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Newtonian Time from Timeless Dynamics

Brittany Gentry, Charles Torre, Zach Zito

Abstract
The role of a time parameter is vital to physics, yet time is often taken for granted. Newtonian

physics assumes an idealized time variable that is unmeasurable. In this paper, we answer calls
for clearer accounts of the emergence of Newtonian time from timeless mechanical systems
(Smolin 2013). We consider a simple three-particle system in the timeless formalism of Jacobi.
Time is abstracted from paths in configuration space and can be viewed as analogous to Mach’s
principle of universal inertial reference frames. Our physical demonstration of how Newtonian
time emerges completes Mach’s arguments about clocks and time in classical, non-relativistic
systems.

1 Introduction
Newtonian time and its emergence from more fundamental physical systems continues to elicit
calls for explanation and reconciliation with those more fundamental descriptions (Smolin 2013 and
Callender 2017). Mach famously critiqued Newton’s notion of time but did not provide a physical
demonstration of his critique (Mach 1919). This paper explains the emergence of Newtonian time
from timeless systems by using a simple system that demonstrates Mach’s claims regarding time and
re-articulates the relevance of those claims to current discussions of time. Mach described how to
start with Newtonian mechanics and eliminate time altogether; we return to the logical consequence
of not having needed time in the first place. We consider a simple mechanical system in the timeless
framework of Jacobi (Lanczos 1970). The system’s Lagrangian is defined independently of any time.
We construct a clock internal to the system by selecting a particle in the system and taking multiple
measures of its position. Time thus reduces to the measurement of particle positions in the system.
Rather than beginning with absolute time and eliminating it, we demonstrate the logical point of
Mach’s critique by showing how the system need not have been formulated with ideal time to begin
with and yet will birth Newtonian-like time as a feature of its dynamical behavior.

Section two presents Newton’s views on absolute time, Mach’s response to Newton, and situates
this paper as clearer articulation and demonstration of Mach’s point. Section three presents the
timeless dynamical system. Section four provides the canonical equations of motion and the Dirac-
Bergmann observables. Section five shows the emergent Newtonian clock. We conclude in section
six with some implications and next steps.

2 Mach, Newton, and Current Discussions
Newton thought it necessary to posit absolute time. Mach argued Newton was wrong. Since their
famous debate, calls and attempts to explain the emergence of Newtonian time and reconcile it with
Relativity Theory and Quantum Mechanics continue (Smolin 2013, Barbour 2001, Callender 2017).1

Newton says of time that, “absolute, true, and mathematical time, of itself, and by its own nature,
flows uniformly on, without regard to anything external. It is also called duration.”2 He elaborates

1Our daily experiences of the apparent passing of time is sometimes associated with absolute, or Newtonian, time,
called ’manifest time’ (see Sellars 2017 and Callender 2017, among others).

2Newton The Principia–all quotes of Newton in this section are from The Principia, all the translations are taken
from Mach’s The Science of Mechanics, pp. 222-223.
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further on this absolute time saying, “the flow of absolute time cannot be changed. Duration, or
the persistent existence of things, is always the same, whether motions be swift or slow or null”
(Newton). Newton places these descriptions of absolute time in contrast to what he calls “relative,
apparent, and common time,” which he takes to be “some sensible and external measure of absolute
time (duration), estimated by the motions of bodies, whether accurate or inequable” and which is
used in place of true time, such as in the case of hours, days, months and so on (Newton). And
these things which are taken to measure absolute time, while often treated as flowing at an ideal
and equal rate of motion, are in fact unequal. Thus, all attempts to measure absolute time are at
best approximations.

Mach critiques Newton’s “medieval” notions of absolute time — where things change in time and
where time is an invisible thing we attempt to measure indirectly. He argues that Newton ought
instead to have viewed time as an abstraction from the changes of things, changes which we observe
and of which we are a part (Mach 1919, p. 224). Mach notes that

time is an abstraction, at which we arrive by means of the change of things; made because
we are not restricted by any one definite measure, all being interconnected. A motion
is termed uniform in which equal increments of space described correspond to equal
increments of space described by some motion with which we form a comparison, as the
rotation of the earth. A motion may, with respect to another motion, be uniform (Mach
1919, p.24).

In practice, clocks are produced by comparing positions between chosen features of our system.
From that comparison we construct an abstracted time which we then use to make additional
observations, comparisons, and measurements about the system. So we ought not, Mach argues,
imagine anything like Newton’s absolute time. Rather,

the question whether a motion is in itself uniform, is senseless. With just as little
justice, also, may we speak of an “absolute time” — of a time independent of change.
This absolute time can be measured with no motion; it has therefore neither a practical
nor a scientific value; and no one is justified in saying he knows aught about it. It is an
idle metaphysical conception.3

In short, we have no good way of measuring an invisible, absolute time. What we do, in practice
(aware or unaware), is construct an abstract time based on a clock, which is itself just the comparison
of positions of stuff in the physical system.4 If we take Mach’s claims seriously, we must conclude
that a clock is a constructed part of the system and does not measure time — it measures position.5
It is an abstraction, at least on the face of it, because what we measure and observe is not time but,
rather, positions of basic stuff within a physical system. With the simple model in this paper, we

3Mach 1919, p.24. First, Mach is making a point related to Aristotle’s claim that time is inseparable from change
and that time is unknowable without change (Physics III ). Second, Mach proceeds to make a similar argument about
space (Mach, 1919, pp. 226-238). It would be helpful to develop a parallel case study to this paper where the focus
is on demonstrating the development of abstract space as a metric for articulating relations and features of a system.
Third, in this paper we have taken the concept of time to be less fundamental than space and have offered the detailed
example of how it is developed in a physical system but our starting assumption should not be taken as a denial of
Mach’s further and similar point about space.

4There remain some metaphysical questions about the conceptual need for time (for more on the metaphysical
debates see Maudlin 2007, Deasy 2015, Crisp 2003, Prior 2008, Tallant 2010 and 2017, among others). Whether
metaphysicians choose to dither and insist on the logical need for real time, be that in the form of numerical and
physical sequence or some more robust notion of time, abstract time is beyond the requirements of a physical system
and therefore beyond the scope of this paper as well. The need to sequence events and physical configurations is one
motivation for positing an abstract time. However, it is worth noticing that sequencing of events is not necessarily a
need in physical spaces so much as in the perceptual and psychological spaces.

5Some philosophers of time already press for this sort of understanding of time (see Barbour 2001, Rovelli 2018,
Corish 2009, and Gentry 2021, among others).
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provide the completion of Mach’s argument against Newton’s idealized, absolute time by showing
how starting in a timeless system we arrive at Newtonian time.

From the outset it is important to distinguish two things we might mean by “Newtonian time,”
which Newton appears to have treated as two facets of the same concept. First is the idealized,
absolute time which is so severely criticized by Mach as “medieval.” For Newton, this absolute time
is the ontological basis for temporal measurements and experience. Second is the “Newtonian time”
implicit in his first and second laws and which is about “good clocks.” For Newton, “good clocks”
measure time such that isolated bodies move at constant speed. In practice, this second notion of
time involves isolating some part of a physical system to function as a good clock. Newton views good
clocks as measuring idealized absolute time (if only approximately). While Newton seems to have
conflated these two notions – idealized time and “good clocks” – they are distinct. Our paper will not
suggest that idealized, absolute time emerges from physical systems but we will demonstrate how
good clocks, ones that yield Newton’s first and second laws, are constructed from timeless systems.
Because these systems are timeless, any choice of clock will do; good clocks are just one of infinitely
many valid clocks one could choose.

3 A timeless dynamical system
We consider a simple mechanical system comprised of three identical particles, each of mass m and
moving in one dimension.6 The particle’s locations are denoted xj ∈ R3, j = 1, 2, 3, which defines
the configuration space of the system. The paths taken by the particles in the configuration space
are defined as critical points of the action integral:

S =

∫ F

I

ds =

∫ F

I

√
2mK(x) [(dx1)2 + (dx2)2 + (dx3)], (1)

where K(x) = K(x1, x2, x3) is any chosen function; it determines the interactions of the particles
with each other and their environment. It should be made clear at the outset that the term “path”
will denote a smooth sequence of positions. No parametrization of the paths is assumed. Speaking
more physically, there is no time which labels the sequence of positions. The critical points are
computed by varying the action over all paths which begin and end at given initial and final points
xj
I and xj

F , respectively. Conceptually, the action integral defines a notion of dynamical “length” of
a path in configuration space and the physically allowed paths are those that minimize that length.
Mathematically, this variational principle determines the geodesics in the geometry defined by a line
element conformal to the Euclidean line element:

ds2 = 2mK(x)
[
(dx1)2 + (dx2)2 + (dx3)2

]
. (2)

What we have been describing is the Jacobi variational principle for mechanics [24]. There is no
notion of time present.7 As mentioned above, the paths in configuration space determined by the
Jacobi variational principle are, mathematically speaking, “unparametrized”. Physically, the paths
are simply continuous sequences of position and there is no information about how they are to be
traced out in time. So, for example, the Jacobi variational principle will tell us that the paths taken
by the planets are ellipses, but it will not tell us at what speed the planets are moving along the
ellipses.

6Generalizations such as: adding dimensions to the configuration space, using a non-Euclidean configuration space,
or allowing differing masses for the particles are straightforward and do not bring any conceptually new features into
play.

7While we have done away with time, we certainly have not done away with space. The configuration space is
simply assumed to be Euclidean, although any configuration space geometry could be used. This assumption of a
fixed spatial geometry is not essential, but allows us to focus on issues associated with time alone. A class of models
which generalize the Jacobi-type models and, in particular, have no “absolute space”, have been provided by Barbour
and Bertotti (Barbour and Bertotti 1982).
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For subsequent mathematical analysis, it is nonetheless mathematically convenient to introduce
a parametrization, which is, however, arbitrary and has no physical significance.8 For example,
one can parametrize the paths by their arc length s, defined implicitly by (2). In general, if the
parameter is denoted τ , the curves are denoted by xi = xi(τ), and the action takes the form

S =

∫ τF

τI

√√√√2mK(x(τ))

[(
dx1

dτ

)2

+

(
dx2

dτ

)2

+

(
dx3

dτ

)2
]
dτ. (3)

The Euler-Lagrange equations for the parametrized geodesics, xi = xi(τ), are then√√√√m
[(

dx1

dτ

)2
+
(
dx2

dτ

)2
+
(
dx3

dτ

)2]
2K(x)

∂K

∂xi
− d

dτ

(√
2mK(x(τ))(

dx1

dτ

)2
+
(
dx2

dτ

)2
+
(
dx3

dτ

)2 dxi

dτ

)
= 0, i = 1, 2, 3.

(4)
These equations are rather complicated, but they must be so that they do not depend upon the
choice of the parameter τ . A manifestly parameter-independent form of the equations determining
the geodesics is:√√√√m

[
(dx1)

2
+ (dx2)

2
+ (dx3)

2
]

2K(x)

∂K

∂xi
− d

(√
2mK(x)

(dx1)
2
+ (dx2)

2
+ (dx3)

2 dxi

)
= 0, i = 1, 2, 3. (5)

These equations only depend upon positions and displacements in position.
As mentioned earlier, the function K(x) determines the interactions among the particles and

between the particles and their environment. In the simplest case where K(x) is a constant, the
Euler-Lagrange equations define straight lines in the Euclidean geometry defined by (2). This can
be seen by using the arc length parametrization, defined by(

dx1

dτ

)2

+

(
dx2

dτ

)2

+

(
dx3

dτ

)2

= 2mK(x), (6)

whence the Euler-Lagrange equations (with K(x) = const.) are

d2xi

dτ2
= 0. (7)

A manifestly parameter-invariant form of this result is to observe that the equations (5) imply

dxi = ci, (8)

where ci, i = 1, 2, 3 are constants. Therefore the ratios of displacements of the xi must remain the
same throughout the curve, thus defining straight lines in the xi variables.

From the point of view of the Jacobi variational principle, dynamical behavior is represented by
unparameterized curves in configuration space. Time evolution is a fiction which we introduce for
convenience. In particular, Newton’s description of motion is just one of infinitely many possibilities.
Time evolution according to Newton’s second law is obtained by choosing the parameter τ such that

m

2

[(
dx1

dτ

)2

+

(
dx2

dτ

)2

+

(
dx3

dτ

)2
]
= K(x), (9)

8The parametrization allows us to discuss “motion” using differential equations.
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whence the equations of motion are

m
d2x

dτ2
=

∂K

∂xi
. (10)

This takes the familiar form of Newton’s second law when we make the identification K(x) =
E − V (x), where V (x) is the potential energy function and the constant E is interpreted as the
value of the total energy. For a given curve in configuration space, the Newtonian time t and the
arc length s are related by

ds = 2Kdt. (11)

As our aim is to consider the fate of this timeless model in the quantum domain, it will be useful
to have the Lagrangian,

L =

√
2mK(x)

[
(ẋ1)

2
+ (ẋ2)

2
+ (ẋ3)

2
]
, (12)

and its Euler-Lagrange equations expressed in phase space form.9 The canonical momenta are

pi =
∂L
∂ẋi

=

√
2mK

(ẋ1)
2
+ (ẋ2)

2
+ (ẋ3)

2 ẋ
i =

√
2mK

(dx1)
2
+ (dx2)

2
+ (dx3)

2 dxi. (13)

The last equality in (13) makes manifest the fact that the momenta are defined independently of
any time parameter.

The momenta in (13) can be interpreted as normalized infinitesimal displacements in position.
Here “normalized” means

p21 + p22 + p23 = 2mK(x), (14)

a condition satisfied by virtue of the definition of the momenta. This condition represents a constraint
to be imposed on the phase space variational principle. We write the constraint as

H = 0, (15)

where
H =

1

2m

(
p21 + p22 + p23

)
−K(x). (16)

Because the Lagrangian L is homogeneous of degree one in the velocities, the Hamiltonian vanishes,10
and the phase space Lagrangian L is given by

L = p1ẋ
1 + p2ẋ

2 + p3ẋ
3 − λH, (17)

where λ is a Lagrange multiplier.
The meaning of the Lagrange multiplier can be established from the Euler-Lagrange equation

for pi:

ẋi =
λ

m
pi. (18)

From the constraint H = 0 it follows that λ is the rate of change of Newtonian time t with respect
to the arbitrarily chosen parameter time τ :

λ =
1

2K

ds

dτ
=

dt

dτ
(19)

The condition λ ̸= 0 may be assumed to ensure only proper parametrizations are being used.
9Here a dot denotes a derivative with respect to the arbitrary time τ .

10This is a well-known feature of timeless dynamical systems (Sundermeyer, 1982).
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4 Canonical equations of motion and Dirac-Bergmann observ-
ables

Just as the Lagrangian (12) determines paths in the configuration space variables xi, so the La-
grangian (17) determines paths in the phase space variables (xi, pi). It is from such paths that
clocks will emerge, including clocks which tell Newtonian time. Moreover, the set of such paths has
a fundamental role to play in the quantum theory.

The parametrized paths are determined by the Euler-Lagrange equations of (17), which are

ẋi =
λ

m
pi, ṗi = λ

∂K

∂xi
. (20)

The form of the equations – and hence the form of their solution – depends upon a choice for the
function λ = λ(τ), which amounts to a specification of the parameter τ .11 The need to specify
the function λ(τ) corresponds to the mathematical need to select a parametrization of the solution
curves if we are to use differential equations to describe them. The choice of λ is however, completely
arbitrary (except as dictated by convenience), and does not, a priori, correspond to any particular
clock-measurement scheme. However, if a particular observable is used as a clock, then one can
infer the corresponding choice of λ. For example, λ = 1 corresponds to using a clock which reads
Newtonian time, while λ(τ) = 1/(2K(x(τ)) corresponds to using arc length along the geodesics as
a “time”.

To the equations (20) we must adjoin the constraint H = 0. The constraint function H is easily
checked to be a constant of the motion (for any choice of λ) and so is independent of any notions of
time.

According to the theory of constrained Hamiltonian systems, the set of curves satisfying (20) and
H = 0 will be uniquely characterized by 4 constants of the motion [38]. These constants of motion
are often called Dirac-Bergmann observables. These observables express relational information about
the behavior of the system and, being constants of motion, do not involve any a priori notions of
time. In the quantum description of constrained Hamiltonian systems one only promotes Poisson
algebras of Dirac-Bergmann observables (and functions thereof) to operator algebras on the Hilbert
space of states (Sundermeyer 1982, Rovelli 1991 and 1991b, Gambini et al. 2009). These observables
always exist, at least locally, but their explicit analytic form is usually not available, so let us consider
a simple example.

We suppose that the function K(x) ≡ k = constant. This means that the particles do not
interact. The Dirac-Bergmann observables can be now be constructed from: (1) the usual angular
coordinates in momentum space on the sphere S2 of radius

√
k, according to the solution of the

constraint (15), and (2) from the corresponding infinitesimal generating functions for rotations of
this S2. Explicitly, we define

p1 =
√
2mk sin(β) cos(α), p2 =

√
2mk sin(β) sin(α), p3 =

√
2mk cos(β), (21)

or
α = tan−1

(
p2
p1

)
, β = cos−1

(
p3

p21 + p22 + p23

)
, (22)

along with
J1 = x2p3 − x3p2, J2 = x3p2 − x2p3, J3 = x1p2 − x2p1. (23)

It is straightforward to verify that α, β, J1, J2, and J3 are indeed constants of motion. The Ji obey an
identity: x1J1+x2J2+x3J3 = 0, so only 2 of the three J ’s are independent. It is possible to construct
2 independent functions of the Ji, but is usually more convenient to work with this redundant – but
globally defined – set of three observables. The Dirac-Bergmann observables (α, β, J1, J2, J3) label
the unparametrized phase space paths defined by the equations of motion.

11We emphasize that the unparametrized paths are unambiguously determined, a parametrization of the paths is
completely arbitrary.
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5 An emergent Newtonian clock
We now show how time can emerge from the timeless dynamics associated to the Jacobi variational
principle. Suppose a degree of freedom, say x3, is weakly coupled to the remainder of the system.
One can idealize this by neglecting the presence of this variable in K(x). In this case the equations
of motion have x3 behaving as a free particle,

ẋ3 = λ
p3
m

, ṗ3 = 0. (24)

The dynamical variable

T =
mx3

p3
(25)

will serve as a convenient clock12 for the following reasons. The equations of motion for T imply

Ṫ = λ. (26)

Consequently, if T is used to parametrize the curves in configuration space that represent the motion
of the system then λ = 1. As mentioned earlier, the clock being used is “Newtonian” when λ = 1, that
is, the equations of motion relative to T are given by Newton’s second law with K(x) = E − U(x),
where E is the value of the total mechanical energy and U(x) is the potential energy function. The
clock T allows Newtonian time to “emerge” from relational observations of positions and momenta.
These relations are dictated by the unparametrized paths taken by the particles in phase space.

To see how this works in a little more detail, let us return to our simple example of non-interacting
particles where K(x) = k = constant. In terms of the clock T , the equations of motion and the
constraint imply

x1 =
P1

m
T +X1, x2 =

P2

m
T +X2, (27)

p1 =
√
2mk sin(β) cos(α) ≡ P1, p2 =

√
2mk sin(β) sin(α) ≡ P2, p3 =

√
2mk cos(β) ≡ P3, (28)

where the X1 and X2 denote the values of the position of particles 1 and 2 when T = 0. We can now
construct Dirac-Bergmann observables which, when measured, answer the following question: What
are the values of x1 and x2 when the clock T reads the value c? These observables (still assuming
K(x) = k) are given by

Q1 = x1 − P1

m
(T − c), Q2 = x2 − P2

m
(T − c). (29)

It is easily verified that: (1) Q1 and Q2 are constants of the motion, and (2) Qi = xi, i = 1, 2, when
T = c. These observables are examples of “evolving constants of motion” [29], which exhibit time
evolution as a purely relational construction independent of any non-dynamical, externally prescribed
time parameter. Such observables have been shown to feature in a conditional probability approach
to time evolution in quantum theory [17]; a proposition we plan to explore in a future article.

6 Conclusion
Following Mach, we have used a relatively simple model to show absolute time is not essential
to Newtonian mechanics, and that Newtonian clocks can be constructed from the observables of
timeless dynamical systems. Time is constructed from the configurations of particles. Effectively,
then, the boundaries of any dynamical system should extend to include the clock that we use to

12The motion of particle 3 provides a clock only in regions of phase space where p3 ̸= 0. For motion which includes
p3 = 0 one should select some other dynamical variable to serve as a clock.
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measure values of ‘t’. We have shown in the preceding discussion that this extension is easily done in
classical mechanics. The analogous extension in quantum mechanics is problematic, where the clock
is treated classically while the rest of the system is non-classical! We do not know how to extend the
boundaries of a quantum system to include clocks because it is not clear how best to interpret the ‘t’
that appears. The conditional probability approach of (Gambini et al 2009) seems most promising
in this regard and we will explore this approach in the context of the Jacobi variational principle in
a future work.
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