, 3 = Chalk Creek, 4 = Morgan-Rich, 5 = Cache, 6 = Ogden, 7 = East Canyon, 8 = Kamas, 9 = South
Slope, and 10 = Wasatch Mountains. f represents the proportion of the posterior with the same sign as the mean, that is, our
confidence that the parameter is indeed positive or negative.
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decreased (Drew and Samuel 1986, Wilton and
Garner 1993, DelGiudice et al. 1997, Samuel
2007; Fig. 1). This is because ticks have low ther-
mal tolerances and are susceptible to snow or
cold temperatures (Samuel 2007). We cannot rule
out the possibility of snow cover influencing
moose through other pathways than tick-medi-
ated effects, but our results aligned with our a
priori hypothesis regarding tick effects. Further,
our models describing other plausible climate
effects on moose in winter (i.e., the winter sever-
ity and heat stress models) did not perform as
well.

Reports that tick abundances track moose
numbers (Peterson 1955, Samuel and Welch 1991,
Samuel 2007, Bergeron and Pekins 2014) moti-
vated our test of the interaction between moose
density and winter snow conditions. The model
predicted a negative interaction between moose
density and number of days with snow which
aligned with our expectations that the positive
effect of snow cover on population growth rate
would be diminished at high moose densities.
However, the interaction term was extremely
weak and the BCI broadly spanned zero (b days

snow 9 N Moose = �0.003, 95% BCI = �0.055,
0.030, f = 0.55). We therefore conclude that the
effect of ticks operates largely in a density-inde-
pendent manner in this population.

The models that tested other hypotheses (i.e.,
winter severity and heat stress) received less
support, as did a model combining the effects
of summer rainfall and winter severity. The
parameter estimates for snow depth in both
models in which it occurred were negative,
which indicates a deleterious effect; however,
the models still ranked low in the candidate
set. We assumed that greater snow depths
would negatively influence moose due to
increased energetic costs from locomotion, the
inability to efficiently access forage, and den-
sity-dependent competition for forage due to
home range compression as moose sought out
refugia with less snow. Although other moose
studies have reported such effects (Thompson
1980, Mech et al. 1987, Crête and Courtois
1997, Solberg et al. 1999, Keech et al. 2000,
Murray et al. 2006), those concerned higher lati-
tude populations which plausibly experience
more severe winters than our study area at the
southern extent of the species’ distribution.

By contrast, we hypothesized that the low lati-
tude position of this population would render
moose more vulnerable to heat stress and poten-
tially causing them to alter behavior to seek ther-
mal refugia, reduce feeding rates, and experience
amplified physiological processes such as respi-
ration and heart rates (van Beest and Milner
2013, Street et al. 2015, Ditmer et al. 2017). We
speculated that the physiological stress induced
by warm temperatures should be most evident at
populations near the species’ equatorial range
limit and would therefore be reflected in the
dynamics of this population. This was not the
case. Not only did this model receive the least
amount of support, but the positive sign of the
coefficients for both summer and winter temper-
atures was opposite of what we expected. One
potential reason for this finding stems from the
lack of detailed historic temperature data in the
study area to evaluate the specific temperature
thresholds determined to induce heat stress in
moose (Renecker and Hudson 1986, McCann
et al. 2013). Because such specific climate data
were unavailable for our entire study period, we
used coarser climate summary data that did not
explicitly evaluate heat stress thresholds specific
to moose. Another possible explanation for the
positive effects of temperature we documented is
that the moose population generally became lar-
ger coincident with temperatures that generally
became warmer during the course of the study.
Our results suggest that climate is indeed influ-

encing this moose population and that both sum-
mer and winter precipitation are important yet
operate through different pathways. Summer rain-
fall appears to positively influence moose across
their geographic range, and this study is no excep-
tion. However, the effects of winter precipitation
are more varied across the species’ range. Consis-
tent with predictions from biogeographic models
of species range limits, we found evidence that
external factors (i.e., parasites, mediated by cli-
mate) affected this peripheral moose population
(Caughley et al. 1988). Current climate models
predict that cold-season precipitation in this region
will increasingly fall as rain, not snow (Safeeq
et al. 2016), and this suggests that future condi-
tions may exacerbate the effects of winter ticks on
moose. Similarly, summer rainfall in the western
United States is projected to decrease in the future
(Easterling et al. 2017), and this too could
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negatively affect moose. Overall, our study illus-
trates how predictions about the effects of environ-
mental change on wildlife population dynamics
may require greater attention to multiple path-
ways of climate including insight about host–
parasite interactions.

ACKNOWLEDGMENTS

We thank the dedicated biologists and pilots who
collected the aerial survey data. Funding for the study
came from the Utah Division of Wildlife Resources,
the Albert W. Franzmann and Distinguished Col-
leagues Memorial Award, Sportsmen for Fish and
Wildlife, Safari Club International, Utah Archery Asso-
ciation, and Rocky Mountain Elk Foundation.

LITERATURE CITED

Addison, E. M., and R. F. McLaughlin. 1988. Growth
and development of winter tick, Dermacentor
albipictus, on moose, Alces alces. Journal of Para-
sitology 74:670–678.

Addison, E. M., R. F. McLaughlin, and J. D. Broadfoot.
1994. Growth of moose calves (Alces alces ameri-
cana) infested and uninfested with winter ticks
(Dermacentor albipictus). Canadian Journal of Zool-
ogy 72:1469–1476.

Anderson Jr., C. R., and Lindzey, F. G.. 1996. Moose
sightability model developed from helicopter sur-
veys. Wildlife Society Bulletin 24:247–259.

Aublet, J. F., M. Festa-Bianchet, D. Bergero, and B. Bas-
sano. 2009. Temperature constraints on foraging
behaviour of male Alpine ibex (Capra ibex) in sum-
mer. Oecologia 159:237–247.

van Beest, F. M., and J. M. Milner. 2013. Behavioural
responses to thermal conditions affect seasonal
mass change in a heat-sensitive northern ungulate.
PLOS ONE 8:1–10.

Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller,
and F. Courchamp. 2012. Impacts of climate
change on the future of biodiversity. Ecology Let-
ters 15:365–377.

Bergeron, D. H., and P. J. Pekins. 2014. Evaluating the
usefulness of three indices for assessing winter tick
abundance in northern New Hampshire. Alces
50:1–15.

Bergerud, A. T. 1981. The decline of moose in Ontario–
a different view. Alces 17:30–43.

Bonenfant, C., et al. 2009. Empirical evidences of den-
sity-dependence in populations of large herbivores.
Advances in Ecological Research 41:300–338.

Buckland, S. T., K. B. Newman, L. Thomas, and K. B.
Koesters. 2004. State-space models for the

dynamics of wild animal populations. Ecological
Modelling 171:157–175.

Caughley, G., D. R. Grice, R. Barker, and B. Brown.
1988. The edge of the range. Journal of Animal
Ecology 57:771–785.

Cederlund, G. N., and H. K. G. Sand. 1991. Population
dynamics and yield of a moose population without
predators. Alces 27:31–40.

Chen, I. C., J. K. Hill, R. Ohlem€uller, D. B. Roy, and C.
D. Thomas. 2011. Rapid range shifts of species
associated with high levels of climate warming.
Science 333:1024–1026.

Colchero, F., R. A. Medellin, J. S. Clark, R. Lee, and G.
G. Katul. 2009. Predicting population survival
under future climate change: density dependence,
drought and extraction in an insular bighorn
sheep. Journal of Animal Ecology 78:666–673.

Coulson, T., E. J. Milner-Gulland and T. Clutton-Brock.
2000. The relative roles of density and climatic vari-
ation on population dynamics and fecundity rates
in three contrasting ungulate species. Proceedings
of the Royal Society of London B: Biological
Sciences 267:1771–1779.

Crête, M., and R. Courtois. 1997. Limiting factors
might obscure population regulation of moose
(Cervidae: Alces alces) in unproductive boreal for-
ests. Journal of Zoology 242:765–781.

Darimont, C. T., P. C. Paquet, T. E. Reimchen, and V.
Crichton. 2005. Range expansion by moose into
coastal temperate rainforests of British Columbia,
Canada. Diversity and Distributions 11:235–239.

DelGiudice, G. D., R. O. Peterson, and W. M. Samuel.
1997. Trends of winter nutritional restriction, ticks,
and numbers of moose on Isle Royale. Journal of
Wildlife Management 61:895–903.

Dennis, B., J. M. Ponciano, S. R. Lele, M. L. Taper, and
D. F. Staples. 2006. Estimating density dependence,
process noise, and observation error. Ecological
Monographs 76:323–341.

Ditmer, M. A., R. A. Moen, S. K. Windels, J. D. Fores-
ter, T. E. Ness, and T. R. Harris. 2017. Moose at
their bioclimatic edge alter their behavior based on
weather, landscape, and predators. Current Zool-
ogy 64:419–432.

Doak, D. F., and W. F. Morris. 2010. Demographic com-
pensation and tipping points in climate-induced
range shifts. Nature 467:959–962.

Drew, M. L., and W. M. Samuel. 1986. Reproduction of
the winter tick, Dermacentor albipictus, under field
conditions in Alberta, Canada. Canadian Journal of
Zoology 64:714–721.

Easterling, D. R., K. E. Kunkel, J. R. Arnold, T. Knut-
son, A. N. LeGrande, L. R. Leung, R. S. Vose, D. E.
Waliser, and M. F. Wehner. 2017. Precipitation
change in the United States. Pages 207–230 in D. J.

 ❖ www.esajournals.org 13 February 2020 ❖ Volume 11(2) ❖ Article e03058

RUPRECHT ET AL.



Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dok-
ken, B. C. Stewart and T. K. Maycock, editors. Cli-
mate Science Special Report: Fourth National
Climate Assessment. Volume I. US Global Change
Research Program, Washington, D.C., USA.

Fieberg, J., M. Alexander, S. Tse, and K. St. Clair. 2013.
Abundance estimation with sightability data: a
Bayesian data augmentation approach. Methods in
Ecology and Evolution 4:854–864.

Forchhammer, M. C., E. Post, N. C. Stenseth, and
D. M. Boertmann. 2002. Long-term responses in
arctic ungulate dynamics to changes in climatic
and trophic processes. Population Ecology 44:113–
120.

Freckleton, R. P., A. R. Watkinson, R. E. Green, and W.
J. Sutherland. 2006. Census error and the detection
of density dependence. Journal of Animal Ecology
75:837–851.

Garner, D. L., and M. L. Wilton. 1993. The potential
role of winter tick (Dermacentor albipictus) in the
dynamics of a south central Ontario moose popula-
tion. Alces 29:169–173.

Gelfand, A. E., and S. K. Ghosh. 1998. Model choice: a
minimum posterior predictive loss approach. Bio-
metrika 85:1–11.

Gelman, A. 1996. Inference and monitoring conver-
gence. Pages 131–143 in W. R. Gilks, S. Richardson
and D. J. Spiegelhalter, editors. Markov chain
Monte Carlo in practice. Chapman and Hall/CRC,
Boca Raton, Florida, USA.

Gelman, A. 2004. Exploratory data analysis for com-
plex models. Journal of Computational and Graph-
ical Statistics 13:755–779.

Gosse, J., B. McLaren, and E. Eberhardt. 2002. Compar-
ison of fixed-wing and helicopter searches for
moose in a midwinter habitat-based survey. Alces
38:47–53.

Grøtan, V., B. E. Sæther, M. Lilleg�ard, E. J. Solberg, and
S. Engen. 2009. Geographical variation in the influ-
ence of density dependence and climate on the
recruitment of Norwegian moose. Oecologia
161:685–695.

Hobbs, N. T., and M. B. Hooten. 2015. Bayesian mod-
els: a statistical primer for ecologists. Princeton
University Press, Princeton, New Jersey, USA.

Hone, J., R. P. Duncan, and D. M. Forsyth. 2010. Esti-
mates of maximum annual population growth
rates (rm) of mammals and their application in
wildlife management. Journal of Applied Ecology
47:507–514.

Hooten, M. B., and N. T. Hobbs. 2015. A guide to Baye-
sian model selection for ecologists. Ecological
Monographs 85:3–28.

Jones, H., P. J. Pekins, L. E. Kantar, M. O'Neil, and D.
Ellingwood. 2017. Fecundity and summer calf

survival of moose during 3 successive years of win-
ter tick epizootics. Alces 53:85–98.

Keech, M. A., R. T. Bowyer, J. M. Ver Hoef, R. D.
Boertje, B. W. Dale, and T. R. Stephenson. 2000.
Life-history consequences of maternal condition in
Alaskan moose. Journal of Wildlife Management
64:450–462.

Keith, L. B. 1983. Population dynamics of wolves.
Pages 66–77 in L. N. Carbyn, editor. Wolves in
Canada and Alaska: their status, biology, and man-
agement. Proceedings of the Wolf Symposium,
Edmonton, Alberta, Canada, May 12–14, 1981.
Canadian Wildlife Service, Ottawa, Ontari,
Canada.

Kellner, K. F. 2018. jagsUI: a wrapper around rjags to
streamline JAGS analyses. R package version 1.5.
https://github.com/kenkellner/jagsUI

Kelsall, J. P., and E. S. Telfer. 1974. Biogeography of
moose with particular reference to western North
America. Naturaliste Canadien 101:117–130.

K�ery, M., and M. Schaub. 2011. Bayesian population
analysis using WinBUGS: a hierarchical perspec-
tive. Academic Press, London, UK.

Koons, D. N., F. Colchero, K. Hersey, and O. Gimenez.
2015. Disentangling the effects of climate, density
dependence, and harvest on an iconic large herbi-
vore's population dynamics. Ecological Applica-
tions 25:956–967.

Lebreton, J. D., and O. Gimenez. 2013. Detecting
and estimating density dependence in wildlife
populations. Journal of Wildlife Management
77:12–23.

Lenarz, M. S., J. Fieberg, M. W. Schrage, and A. J.
Edwards. 2010. Living on the edge: viability of
moose in northeastern Minnesota. Journal of Wild-
life Management 74:1013–1023.

Lenarz, M. S., M. E. Nelson, M. W. Schrage, and A. J.
Edwards. 2009. Temperature mediated moose sur-
vival in northeastern Minnesota. Journal of Wild-
life Management 73:503–510.

McCann, N. P., R. A. Moen, and T. R. Harris. 2013.
Warm-season heat stress in moose (Alces alces).
Canadian Journal of Zoology 91:893–898.

Mech, D. L., and J. Fieberg. 2014. Re-evaluating the
northeastern Minnesota moose decline and the role
of wolves. Journal of Wildlife Management
78:1143–1150.

Mech, L. D., J. Fieberg, and S. Barber-Meyer. 2018. An
historical overview and update of wolf-moose
interactions in Northeastern Minnesota. Wildlife
Society Bulletin 42:40–47.

Mech, L. D., R. E. McRoberts, R. O. Peterson, and R. E.
Page. 1987. Relationship of deer and moose popu-
lations to previous winters’ snow. Journal of Ani-
mal Ecology 56:615–627.

 ❖ www.esajournals.org 14 February 2020 ❖ Volume 11(2) ❖ Article e03058

RUPRECHT ET AL.

https://github.com/kenkellner/jagsUI


Monteith, K. L., R. W. Klaver, K. R. Hersey, A. A. Hol-
land, T. P. Thomas, and M. J. Kauffman. 2015.
Effects of climate and plant phenology on recruit-
ment of moose at the southern extent of their
range. Oecologia 178:1137–1148.

Moyes, K., D. H. Nussey, M. N. Clements, F. E. Guin-
ness, A. Morris, S. Morris, J. M. Pemberton, L. E. B.
Kruuk, and T. H. Clutton-Brock. 2011. Advancing
breeding phenology in response to environmental
change in a wild red deer population. Global
Change Biology 17:2455–2469.

Murray, D. L., E. W. Cox, W. B. Ballard, H. A. Whitlaw,
M. S. Lenarz, T. W. Custer, T. Barnett, and T. K.
Fuller. 2006. Pathogens, nutritional deficiency, and
climate influences on a declining moose popula-
tion. Wildlife Monographs 166:1–30.

Musante, A. R., P. J. Pekins, and D. L. Scarpitti. 2007.
Metabolic impacts of winter tick infestations on
calf moose. Alces 43:101–110.

Owen-Smith, N. 1998. How high ambient temperature
affects the daily activity and foraging time of a sub-
tropical ungulate, the greater kudu (Tragelaphus
strepsiceros). Journal of Zoology 246:183–192.

Pearce-Higgins, J. W., et al. 2015. Geographical varia-
tion in species’ population responses to changes in
temperature and precipitation. Proceedings of the
Royal Society of London B: Biological Sciences
282:1–8.

Peterson, R. L. 1955. North American moose. Univer-
sity of Toronto Press, Toronto, Ontario, Canada.

Plummer, M. 2012. JAGS version 3.4.0 user manual.
http://mcmcjags.sourceforge.net/

Post, E., and M. C. Forchhammer. 2002. Synchroniza-
tion of animal population dynamics by large-scale
climate. Nature 420:168–171.

Post, E., and M. C. Forchhammer. 2008. Climate
change reduces reproductive success of an Arctic
herbivore through trophic mismatch. Philosophical
Transactions of the Royal Society of London B: Bio-
logical Sciences. 363:2367–2373.

Renecker, L. A., and R. J. Hudson. 1986. Seasonal
energy expenditures and thermoregulatory
responses of moose. Canadian Journal of Zoology
64:322–327.

Ruprecht, J. S., K. R. Hersey, K. Hafen, K. L. Monteith,
N. J. DeCesare, M. J. Kauffman, and D. R. MacNulty.
2016. Reproduction in moose at their southern
range limit. Journal of Mammalogy 97:1355–1365.

Safeeq, M., S. Shukla, I. Arismendi, G. E. Grant, S. L.
Lewis, and A. Nolin. 2016. Influence of winter sea-
son climate variability on snow–precipitation ratio
in the western United States. International Journal
of Climatology 36:3175–3190.

Samuel, W. M. 2007. Factors affecting epizootics of win-
ter ticks and mortality of moose. Alces 43:39–48.

Samuel, W. M., and D. A. Welch. 1991. Winter ticks on
moose and other ungulates: factors influencing
their population size. Alces 27:169–182.

Sinclair, A. R. E. 2003. Mammal population regulation,
keystone processes and ecosystem dynamics.
Philosophical Transactions of the Royal Society B:
Biological Sciences 358:1729–1740.

Sivertsen, T. R., A. Mysterud, and H. Gundersen. 2012.
Moose (Alces alces) calf survival rates in the pres-
ence of wolves (Canis lupus) in southeast Norway.
European Journal of Wildlife Research 58:863–868.

Solberg, E. J., B. E. Sæther, O. Strand, and A. Loison.
1999. Dynamics of a harvested moose population
in a variable environment. Journal of Animal Ecol-
ogy 68:186–204.

Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurrell,
K. S. Chan, and M. Lima. 2002. Ecological effects of
climate fluctuations. Science 297:1292–1296.

Street, G. M., A. R. Rodgers, and J. M. Fryxell. 2015.
Mid-day temperature variation influences seasonal
habitat selection by moose. The Journal of Wildlife
Management 79: 505-512.

Telfer, E. S. 1984. Circumpolar distribution and habitat
requirements of moose (Alces alces). Pages 145–182
in R. Olson, R. Hastings and F. Geddes, editors.
Northern Ecology and Resource Management.
University of Alberta Press, Edmonton, Alberta,
Canada.

Thompson, I. W. 1980. Effects of weather on productiv-
ity and survival of moose in northeastern Ontario.
Alces 16:463–481.

Van Ballenberghe, V. 1983. The rate of increase in
moose populations. Alces 19:98–117.

Wilton, M. L., and D. L. Garner. 1993. Preliminary
observations regarding mean April temperature as
a possible predictor of tick-induced hair-loss on
moose in south central Ontario, Canada. Alces
29:197–200.

Wolfe, M. L., K. R. Hersey, and D. C. Stoner. 2010. A
history of moose management in Utah. Alces
46:37–52.

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.
3058/full

 ❖ www.esajournals.org 15 February 2020 ❖ Volume 11(2) ❖ Article e03058

RUPRECHT ET AL.

http://mcmcjags.sourceforge.net/
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.3058/full
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.3058/full

	Utah State University
	From the SelectedWorks of Daniel R. MacNulty
	2020

	Effect of climate on population growth in a cold‐adapted ungulate at its equatorial range limit
	

