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Abstract

A simple yet efficient traffic flow model, in particular one that describes vehicle longitudinal operational control
and further characterizes traffic flow fundamental diagram, is always of great interest to many. Though many models
have been proposed in the past, each with their own advantages, research in this area is far from conclusive. This paper
contributes a new model, i.e., the longitudinal control model (LCM), to the arsenal with a unique set of properties.
The model is suited for a variety of transportation applications, among which a concrete example is provided herein.

Keywords: Mathematical modeling, traffic flow theory, car following, fundamental diagram
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1 Introduction1

A simple yet efficient traffic flow model, in particular one that describes vehicle longitudinal operational control and2

further characterizes traffic flow fundamental diagram, is always of great interest to many. For example, researchers3

can use such a model to study traffic flow phenomena, system analysts need the model to predict system utilization and4

congestion, accident investigators find the model handy to reconstruct accidents, software developers may implement5

the model to enable computerized simulation, and practitioners can devise strategies to improve traffic flow using such6

a simulation package.7

Past research has resulted in many traffic flow models including microscopic car-following models and macro-8

scopic steady-state models, each of which has its own merits and is applicable in a certain context with varying con-9

straints. A highlight of these historical efforts will be provided later in Section 6. Nevertheless, research on traffic10

flow modeling is far from conclusive, and a quest for better models is constantly occurring. Joining such a journey,11

this paper presents a new model, the longitudinal control model (LCM), as a result of modeling from a combined12

perspective of Physics and Human Factors (Section 2). The model seems to possess a unique set of properties:13

• The model is physically meaningful because it captures the essentials of longitudinal vehicle control and motion14

on roadways with the presence of other vehicles (Subsection 2.1)15

16 • The model is simple because it uses one equation to handle all driving situations in the longitudinal direction17

(Equation 2), and this microscopic equation aggregates to a steady-state macroscopic equation that characterizes18

traffic stream in the entire density range (Equation 5)19

20 • The model is flexible because the microscopic equation provides the mechanism to admit different safety rules21

that govern vehicle driving (Subsection 2.1) and the macroscopic equation has the flexibility to fit empirical22

traffic flow data from a variety of sources (Subsection 3.2 and Figures 3 through 8 )23

24 • The model is consistent because the microscopic equation aggregates to the macroscopic equation so that the25

micro-macro coupling is well defined (Subsection 2.2). As a result, traffic flow modeling and simulation based26

on the microscopic model aggregates to predictable macroscopic behavior (Section 5, see how results of micro-27

scopic and macroscopic approaches match)28

29 • The model is valid as verified using field observations from a variety of locations (Section 4), and the model is30

realistic as demonstrated in an example application (Section 5)31

32

The unique set of properties possessed by the LCM lend itself to various transportation applications including33

those mentioned above. An example of such applications is elaborated in Section 5 where the LCM is applied to34

analyze traffic congestion macroscopically and microscopically. Research findings are summed up in Section 7.35

2 The Longitudinal Control Model36

Vehicle operational control in the longitudinal direction concerns a driver’s response in terms of acceleration and37

deceleration on a highway without worrying about steering including lane changing. Rather than car-following as it is38

conventionally termed, vehicle longitudinal control involves more driving regimes than simply car-following (e.g. free39

flow, approaching, stopping, etc.). A field theory was previously proposed [1], [2], which represents the environment40

(e.g. the roadway and other vehicles) perceived by a driver with ID i as an overall field Ui. As such, the driver is41

subject to forces as a result of the field. These forces, which impinge upon the driver’s mentality, are motivated as42

roadway gravityGi, roadway resistanceRi, and vehicle interaction F j
i with the leading vehicle j, see an illustration in43

Figure 1. Hence, the driver’s response is the result of the net force
∑
Fi acting on the vehicle according to Newton’s44

second law of motion:45 ∑
Fi = Gi −Ri − F j

i (1)
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Figure 1: Forces acting on a vehicle

2.1 Microscopic model46

If the functional forms of the terms in Equation 1 are carefully chosen (mainly by experimenting with empirical data),47

a special case called the Longitudinal Control Model (LCM) can be explicitly derived from Equation 1 as :48

ẍi(t+ τi) = Ai[1− (
ẋi(t)
vi

)− e
1−

sij(t)

s∗
ij

(t) ] (2)

where ẍi(t+τi) is the operational control (acceleration or deceleration) of driver i executed after a perception-reaction49

time τi from the current moment t. Ai is the maximum acceleration desired by driver i when starting from standing50

still, ẋi is vehicle i’s speed, vi driver i’s desired speed, sij is the actual spacing between vehicle i and its leading51

vehicle j, and s∗ij is the desired value of sij .52

No further motivation for this special case is provided other than the following claims: (1) it takes a simple53

functional form that involves physically meaningful parameters but not arbitrary coefficients (see this and the next54

section), (2) it makes physical and empirical sense (see this and Section 4), (3) it provides a sound microscopic basis55

to aggregated behavior, i.e. traffic stream modeling (see the remainder of this section and Section 4), and (4) it is56

simple and easy to apply (see Section 5).57

The determination of desired spacing s∗ij(t) admits safety rules. Basically, any safety rule that relates spacing58

to driver’s speed choice can be inserted here. Of particular interest is an algorithm for desired spacing that allows59

vehicle i to stop behind its leading vehicle j after a perception-reaction time τi and a deceleration process (at rate60

bi > 0) should the leading vehicle j applies an emergency brake (at rate Bj > 0). After some math, the desired61

spacing can be determined as:62

s∗ij(t) =
ẋ2

i (t)
2bi

−
ẋ2

j (t)
2Bj

+ ẋiτi + lj (3)

where lj is vehicle j’s effective length (i.e., actual vehicle length plus some buffer spaces at both ends). Note that the63

term ẋ2
i (t)
2bi
− ẋ2

j (t)

2Bj
represents degree of aggressiveness that driver i desires to be. For example, when the two vehicles64

travel at the same speed, this term becomes γiẋ
2
i with:65

γi =
1
2
(
1
bi
− 1
Bj

) (4)

where Bj represents driver i’s estimate of the emergency deceleration which is most likely to be applied by driver j,66

while bi can be interpreted as the deceleration tolerable by driver i. Attention should be drawn to the possibility that67

bi might be greater than Bj in magnitude, which translates to the willingness (or aggressive characteristic) of driver i68

to take the risk of tailgating.69

2.2 Macroscopic model70

Under steady-state conditions, vehicles in the traffic behave uniformly and, thus, their identities can be dropped.71

Therefore, the microscopic LCM (Equations 3 and 4) can be aggregated to its macroscopic counterpart (traffic stream72
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model):73

v = vf [1− e1− k∗
k ] (5)

where v is traffic space-mean speed, vf free-flow speed, k traffic density, and k∗ takes the following form:74

k∗ =
1

γv2 + τv + l
(6)

where γ denotes the aggressiveness that characterizes the driving population, τ average response time that charac-75

terizes the driving population, and l average effective vehicle length. Equivalently, the macroscopic LCM can be76

expressed as:77

k =
1

(γv2 + τv + l)[1− ln(1− v
vf

)]
(7)

Note that an earlier version of LCM was proposed in [1], [2] which does not explicitly consider the effect78

of drivers’ aggressiveness. To make a distinction, the LCM by default refers to the LCM formulated herein (both79

microscopic and macroscopic forms), whereas earlier version of the LCM will be referred to as the LCM without80

aggressiveness.81

3 Model Properties82

The LCM features a set of appealing properties that makes the model unique. First of all, it is a one-equation model83

that applies to a wide range of situations. More specifically, the microscopic LCM not only captures car-following84

regime, but also other regimes such as starting up, free-flow, approaching, cutting-off, stopping, etc., see [3] for more85

details. The macroscopic LCM applies to the entire range of density and speed without the need to identify break86

points.87

Secondly, the LCM makes physical sense since it is rooted in basic principles (such as field theory and New-88

ton’s second law of motion). In addition, LCM employs a set of model parameters that are not only physical meaningful89

but also easy to calibrate. For example, the microscopic LCM involves desired speed vi, perception-reaction time τi,90

desired maximum acceleration when starting from standing still Ai, tolerable deceleration bi, emergency deceleration91

Bj , and effective vehicle length lj . The macroscopic LCM includes aggregated parameters of free flow speed vf ,92

aggressiveness γ, average response time τ , and effective vehicle length l. Data to calibrate the above parameters are93

either readily available in publications (such as Motor Trend and human factors study reports) or can be sampled in94

the field with reasonable efforts.95

Lastly, LCM models represent a consistent modeling approach, i.e., the macroscopic LCM is derived from its96

microscopic counter-part when aggregated over vehicles and time. Such micro-macro consistency not only supplies97

macroscopic modeling with a microscopic basis but also ensures that microscopic modeling aggregates to a predictable98

macroscopic behavior.99

More properties are discussed in the following subsections.100

3.1 Boundary conditions101

The macroscopic LCM has two clearly defined boundary conditions. When density approaches zero (k → 0), traffic102

speed approaches free-flow speed (v → vf ); when density approaches jam density (k → kj = 1/l), traffic speed103

approaches zero (v → 0), see Figure 9 in a later example for an instance.104

Kinematic wave speed at jam density ωj can be determined by finding the first derivative of flow q with105

respect to density k and evaluating the result at k = kj . Hence,106

q = kv =
v

(γv2 + τv + l)[1− ln(1− v
vf

)]
(8)

After some math,107

dq

dk
= v + k

dv

dk
= v −

(γv2 + τv + l)[1− ln(1− v
vf

)]

(2γv + τ)[1− ln(1− v
vf

)] + (γv2 + τv + l)[ 1
vf−v ]

(9)
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Therefore, ωj can be evaluated as:108

ωj =
dq

dk
|k=kj ,v=0 = − l

τ + l
vf

(10)

Meanwhile, capacity qm can be found by first setting Equation 9 to zero to solve for optimal speed vm or109

optimal density km and then plugging vm or km into Equation 8 to calculate qm. However, it appears that an analytical110

solution of (qm, km, vm) is not easy to find and this is a limitation of the LCM. Fortunately, the problem can be easily111

addressed numerically.112

On another note, the spacing-speed relationship is:113

s = (γv2 + τv + l)[1− ln(1− v

vf
)] (11)

The slope of the speed-spacing relationship when traffic is jammed can be determined by finding the first114

derivative of v = f(s) with respect to spacing s and evaluate the result at s = l and v = 0:115

dv

ds
|s=l,v=0 =

1
(2γv + τ)[1− ln(1− v

vf
)] + (γv2 + τv + l)[ 1

vf−v ]
|s=l,v=0 =

1
τ + l

vf

(12)

3.2 Model flexibility116

The macroscopic LCM employs four parameters that supply the model with sufficient flexibility to fit data from a wide117

range of facilities, as detailed in the next section. As originally noted by [4] and later by [5] and [6] that concavity118

is a desirable property of flow-density relationship. This property is empirically evident in field observations from119

most highway facilities, especially in outer lanes, and the shape of flow-density relationship looks like a parabola120

with varying skewness. In addition, some researchers [7, 8, 5, 6] recognize the attractiveness of having a triangular121

flow-density relationship. Moreover, a reverse-lambda shape was reported by [9, 10], most likely in the inner lane of122

freeway facilities. Therefore, a desirable property of a traffic stream model is its flexibility to represent a variety of123

flow-density shapes ranging from skewed parabola to triangular to reverse-lambda.124

Figure 2 illustrates a family of fundamental diagrams generated from the macroscopic LCM with the follow-125

ing parameters: vf = 30 m/s, kj = 1/5 veh/m, τ = 1 s, and aggressiveness γ ranging from 0 to −0.03 s2/m. In126

the flow-density subplot, the lowest curve exhibiting a skewed parabolic shape is generated using γ = 0, the second127

highest curve showing nearly a triangular shape is generated using γ = −0.027, and the highest curve, which takes a128

reverse-lambda shape, is generated using γ = −0.03. From the definition of aggressiveness in Equation 4, one recog-129

nizes that smaller values of γ correspond to more aggressive drivers who are willing to accept shorter car-following130

distances. Therefore, the values of γ, the shape of q − k curves, and field observations are consistent. Further quanti-131

tative analysis of the effect of aggressiveness and its interaction with other model parameters warrants further research132

and is not discussed here.133

4 Empirical Results134

Initial test results of the LCM at both microscopic and macroscopic levels without the consideration of driver aggres-135

siveness were reported in [3]. Hence, this paper focuses on testing the LCM with consideration of aggressiveness by136

fitting the model to traffic flow data collected from a variety of facilities at different locations including Atlanta (US),137

Orlando (US), Germany, CA/PeMs (US), Toronto (Canada), and Amsterdam (Netherlands). Note that the fit of the138

LCM and other traffic stream models is conducted with careful efforts, but no optimal fitting is guaranteed.139

Figures 3 through 8 illustrate field data observed at these facilities with data “clouds” in the background140

labeled as “Empirical”. Since the clouds are scattered to varying degrees, they are aggregated and the resultant data141

are shown as the “dots” labeled as “Emp mean”. The fit result of the LCM is illustrated as solid lines labeled as “LCM”.142

Also shown are the fit results of other traffic stream models including Underwood model [11] (which employs two143

parameters) and Newell model [12] (three parameters). As such, the reader is able to visually compare goodness-of-fit144

of two-, three-, and four-parameter models and examine how fit quality varies with number of parameters. Consisting145

of four subplots (namely, speed vs density, speed vs flow, flow vs density, and speed vs spacing), each figure illustrates146

the fundamental diagrams represented by empirical data and these models.147
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Figure 2: Family of curves generated from LCM with varying aggressiveness

Figure 3: LCM fitted to GA400 Data
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The empirical data in Figure 3 are collected on GA400, a toll road in Atlanta, GA, at station 4001116.148

Consisting of 4787 observation points, the abundant field data reveal the relationships among flow, density, and speed149

by means of cloud density, i.e. the intensity of data points. Meanwhile, the wide scatter of data points seems to suggest150

that any deterministic, functional fit is merely a rough approximation and a stochastic approach such as [13] might be151

more statistically sound. Combining the cloud and the large dots (i.e., Emp mean), one is able to identify the trend of152

the these relationships. For example, the flow-density relationship appears to be a reverse-lambda shape (if one looks153

at the cloud) or a triangle (if one looks at the large dots). Meanwhile, the speed-flow relationship features a ⊃ shape154

with its “nose” tilting upward. After much trial-and-error effort, its seems that a reverse-lambda fit of flow-density155

relationship is not as good as a (nearly) triangular fit in terms of minimizing overall fitting error. As indicated in Table156

1, the free-flow speed vf is estimated as 106.2 km/h (29.5 m/s), effective vehicle length l = 4 m (or jam density kj =157

250 veh/km), average response time τ = 1.46 s, and aggressiveness γ = -0.038 s2/m. Note that the effective vehicle158

length l is so estimated merely to yield a good fit. It is recognized that the value itself may appear somewhat small159

and there are actually no data points to support such a short effective vehicle length or equivalently high jam density.160

Empirical capacity qm determined based on the large dots is 1883.8 veh/hr at optimal density km of 22.0 veh/km and161

optimal speed vm of 85.8 km/hr, while the capacity condition estimated from LCM is (qm = 1886.0 veh/hr, km = 23.3162

veh/km, vm = 81.0 km/hr).163

Two additional models are fitted to the data and the results are presented in Table 2. It is apparent that the164

more parameters a model employs, the more flexible the model becomes and hence the more potential to result in a165

good fit. In the speed vs flow subplot of Figure 3, Underwood and Newell models are comparable in the congested166

regime (i.e., the lower portion of the graph), while in the free-flow regime (i.e., the upper portion of the graph) Newell167

model outperforms Underwood model since Newell model is closer to the dense cloud. In contrast, the LCM (which168

employs four parameters) yields the best fit among the three, as indicated by the close approximation of the LCM curve169

to the empirical data. More specifically, the LCM runs through the dense cloud in the free-flow regime and follows170

the trend nicely in the rest of the graph. However, compared with the large dots (Emp mean), the LCM appears to171

over-estimate speed toward the end of the free-flow regime and under-estimate speed at the beginning of the congested172

regime. Nevertheless, whether such fitting errors are systematic has yet to be examined across empirical data from173

different locations. In the flow vs density subplot, both Underwood model and Newell model peak at about the same174

location (km ≈ 50 v/km). In the congested regime (i.e., the portion after the peak), both models exhibit a lack of fit175

with Newell model slightly better in terms of concavity while Underwood model slightly better in terms of closeness176

to data points. In contrast, the LCM is superior on all accounts. Not only does it exhibit the desirable shape (almost a177

triangle) but its proximity to empirical observations is much closer. In addition, the curve peaks at the same location178

where the empirical data peaks (km = 22 v/km). The speed vs density subplot does not reveal much information179

regarding the relative merit of these models since each appears to fit the empirical data nicely except for some slight180

differences here and there. The speed vs spacing subplot emphasizes the free-flow regime which is the flat portion in181

the top of the graph. It appears that Underwood model walks a long way to approach free-flow speed, while Newell182

model and the LCM adapt to free-flow speed sooner with a slight under- and over-fit respectively. Unfortunately, the183

congested regime (the slope at the beginning portion of this graph) does not reveal much difference among the three184

models since they all cluster tightly together.185

As shown in Figure 4 and Table 1, I-4 data in Orlando, FL feature a capacity qm of 1795.5 veh/hr which is186

achieved at an optimal density km of 22.1 veh/km and optimal speed vm of 81.4 km/hr. What’s striking in this set187

of data is that the free-flow regime in the speed vs flow subplot is almost flat and this condition sustains almost up to188

capacity. This graph clearly differentiates fit quality of models with different number of parameters. More specifically,189

the two-parameter Underwood model exhibits the least fit since its upper branch (i.e. free-flow regime), nose (i.e.190

capacity), and lower branch (i.e. congested regime) are far from empirical observations. The three-parameter Newell191

model is better as indicated by the closer fit of its upper branch, nose, and lower branch. The four-parameter LCM is192

superior in all aspects. For example, its upper branch is almost a flat line running through empirical data points, its193

nose tilts upward and roughly coincides with empirically observed capacity, and its lower branch cuts evenly through194

empirical observations. Though there are discrepancies between the empirical data and the fitted curve, no systematic195

over- or under-fit is observed in this graph. In the remaining three subplots, the differences among the three models196

and their fit quality are consistent with those observed in the speed vs flow subplot.197

In Figure 5, the Autobahn data collected from Germany exhibit an unusually high free-flow speed vf of 43.3198

m/s (or 155.9 km/hr). Unlike the I-4 data which feature an almost constant free-flow speed vf up to capacity, traffic199

speed in the Autobahn data gradually decreases in free-flow regime, resulting in an optimal speed vm of only about200

60% of vf , as indicated in the speed vs flow subplot. Unfortunately, the particular nature of this set of data poses201
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Figure 4: LCM fitted to I-4 Data

Figure 5: LCM fitted to Autobahn Data
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a great challenge to any effort that attempts to fit the data. In the speed vs flow subplot, one has difficulty to fit a202

model that meets the observed free-flow regime, the congested regime, and the capacity simultaneously, so a trade-off203

has to be made among the three portions. The LCM curve shown has been tweaked between free-flow and congested204

regimes while guaranteeing the capacity. Though better than Underwood and Newell models, the LCM still exhibits205

some discrepancies compared with the empirical data.206

Figure 6: LCM fitted to PeMS Data

The PeMS data collected from California is plotted in Figure 6. This set of data heavily emphasizes the207

free-flow regime (which is virtually a flat band) with observations elsewhere sparsely scattered. Therefore, the fit of a208

model in regimes other than free flow might be arbitrary. With this understanding, LCM approximates the free-flow209

regime the best, while Underwood and Newell models are slanted and significantly underestimate optimal speed vm.210

Though field observation on Highway 401 in Toronto do not have abundant data points, a trends is still211

clearly established in each subplot of Figure 7. Much like the results in the I-4 data, there are clearly differences in212

capabilities among the models, with two-parameter Underwood model being the least and the four-parameter model213

the best. Notice that no systematic under- or over-fit is observed in the LCM curves.214

The same comments as above apply to Ring Road data in Amsterdam, see Figure 8. In summary, estimated215

parameters of the LCM that result from fitting to various facility types are listed in Table 1 and cross-comparison of216

traffic stream models fitted to various facility types is listed in Table 2.217

5 Applications218

Since the LCM takes a simple mathematical form that involves physically meaningful parameters, the model can be219

easily applied to help investigate traffic phenomena at both microscopic and macroscopic levels. For illustration pur-220

pose, a concrete example is provided below, in which a moving bottleneck is created by a sluggish truck. Microscopic221

modeling allows the LCM to generate profiles of vehicle motion so that the cause and effect of vehicles slowing down222

or speeding up can be analyzed in exhaustive detail; macroscopic modeling may employ the LCM to generate funda-223

mental diagrams that help determine shock paths and develop graphical solutions; Since the LCM is consistent at the224
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Figure 7: LCM fitted to Highway 401 Data

Figure 8: LCM fitted to Amsterdam Data
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Table 1: Parameters of LCM as a result of fitting to various facility types

Data source Empirical parameters Capacity condition
Location Facility No. obs. vf m/s l m τ s γ s2/m qm v/h km v/km vm km/h
Atlanta GA400 4787 29.5 4 1.46 -0.038 1883.8 22.0 85.8
Orlando I-4 288 24.2 8.6 1.09 -0.040 1795.5 22.1 81.4
Germany Autobahn 3405 43.3 10 1.0 -0.018 2114.1 22.3 95.0
CA/PeMs Freeway 2576 31 6.3 2.4 -0.060 1124.9 11.0 102.5
Toronto Hwy 401 286 29.5 12 0.8 -0.026 1945.7 21.8 89.2

Amsterdam Ring Rd 1199 28.4 7.5 0.82 -0.026 2452.2 27.2 90.3

Table 2: Comparison of traffic stream models fitted to various facility types

Location Model Estimated parameters

Atlanta
Underwood vf = 29.5 m/s, km = 0.050 v/m
Newell vf = 29.5 m/s, l = 4.0 m, λ = 0.81 1/s
LCM vf = 29.5 m/s, l = 4.0 m, τ = 1.46 s, γ = -0.038 s2/m;

Orlando
Underwood vf = 24.2 m/s, km = 0.055 v/m
Newell vf = 24.2 m/s, l = 8.6 m, λ = 1.09 1/s
LCM vf = 24.2 m/s, l = 8.6 m, τ = 1.09 s, γ = -0.040 s2/m;

Germany
Underwood vf = 43.3 m/s, km = 0.037 v/m
Newell vf = 43.3 m/s, l = 10.0 m, λ = 1.12 1/s
LCM vf = 43.3 m/s, l = 10.0 m, τ = 1.00 s, γ = -0.018 s2/m;

CA/PeMs
Underwood vf = 31.0 m/s, km = 0.029 v/m
Newell vf = 31.0 m/s, l = 6.3 m, λ = 0.50 1/s
LCM vf = 31.0 m/s, l = 6.3 m, τ = 2.40 s, γ = -0.060 s2/m;

Toronto
Underwood vf = 29.5 m/s, km = 0.050 v/m
Newell vf = 29.5 m/s, l = 12.0 m, λ = 1.3 1/s
LCM vf = 29.5 m/s, l = 12.0 m, τ = 0.80 s, γ = -0.026 s2/m;

Amsterdam
Underwood vf = 28.4 m/s, km = 0.064 v/m
Newell vf = 28.4 m/s, l = 7.5 m, λ = 1.5 1/s
LCM vf = 28.4 m/s, l = 7.5 m, τ = 0.82 s, γ = -0.026 s2/m;

12



microscopic and macroscopic levels, the two sets of solutions not only agree with but also complement each other.225

In addition, the LCM can be adopted by existing commercial simulation packages to improve their internal226

logic of car following, or it can serve as the basis of a new simulation package. Moreover, the LCM can be adopted227

in highway capacity and level of service (LOS) analysis. For example, conventional LOS analysis procedure involves228

the use of speed-flow curves to determine traffic speed, see [14] for the family of curves in EXHIBIT 23-3 and the229

set of approximating equations underneath. The macroscopic LCM can help make the analysis more effectively by230

providing more realistic speed-density curves to facilitate analytical, numerical, and graphical solutions. Furthermore,231

the LCM can be adopted by transportation planners to be used as the basis of a highway performance function which232

realistically estimates travel time (via traffic speed) as a function of traffic flow assigned to a route. The resultant travel233

time is the basis of driver route choice behavior, which in turn stipulates dynamic traffic assignment.234

5.1 An illustrative example235

A freeway segment contains an on-ramp (which is located at 2000 m away from an arbitrary reference point denoting236

the upstream end of the freeway) followed by an off-ramp 2000 m apart. The freeway was initially operating under237

condition A (flow 0.3333 veh/s or 1200 veh/hr, density 0.1111 veh/m or 17.9 veh/mi, and speed 30 m/s or 67.1 mi/hr).238

At 2:30pm, a slow truck enters the freeway traveling at a speed of 5.56 m/s which forces the traffic to operate under239

condition B (flow 0.3782 veh/s or 1361 veh/hr, density 0.0681 veh/m or 109.6 veh/mi, and speed 5.56 m/s or 12.4240

mi/hr). After a while, the truck turns off the freeway at the next exit. The impact on the traffic due to the slow truck is241

illustrated macroscopically in subsection 5.2 and microscopically in subsections 5.3 and 5.4.242

Figure 9: Fundamental diagram of the freeway generated from LCM

A fundamental diagram, which is illustrated in Figure 9, is generated using the macroscopic LCM to char-243

acterize the freeway with the following parameters: free-flow speed vf = 30 m/s, aggressiveness γ = −0.028 m/s2,244

average response time τ = 1 second, and effective vehicle length l = 7.5 m. In addition, the above-mentioned traffic245

flow conditions, free-flow condition O, and capacity condition C are tabulated in Table 3.246

To illustrate the application of the LCM, the above problem is addressed in two approaches: macroscopic247
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Table 3: Traffic flow conditions

Condition Flow, q Density k Speed v
veh/s (veh/hr) veh/m (veh/mi) m/s (mi/hr)

A 0.3333 (1200.0) 0.0111 (17.9) 30 (67.1)
B 0.3782 (1361.6) 0.0681 (109.6) 5.56 (12.4)
C 0.5983 (2154.0) 0.0249 (40.1) 24.03 (53.7)
O 0 (0) 0 (0) 30 (67.1)

graphical solution and microscopic simulation solution. The microscopic simulation is conducted in deterministic and248

random fashions.249

5.2 Macroscopic approach - graphical solution250

The graphical solution to the problem involves finding shock paths that delineate time-space (t-x) regions of different251

traffic conditions. Figure 10 illustrates the time-space plane overlaid with the freeway on the right and a mini-version252

of the flow-density plot in the top-left corner. The point when the slow truck enters the freeway (2:30pm) roughly253

corresponds to P1(t1 = 65, x1 = 2000) on the time-space plane, while the point when the truck turns off the freeway254

is roughly P3(t3 = 425, x3 = 4000). Therefore, constrained by the truck, the t-x region under P1P3 should contain255

traffic condition B. On the other hand, the t-x regions before the truck enters and before congestion (i.e. condition256

B) forms should have condition A. As such, there must be a shock path that delineates the two regions, and such a257

path should start at P1 with a slope equal to shock wave speed UAB which can be determined according to Rankine-258

Hugonoit jump condition [15] [16]:259

UAB =
qB − qA
kB − kA

=
0.3782− 0.3333
0.0681− 0.0111

= 0.7877m/s (13)

Meanwhile, at downstream of the off-ramp, congested traffic departs at capacity condition C, which corre-260

sponds to a t-x region that starts at P3 and extends forward in time and space. Hence, a shock path forms between the261

region with condition C and the region with condition B. Such a shock path starts at P3 and runs at a slope equal to262

shock wave speed UBC :263

UBC =
qC − qB
kC − kB

=
0.5983− 0.3782
0.0249− 0.0681

= −5.0949m/s (14)

If the flow-density plot is properly scaled, one should be able to construct the above shock paths on the t-x264

plane. The two shock paths should eventually meet at point P2(t2, x2) whose location can be found by solving the265

following set of equations:266 
x2 − x1 = UAB × (t2 − t1)
x2 − x3 = UBC × (t2 − t3)
(x2 − x1) + (x3 − x2) = 2000

(15)

After some math, P2 is determined roughly at (716.8, 2513.4). After the two shock paths P1P2 and P3P2267

meet, they both terminate and a new shock path forms which delineates regions with conditions C and A. The slope of268

the shock path should be equal to shock speed UAC :269

UAC =
qC − qA
kC − kA

=
0.5983− 0.3333
0.0249− 0.0111

= 19.2029m/s (16)

As such, the shock path can be constructed as P2P4. Lastly, the blank area in the t-x plane denotes a region270

with no traffic, i.e. condition O.271
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5.3 Microscopic approach - deterministic simulation272

In order to double check on the LCM and to verify if its macroscopic and macroscopic solutions agree with each other273

reasonably, the microscopic LCM is implemented in Matlab, a computational software package. As a manageable274

starting point, the microscopic simulation is made deterministic with the following parameters: desired speed vi = 30275

m/s, maximum acceleration Ai = 4 m/s2, emergency deceleration Bi = 6 m/s2, tolerable deceleration bi = 9 m/s2,276

perception-reaction time τi = 1 second, and effective vehicle length li = 7.5 m, where i ∈ {1, 2, 3, ..., n} are unique277

vehicle identifiers. Vehicles arrive at the upstream end of the freeway at a rate of one vehicle every three seconds,278

which corresponds to a flow of q = 1200 veh/hr. Simulation time increment is one second and simulation duration is279

1000 seconds.280

Figure 10 illustrates the simulation result in which vehicle trajectories are plotted on the t-x plane. The281

varying density of trajectories outlines a few regions with clearly visible boundaries. The motion or trajectory of the282

first vehicle is pre-determined, while those of the remaining vehicles are determined by the LCM. The first vehicle283

enters the freeway at time t = 65 seconds after the simulation starts. This moment is calculated so that the second284

vehicle is about to arrive at the on-ramp at this particular moment. Hence, the second vehicle and vehicles thereafter285

have to adopt the speed of the truck, forming a congested region where traffic operates at condition B.286

Figure 10: A moving bottleneck due to a slow truck, deterministic simulation

Upstream of this congested region B is a region where traffic arrives according to condition A. The interface287

of regions B and A, P1P2, denotes a shock path in which vehicles in fast platoon A catch up with and join slow platoon288

B ahead. The situation continues and the queue keeps growing till the truck turns off the freeway at t = 425 second289

into the simulation. After that, vehicles at the head of the queue begin to accelerate according to the LCM, i.e. traffic290

begins to discharge at capacity condition C. Therefore, the front of the queue shrinks, leaving a shock path P3P2291

that separates region C from region B. Since the queue front shrinks faster than the growth of queue tail, the former292

eventually catches up with the later at P2, at which point both shock paths terminate denoting end of congestion.293

After the congestion disappears, the impact of the slow truck still remains because it leaves a capacity flow C in front294

followed by a lighter and faster flow with condition A. Hence the trace where faster vehicles in platoon A join platoon295

C denotes a new shock path P2P4.296
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Comparison of the macroscopic graphical solution and the microscopic deterministic simulation reveals that297

they agree with each other very well, though the microscopic simulation contains much more information about the298

motion of each individual vehicle and the temporal-spatial formation and dissipation of congestion.299

5.4 Microscopic approach - random simulation300

Since the microscopic approach allows the luxury to account for randomness in drivers and traffic flow, the following301

simulation may replicate the originally posed problem more realistically. The randomness of the above example is302

set up as follows with the choice of distribution forms being rather arbitrary provided that they are convenient and303

reasonable:304

• Traffic arrival follows Poisson distribution, in which the headway between the arrival of consecutive vehicles is305

exponentially distributed with mean 3 seconds, i.e. hi ∼ Exponential(3)s, which corresponds to a flow of 1200306

veh/hr;307

• Desired speed follows a normal distribution: vi ∼ N(30, 2) m/s;308

• Maximum acceleration follows a triangular distribution: Ai ∼ Triangular(3, 5, 4) m/s2;309

• Emergency deceleration: Bi ∼ Triangular(5, 7, 6) m/s2;310

• Tolerable deceleration: bi ∼ Triangular(8, 10, 9) m/s2;311

• Effective vehicle length: li ∼ Triangular(5.5, 9.5, 7.5) m;312

Figure 11: A moving bottleneck due to a slow truck, random simulation

The result of one random simulation run is illustrated in Figure 11 where the effect of randomness is clearly313

observable. Trajectories in region B seem to exhibit the least randomness because vehicles tend to behave uniformly314

under congestion. Trajectories in region C are somewhat random since the metering effect due to the congestion still315

remains. In contrast, region A appears to have the most randomness not only because of the Poisson arrival pattern316
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but also the random characteristics of drivers. Consequently, the shock path between regions B and C, P3P2 remains317

almost unaltered, while there is much change in shock path P1P2. The first is the roughness of the shock path and this318

is because now vehicles in platoon A joins the tail of the queue in a random fashion. The second is that the path might319

not be a straight line. As a matter of fact, the beginning part of the shock path has a slope roughly equal to UAB , while320

the rest part has a slightly steeper slope (due to less intense arrival from upstream during this period) resulting in the321

termination of congestion earlier than the deterministic case (which is somewhere near P2). This, in turn, causes the322

slope of the shock path between regions C and A to shift left. Note that the slope of this shock path remains nearly the323

same since this scenario features a fast platoon being caught up with by an even faster platoon.324

6 Related Work325

The microscopic LCM is a dynamic model which stipulates the desired motion (or acceleration) of a vehicle as the326

result of the overall field perceived by the driver. Other examples of dynamic model are GM models [17, 18] and327

the Intelligent Driver Model (IDM) [19, 20]. A dynamic model may reduce to a steady-state model when vehicle328

acceleration becomes zero. A steady-state model essentially represents a safety rule, i.e., the driver’s choice of speed329

as a result of car-following distance or vice versa. Examples of steady-state models include Pipes model [21], Forbes330

model [22, 23, 24], Newell nonlinear car-following model [12], Gipps car-following model [25], and Van Aerde car-331

following model [26, 27]. Interested readers are referred to [28] for a detailed discussion on the relation among LCM332

and other car-following models including a unified diagram that summarizes such relation.333

The microscopic LCM incorporates a term called desired spacing s∗ij (Equation 2) which generally admits334

any safety rule and consequently any steady-state model. However, Equation 3 instantiates s∗ij in a quadratic form as a335

simplified version of Gipps car-following model [25]. The result coincides with the speed-spacing relation documented336

in Highway Capacity Manual [29] and Chapter 4 of [30] as a result of 23 observational studies. The speed-spacing337

relation incorporates three terms: a constant term representing effective vehicle length, a first order term which is the338

distance traveled during perception-reaction time τ , and a second order term, which is the difference of the breaking339

distances by the following and leading vehicles, is interpreted in this paper as the degree of aggressiveness that the340

following driver desires to be. If one ignores the second order term, Pipes model [21] and equivalently Forbes model341

[22, 23, 24] are resulted.342

The macroscopic model is a single-regime traffic stream (or equilibrium) model involving four parameters.343

Also in the single-regime category, Van Aerde model [26, 27] and IDM [19, 20] involve four parameters, Newell344

model [12] and Del Castillo models [5, 31] have three parameters, and early traffic stream models such as [32], [33],345

[11], and [34] models necessitate only two parameters, though their flexibility and quality of fitting vary as illustrated346

in Section 4.347

7 Conclusions348

This paper proposed a simple yet efficient traffic flow model, the longitudinal control model (LCM), which is a349

result of modeling from a combined perspective of Physics and Human Factors. The LCM model is formulated in350

two consistent forms: the microscopic model describes vehicle longitudinal operational control and the macroscopic351

model characterizes steady-state traffic flow behavior and further the fundamental diagram.352

The LCM model is tested by fitting to empirical data collected at a variety of facility types in different353

locations including GA400 in Atlanta, I-4 in Orlando (US), Autobahn in Germany, PeMs in California, Highway 401354

in Toronto, and Ring Road in Amsterdam. The wide scatter of these data sets suggest that any deterministic, functional355

fit is merely a rough approximation and a stochastic approach might be more statistically sound. Test results support356

the claim that the LCM has sufficient flexibility to yield quality fits to these data sets. Meanwhile, two more models357

are fitted to the same data sets in order to establish perspective on the LCM. These models include the two-parameter358

Underwood model and the three-parameter Newell model. Fit results reveal that the more parameters a model employs,359

the more flexible the model becomes and hence the more potential to result in a good fit. Consistently, Underwood360

model yields the least goodness-of-fit, while Newell model represents an upgrade and the LCM maintains the best fit361

to empirical data.362

The unique set of properties possessed by the LCM lend itself to various transportation applications. For363

example, the LCM can be easily applied to help investigate traffic phenomena. An illustrative example is provided364

showing how to apply the LCM to analyze the impact of a sluggish truck at both microscopic and macroscopic levels.365
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Noticeably, the two sets of solutions agree with and complement each other due to the consistency of the LCM. In366

addition, the LCM can be adopted by existing commercial simulation packages to improve their internal logic of car367

following, or perhaps serves as the basis of a new simulation package. Moreover, the LCM may help make highway368

capacity and level of service (LOS) analysis more effectively by providing more realistic speed-density curves to369

facilitate analytical, numerical, and graphical solutions. Further more, the LCM can assist effective transportation370

planning by providing a better highway performance function that helps determine driver route choice behavior.371
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