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Abstract

The LWR model is of interest since it can successfully reproduce some essential features
of traffic flow, such as the formation and propagation of various waves. Recently, however,
the disadvantageous aspects of traditional LWR model are attracting more and more attention.
Many researchers have made great effort to develop new models based on the LWR model,
such that some prominent nonlinear characteristics of traffic flow, such as platoon diffusion,
capacity drop, hysteresis, and spontaneous onset of congestion are captured.

In this paper, we investigate the LWR model from an uncertainty perspective. Rather than
developing a new explanatory model, we attempt to analyze how reliable the LWR model
prediction will be if the fundamental diagram (FD) used is not specified accurately. Our work
reflects the current debate on the nature of the FD. To be specific, we postulate a form of the
flux function driven by random free flow speed, which accommodates the scattering feature
observed in the speed-density plot. We show the properties of the LWR model with the new
flux. A third-order essentially non-oscillatory (ENO) finite difference algorithm is devised to
solve the model. An approach to evaluate the predictability of traffic disturbance propagation
with this model is presented. We interpret the results and conclude that if the FD cannot be
undoubtedly specified, the LWR model will deteriorate and only make a reasonable prediction
in relatively short time scale.
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1 Introduction

1.1 Background
The LWR model[1][2], as the simplest kinetic wave (KW) model, is central in many investigations
associated with traffic dynamics and control. This is probably because some essential features of
traffic flow, such as wave formation and propagation, can be qualitatively well reproduced with the
LWR model. The reader is referred to [3][4], and the references therein for full discussion of this
model and its variations.

At the same time, the deficiencies of the LWR model are well known. For example, the
LWR model fails to generate capacity drop, hysteresis, relaxation, platoon diffusion, or sponta-
neous congestion. The existence of these traits have been confirmed in many field observations. In
the LWR model, mass (i.e., the vehicles) conservation always holds true provided that no sinks and
sources are involved. Thus to remedy the problem, one may either follow the rationale of hydro-
dynamics and add ‘momentum conservation’ type equations, or question the initial assumptions
regarding the fundamental diagram (FD), i.e., the smoothness and concavity, and propose other
forms of models. These two strategies are, in spirit, consistent with the discussions in [4], where
they are named ‘higher-order’ and ‘lower-order’ extensions of LWR model, respectively.

Of the two strategies, the former one seems much more debateable. Daganzo[3] describes
the logical flaws in the argument of deriving high-order continuum models, and he shows that
negative flow and speed could be unreasonably generated (this means anisotropy property will be
violated). Inconsistency inherent in such model in a statistical perspective is also demonstrated
in [5]. Zhang[4] holds that the two strategies are very close in nature, regarding the anisotropy
issue as well as necessity to introduce behaviorial laws, and he finds that the models investigated
therein can all be reduced to a KW model endowed with an appropriate ‘effective fundamental dia-
gram’. Moreover, the plots of speed-concentration or flow-concentration usually exhibit structured
randomness/scatterings, especially around congestion region. These observations, though not nec-
essarily conflicting the initial assumption of the FD, are quite common and make thorough analysis
possible. Therefore, it seems to be at least a good starting point to follow the latter strategy and
see what may happen.

Different interpretations of the scattering have lead to many new models, either explaining
this effect itself or incorporating this effect to obtain traffic flow models with new features. On
one hand, Castillo and Benı́tez[6] and Cassidy[7] demonstrate that well-defined and reproducible
relations of traffic variables, such as flow-occupancy, can be obtained only if the stationary traffic
data are used. This implies the scattering is due to the existence of transient states. Zhang[4]
shows, at the price of lowering data resolution, a well-behaved FD can also be constructed from
locally smoothed transient traffic data. On the other hand, the hysteresis phenomenon has been
well known[8][9]. This indicates speed-concentration curve should consist of hysteresis loops
rather than a single curve. Meanwhile, it is noted that Newwell’s extension of the FD[10] and the
reversed-λ shaped FD have been in existence for a long time. Nonetheless, the FD with structured
variablity still seems to be a puzzling issue in recent years and continues triggering discussions in
different dimensions. Treiber and Helbing[11] show that conventional measurement methods with
the delay of driving behavior may result in the scattering of flow-density data in ‘synchronized’
congested traffic. Zhang and Kim[12][13] utilize car-following models and explain the occurrence
of capacity drop and hysteresis with one variable of gap time. Wong and Wong[14] and Ngoduy



J. Li, Q.Y. Chen, H. Wang and D. Ni 4

and Liu[15] attribute nonlinear traffic phenomena such as hysteresis, capacity drop, and dispersion
of traffic platoon to the distribution of heterogeneous drivers and they formulate this idea into multi-
class continuum traffic models. Kerner et al.[16][17][18] criticize the FD approach, arguing that
this approach fails to produce the spatial-temporal features of congestion correctly. The concept of
‘synchronized flow’ is introduced and the three-phase traffic flow theory is developed. This list of
works is not intended to be complete in any sense. One fact is evident that the concept of the FD,
though seemingly basic, is hardly unequivocal since its birth. Many interesting findings regarding
traffic flow are initiated with the fresh insight into the FD.

The aim of this paper, rather than resolve those existing controversies with FDs, is to inves-
tigate the potential influences brought by such ambiguity. To fulfill this end, we analyze the pos-
sible sources of randomness with the FD first, and then following the methodology of uncertainty
analysis, develop a numerical procedure to evaluate how the randomness affects the faithfulness
of the LWR model. Though not attempting to be explanatory, our study essentially unveils the
robustness of LWR model to the imperfect specification of the FDs. Knowledge of this hopefully
prompts further understanding of traffic flow features.

1.2 Paper organization
The remainder of this paper is organized as follows. In Section 2, we first present a brief account for
uncertainty analysis and differentiate the source of randomness associated with the speed-density
plot (Subsection 2.1). In this context, we discuss the extension of the FD from a single curve to
random function, which accommodates a distribution of flow for any given density value. Then
we propose a specific extension that assumes the specification of free flow is subject to uncertainty
(Subsection 2.2). Reasons and implication of introducing such assumption are detailed therein,
in a perspective of interpolation. Based on the proposed random FD, we conduct a numerical
study (Section 3). The model to be solved is the LWR with a random FD, and an essentially
non-oscillatory (ENO) finite difference scheme is devised to fulfill the purpose (Subsection 3.1).
Subsequently, we design an example with local jam/vaccum initial data, and attempt to find how
predictable are the propagations of these local disturbances with the previously discussed uncertain
setting (Subsection 3.2). In Section 4, we briefly summarize the paper and show the gaps we find.

2 The LWR model in stochastic setting

2.1 Uncertainty analysis
In system modeling literature, the uncertainty is commonly defined as any deviation from the un-
achievable ideal of completely deterministic knowledge of the relevant system[19] . Roughly speak-
ing, the uncertainty analysis is to model the uncertainty with a system and understand the related
influences. Risk and reliability assessment are among the most significant examples of uncertainty
analysis, and find their applications in hydrology, structure engineering and economics, etc. The
uncertainty analysis in the general context of conservation laws has been reported in literature for
two decades. Many of them are in the spirit of randomizing the flux function, either spatially or
temporally. For example, in [20][21], the authors discuss the expectation and convergence of a
stochastic Buckley-Leverett equation. In [22] the large-time property of Burger’s equation is ana-
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lyzed. More recently, Bale et al. presented a general solution approach, without directly addressing
the issue of randomness, for the conservation equation with flux function admitting spatial vari-
ation [23]. All of them have focused on the spatial variability of the flux function. In the traffic
field, Jou and Lo considered a nonlinear macroscopic traffic flow equation perturbed by a Brownian
motion [24].

Before unfolding our investigation, empirical evidence is presented. For any empirical
speed-density relation, the mapping from density to speed is always multi-valued after rounding
off the density data. This enables us to calculate the mean and standard deviation of the speed
indexed by density. In Figure 1 the mean and standard deviation of the speed versus density at
one station from GA-400 ITS dataset (which are collected by virtual loop detectors on freeway
GA-400) are shown. In the plot, one can see that the standard deviation is comparable to the mean
of speed in quite wide range, indicating the existence of non-ignorable variability in speed-density
relation. Moreover, the shape of the standard deviation is somewhat interesting, exhibiting a peak
around 50 veh/mi. Our investigation begins from these observations.
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FIGURE 1 First and second order speed-density relation at one typical site based on GA400
ITS data

The LWR model assumes that the speed-density (v-k) relation is time independent, i.e.,
system equilibrium is already achieved (by equilibrium, we mean only transition between station-
ary traffic state is possible). The LWR model says that the density k(x, t) of traffic flow is the
solution to the following equations:

kt + (kv)x = 0
v = v(k)
k(x, 0) = k0(x).

(1)

The first equation is the conservation law with the assumption of smoothness of involved func-
tions up to a certain order, the second equation is the fundamental relation which holds under
the equilibrium assumption, and the last equation provides the initial state of the solution. Flow
q = q(k) ≡ kv(k) is known as the flux function of k, which depicts the dynamics of the concerned
quantity, i.e., traffic flow density.
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To correctly incorporate the exhibited randomness into Equation (1), we first need to an-
alyze the possible sources of randomness. We begin by categorizing the involved randomness in
two classes. The first type of randomness is the uncertainty during data collection and processing,
e.g., inaccurate reading and data roundoff that is reflected in the initial data setting and scatter plot
of the v-k relation. In this case, the collective small additive errors would altogether obey the nor-
mal distribution law, due to the central limit theorem (CLT); alternatively, if the errors are small
and multiplicative, they jointly behave by the lognormal law. This type of randomness is statistical
and relatively well known. The second type of randomness is due to the inherent system dynam-
ics. Taking the transportation system for example, the drivers’ behaviors vary from one driver to
another, thus the group is best described in distributional terms rather than deterministically. We
claim that this randomness underlies the random v-k relation as aforementioned. An intuitive inter-
pretation of Figure 1 would be in an analogous manner to that of Brownian bridge. That is, taking
the v as a random process indexed by k, at two points 0 and jam density kjam the knowledge of v is
relatively complete since the constraints are imposed by definition of the two states. This explains
the smaller variances at two ends as shown. Based on the above analysis, we argue that the second
type of randomness is essential, since the first type can usually be controlled reasonably well, for
example, through improving the measuring techniques.

Back to the problem of formulating the LWR model in a stochastic setting, we consider
the second type randomness since it is dominant and inherent. Most generally, to account for this
randomness, we express traffic speed as a positive valued multivariate function,

v = v(k, ω(x, t)) : (R+, R, R+, Ω) 7→ R+, (2)

where ω is an appropriately defined set on Ω, the probability space equipped with measure Px,t(·).
This definition will lead to a stochastic flux function,

f ≡ kv = kv(k, x, t, ω) : (R+, R, R+, Ω) 7→ R+. (3)

Substituting the Formula (3) back into Equation (1), we obtain the stochastic formulation of the
LWR as,

Kt + (KV (K,ω))x = 0. (4)

Equation (4) in general admits a random field as solution. Before attempting to obtain useful
calculation results, it is desirable to justify the validity of this equation. The minimum requirement
is that with trivial probability measure it is consistent with usual deterministic equation. A detailed
discussion of the general form of Equation (4) is beyond the scope of current paper.

2.2 The FD driven by random free flow speed
To make the analysis and computation tractable, we need restrict our focus to a specific form of (4)
in this paper. This is equivalent to treat a specific form of Equation (3). In particular, we assume
that the stochastic flux function is independent of space and time, i.e.,

f = f(k, ω). (5)

The assumption in the form of (5) greatly simplifies the matter since each realization of f would
be a function of one variable k only. This reduces to the deterministic case we usually deal with.
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To address the features observed in Figure 1, we find the following form plausible. We
postulate that the randomness of f(·) is due to the uncertainty of the free flow speed. First, the free
flow speed is written as,

vf ≡ v̄f + (sk + r)ε (6)

where v̄f is a constant, and ε represents the imperfect knowledge of actual vf , with (sk+r) being a
scaling coefficient. Adopting this scaling coefficient implicitly assumes that vf depends on density
k. Without loss of generality, we assume that Eε = 0 and σε = 1 (otherwise, one could let
ε0 = (ε − Eε)/σε). The reason of using a function of k as the scaling coefficient is as follows. If
we adopt the v-k relation of,

(
v(k)

vf

)α + (
k

kjam

)β = 1, (7)

then after substituting Equation (6) in, we have,

v(k)
d
= vf (1 − ( k

kjam
)β)1/α

= (v̄f + (sk + r)ε)(1 − ( k
kjam

)β)1/α.
(8)

The meaning of sk + r is interpreted as follows. Letting s > 0, then as k increases, the variance
of the first term in the product of formula (8) becomes larger. This reflects the common perception
that the free flow speed is less informative for the inference of v(k) when density k increases, as
in this case, the system state represented by (k, v) is moving away from the state (0, vf ). Since
vf and kjam are symmetric in Equation (7), we may have a similar argument and term similar to
(sk + r)ε accompanying kjam, such as (s̃v + r̃)ε̃. However, this will make it difficult to explicitly
express v as a function of k. Though we can numerically solve v for a given k by utilizing an
iterative procedure, we would rather put this issue aside at the moment and restrict the focus on the
formula (8) to obtain some closed-form results.

From formula (8), taking the expectation at both sides, we obtain,

E(v(k)) = v̄f (1 − (
k

kjam

)β)1/α, (9)

and by calculating the second-order moment, we obtain,

V ar(v(k)) = (sk + r)2(1 − (
k

kjam

)β)2/α. (10)

when combined with the definition of flux, we get,

f(k)
d
= k(v̄f + (sk + r)ε)(1 − (

k

kjam

)β)1/α. (11)

While the v-k relation depicted by formula (8) has a lack of sound proof at microscopic
level, it has three advantages. First, it is constructed in a heuristic manner as previously mentioned.
Its interpretation is quite straightforward and understandable. Second, the postulated v-k relation is
consistent with the observation that a peak of standard deviation exists between 0 and kjam, which
also takes a maximum value in this region. Third, this relation leads to an easy-to-sample random
flux function (11), which is actually a family of curves governed by only one random parameter ε.

At last, we provide the following properties that are useful in the succeeding development
of the numerical scheme,
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1. For each ε, function f(k) is smooth.

2. Upper bound of absolute value of the derivative:

sup
0·k·kjam

|f 0(k)| ≤ 5kjam|εs| + 3|εr| + 3v̄f (12)

This is obtained by utilizing the triangle inequality. For technical convenience, we take
ε ∼ U(−

√
3,
√

3), making the right hand side of (12) a finite value, denoted as αf ;

3. There exists decomposition of f(k) (namely, flux splitting):

f(k) = f+(k) + f¡(k) (13)

where f+(k) = (f(k) + αfk)/2 and f¡(k) = (f(k) − αfk)/2, satisfying df+(k)/dk > 0
and df¡(k)/dk < 0.

3 Numerical study

3.1 Numerical scheme
In this paper we adopt the finite difference methods with an essentially non oscillatory (ENO)
reconstruction to obtain the numerical solution of (1). Roughly speaking, the ENO method re-
constructs the cell boundary values through adaptively utilizing the local stencil information. In
particular, the stencil with the minimal non-smoothness measure is selected. With ENO, high or-
der finite volume or finite difference methods are immediately available. The order of accuracy
depends on the size of the adopted stencil. For a detailed description of this method, the reader is
referred to [25] and references therein.

In summary, we devise the algorithm as follows to repeatedly generate random flux function
and solve the corresponding LWR model. This algorithm consists of two parts, i.e., initialization
and time marching,

* Initialization:

1. Load initial data {k0
i , i = 1, . . . , N}, where k0

i = k0(xi) is the grid point value. Moreover,
set s = 1, ε0 = 1;

2. Generate εs, independent of ε1, . . . , εs¡1 and follows U(−
√

3,
√

3). Generate the random
flux function f(k) following (11);

3. Split the flux function f(k) = f+(k) + f¡(k), following (13);

* Time Marching:

4. Identify {f+(kn
i ), i = 1 . . . , N} as cell averages and obtain v¡

i+1/2 = f̂+
i+1/2 by ENO recon-

struction. Similarly, get v+
i+1/2 = f̂¡

i+1/2;
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5. If n + 1 ≤ T/∆t, update the point value,

kn+1
i = kn

i − ∆t

∆x
(f̂i+1/2 − f̂i¡1/2) (14)

Let s = s + 1, and go back to 2; else, stop.

3.2 Example
To make the model more realistic, the four parameters, α, β, s, and r in Equation (11) need to be
estimated. In this paper, we adopt the values α = 1, β = 1, s = 0.05 and r = 3 for the purpose of
illustration. After setting v̄f = 60 mi/hr and kjam = 200 veh/mi, the random flux function now
takes the form of

f(k)
d
= k(60 + (0.05k + 3)ε)(1 − k

200
) (15)

Moreover, the free boundary conditions are imposed throughout the simulations in this
section, i.e., ∂k/∂x|L,R = 0, where L,R indicates the left and right boundaries of the computation
region. We set ∆t = 1 sec, ∆x=0.1 mi. The v-k relation and 20 realizations of the flux in
Equation (15) are shown in Figure 2.
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FIGURE 2 Hypothetical random speed-density relation (left panel) and 100 realizations of
corresponding random flux function (right panel)

We first let ε = 0, which reduces the model depicted by Equation (15) to a deterministic
model. With the initial conditions,

Initial condition a: (kl, kr) = (110, 30)
Initial condition b: (kl, kr) = (30, 110),

(16)

rarefaction wave and shock wave are observed respectively, which are shown in Fig. 3. The solu-
tions predicted with the above flux function and numerical scheme are well expected. In particular,
the ENO type finite difference scheme does preserve the shape of shock wave well, with almost
no numerical oscillations. Thus we will take the proposed random flux model and employ the
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Mean of k¤ Std of k¤ Mean of x¤ Std of x¤

Under initial condition a 16.09 0.50 5.99 0.75
Under initial condition b 26.46 1.92 8.63 0.63

TABLE 1 The statistic of numerical solution under initial condition a and b.

ENO numerical scheme to investigate the case with i.i.d. (independent and identically distributed)
random variables ε1, . . . , εs in a series of simulations.

We then investigate the distributional properties of the solution of the proposed model,
driven by the i.i.d. random sequence. In particular, the propagation of local disturbance on a one-
lane freeway is studied. Here jam/vacuum is defined by significantly different values of local
density compared to its neighborhood. We assume εi ∼ U(−

√
3,
√

3) for the aforementioned
reason. The settings for the cases studied are as follows,

1. Local jam:
k(x, 0) = 50 + 80 sin((x − 2)π)I(2 ≤ x ≤ 3) (17)

2. Local vacuum:
k(x, 0) = 50 − 30 sin((x − 2)π)I(2 ≤ x ≤ 3) (18)
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FIGURE 3 Temporal development of density k with ε = 0: rarefaction waves (left panel)
under Riemann initial condition (kl, kr) = (110, 30), and shock waves (right panel) under
Riemann initial condition (kl, kr) = (30, 110).

The simulation results at t = 600 sec are shown in Figure 4. Clearly the predictability
of the output drops significantly when the initial randomness has a variance of one. We also list
certain statistics of the solutions in Table 1. Two quantities, the maximum local fluctuation and its
location, are particularly interesting. The former is defined as,

k¤ = max
0·xi·10

|k(xi) − 50|, (19)
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FIGURE 4 Propagation of local disturbance (jam: left panel; vacuum: right panel) with
random flux function, t = 600 sec, 20 realizations. The dotted line is initial data and solid
lines are simulation results.

and the latter is defined by,
x¤ = argmaxxi

|k(xi) − 50|. (20)

We also calculate the coefficient of variation (CoV) using the values listed in Table 1 and take
its reciprocal as the measure of predicting accuracy. It turned out that CoVa,k∗ > CoVb,k∗ and
CoVa,x∗ > CoVb,x∗ .

There are multiple implications from the above results. First, the LWR model is often used
to predict the location of shock waves. Our example indicates that caution should be taken with
such application when uncertainty of FD is present, because even with small randomness of FD
the final outputs (i.e., the density profile) may distribute quite differently. Second, we observe
the no trend of decay for the spread of model outputs. This confirms the general intuition that a
model deteriorates when applied for long time prediction. Third, quantitatively, the propagation
of local vacuum seems more predictable than local jam, while the latter will be of more interest
in application. To sum up, our observations are consistent with the view point that LWR model
produces qualitatively good prediction[4], but we emphasize that this statement is credible only if
the specification of FD is certain and relatively short time scale is involved.

4 Concluding remarks
In this paper, motivated by empirical observations from freeway traffic data and noticing the long
time debate over FD, we investigate the LWR model in a stochastic setting. In particular, we
discuss the general concept of uncertainty and analyze the sources of randomness associated with
FD. A specific form of the stochastic flux function is postulated, which is driven by random free
flow speed. We provide the mathematical properties of the flux function that are essential for
developing a flux splitting scheme. An ENO finite difference numerical scheme is devised and
implemented to solve the proposed model. With a hypothetical example, we illustrate how the
predictability of two types of local density disturbance travel can be evaluated. This example
implies that that if FD cannot be undoubtedly specified, the LWR model will deteriorate and only
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make reasonable prediction in relatively short time scale. The analysis framework in this article is
hopefully extended to investigation of the general KW models.

We remark that the model parameters need to be estimated in order to achieve realistic
simulation results, which is a gap left by the current work. Also, some assumptions are possibly
relaxed in later study. In this sense, our work in this paper is illustrative in nature. Merit of this
study is to initiate the investigations of influences of inherent randomness on traffic modeling. We
expect our study will be further advanced with availability of data of finer resolution in the future.
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