
University of Massachusetts Amherst

From the SelectedWorks of Charles M. Schweik

2011

Proceedings of the OSS 2011 Doctoral
Consortium
Charles M Schweik, University of Massachusetts - Amherst
Imed Hammouda, Tampere University of Technology

Available at: https://works.bepress.com/charles_schweik/20/

http://www.umass.edu
https://works.bepress.com/charles_schweik/
https://works.bepress.com/charles_schweik/20/

Charlie Schweik & Imed Hammouda (Eds.)
Proceedings of the OSS 2011 Doctoral Consortium,
October 5, 2011, Salvador, Brazil

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 20
Tampere University of Technology. Department of Software Systems. Report 20

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 20
Tampere University of Technology. Department of Software Systems. Report 20

Charlie Schweik & Imed Hammouda (Eds.)

Proceedings of the OSS 2011 Doctoral Consortium, October 5, 2011,
Salvador, Brazil

Tampere University of Technology. Department of Software Systems
Tampere 2011

ISBN 978-952-15-2722-7
ISSN 1797-836X

Preface

We are honored to introduce the proceedings of the OSS 2011 Doctoral Consortium
(DC). This Consortium was collocated with the 7th International Conference on
Open Source Systems (OSS 2011) held in Salvador, Brazil on October 5th, 2011. Like
DCs that have preceded this one, our goal was to provide doctoral students
conducting research on open source systems an opportunity to share and discuss
their goals, methods, and in some cases results before completing their PhD studies.
Over the course of the day, we had seven accepted student papers presented and
roughly thirty participants in the audience. As should be in an international
conference, student participants came from all over the world, including the USA,
Europe, Asia and South America.

What follows are revised papers presented by our participants. Each student gave
twenty-minute presentations of their research proposal and in some cases
elaborated on their current status. Each presentation was followed by twenty-
minutes of open discussion during which PhD students were provided with
feedback on their work from faculty members as well as other PhD students in the
audience. The students themselves then worked with us to read and edit the papers
in the process of producing this volume.

We hope that all PhD students who participated benefited from this experience, and
we wish them all the best as they work to complete their research.

November 2011

Charlie Schweik
University of Massachusetts, Amherst, USA

Imed Hammouda

Tampere University of Technology, Finland

Acknowledgements

We would like to acknowledge the contributions of several people and organizations
for helping make the 2011 OSS Doctoral Consortium possible. First, we are grateful
to Alberto Sillitti and Paula Bach for their assistance in the planning and selection of
submitted papers. Second, thanks go to to the relatively large group of international
faculty (and others) who took an extra day to attend the DC and provide feedback to
the presenters. Walt Scacchi, Greg Madey, Fabio Kon, Klaas_jan Stol and Bjorn
Lundell come immediately to mind, but there were quite a few others. In retrospect,
we regret not taking audience attendance for there were too many in the room for
us to remember (or even meet). If you were there – this “thanks” goes to you. We
are also grateful to the larger OSS 2011 conference organizing team – Scott Hissam,
Barbara Russo, Fabio Kon, Manoel de Mendonca Neto, Bruno Rossi and Greg Madey
for their help both before and during the DC and the team of people in Brazil who
helped organize the meeting room. A special thanks goes to the United States
National Science Foundation for providing fellowship support to several of our
participants under award number IIS-0447623, and to the Tampere University of
Technology in Finland for helping to officially publish these proceedings. Finally –
and perhaps most importantly – thanks to the PhD students who, through their hard
work and effort made the DC a success.

Doctoral Consortium Organization

Doctoral Consortium Co-Chairs

Paula Bach, Microsoft Corporation, USA
Charles M. Schweik, University of Massachusetts, Amherst, USA
Alberto Sillitti, Free University of Bolzano, Italy

Program Committee

Björn Lundell (University of Skövde, Sweden)
Fabio Kon (University of São Paulo, Brazil)
José Carlos Maldonado (University of São Carlos, Brazil)
Joseph Feller (University College Cork, Ireland)
Kevin Crowston (Syracuse University, USA)
Tony Wasserman (Carnegie Mellon University, USA)
Walt Scacchi (University of California, USA)

Contents

1

2

3

4

5

6

7

The Emergence of Quality Assurance in Open Source Software Development 1
Adina Barham

Essential Properties of Open Development Communities ... 20
Terhi Kilamo

Open Source: From Mythos to Meaning ... 28
Alexander C. MacLean and Charles D. Knutson

Semi-Automatic Evaluation of Free Software Projects: A Source Code Perspective 42
Paulo Meirelles, Fabio Kon, and Carlos Santos Jr.

Reprogramming Open Source Ecosystems – Case Study of Meego .. 54
Jarkko Moilanen

Understanding Code Forking in Open Source Software .. 64
Linus Nyman

FLOSS Quality: Definition, Antecedents, and the Role of Modularity .. 73
 Claudia Ruiz

The Emergence of Quality Assurance in

Open Source Software Development

Adina Barham1
1 Hitotsubashi University, Graduate School of Social Science, 2-1 Naka,

Kunitachi, Tokyo 186-8601, Japan
adina.barham@yahoo.com

Abstract. An increasing number of open source software projects are formally
defining a QA step in the development cycle. This research seeks to establish
what kinds of open source software projects are adopting QA practices and at
what stage in their maturity, how projects define QA and which community
members are undertaking QA.

Keywords. QA, software quality assurance, social network analysis,
communication patterns.

1 Introduction

More and more open source software projects have dedicated quality assurance
teams. This suggests that the open source development model is changing, and
furthermore that the structure of open source software communities may be changing
as well. Research on the identity and dynamics of these emerging QA groups within
open source software projects is necessary in order to keep our understanding of
open source development practices up to date. Although much research has been
done on open source communities, little attention has been paid to the people
performing the quality assurance phase, for example regarding their backgrounds,
expertise, and history of involvement with other software projects. This research
aims to analyze how quality assurance is integrated in the open source movement,
how it is impacting the traditional open source development model and who exactly
is performing it.

2 Background and Motivation

Initially, software quality assurance was performed by software companies or it was
carried out in a shallow fashion using black-box testing techniques [4]. This made it
difficult to evaluate quality attributes without proper access to information. However,
the emergence of QA in open source software, with its transparent communications
and results, promises to allow scholars to study quality assurance processes more
thoroughly than was previously possible.

1

 Adina Barham1

Software development processes have evolved substantially in recent decades,
becoming more complex and requiring a more structured and rigorous quality
assurance process in order to produce stable solutions that meet the high standards
demanded by users and customers. For this purpose a clear definition of quality was
needed in order to endorse improvement in software; hence the ISO/IEC 9126-1 [10]
which was updated and replaced in March 2011 with the ISO/IEC 25010 [11]
standard. The first part of the standard ISO/IEC 9126-1 classifies software quality in
a structured set of characteristics and sub-characteristics such as: functionality,
reliability, usability, efficiency, maintainability and portability. The significance of
this classification is that the software quality assurance process implies not only
testing the application but also a series of steps necessary to ensure high quality
standards. We would expect that as a project matures so does the testing process
around it and according to Dibona [2], this is indeed true for both open source and
proprietary software.

The importance of quality assurance in open source projects has recently been
recognized as a major issue that needs further study. For example, the European
Commission has started the QualiPSo [14] project (Trust and Quality in Open Source
Systems http://www.qualipso.org). QualiPSo aims to increase the level of trust in
open source software by defining and implementing technologies, processes and
policies to facilitate the development and use of open source software components.
Among research in other areas, the QualiPSo project is attempting to define
trustworthy QA processes for open source software by developing various models,
strategies and tools that assist in performing QA.

The structure of groups of individuals performing quality assurance, as well as
their links with other groups are important aspects that need to be further analyzed
due to the fact that it may impact the classical open source development model used
so far. Previous research has addressed the structure of the open source communities
and communication patterns. For example, Crowston and Howison [3] analyzed the
social structure of 124 open source software projects, and found no consistent pattern
of centralization or decentralization in the FLOSS projects that they studied in
relation to bug fixing. However they suggested that there is a negative relationship
between project size and centralization due to modularity. In a paper of particular
relevance to this research, Mockus et al.[5] found that in the Apache httpd project
bug reporting was quite decentralized in contrast to development; this raises the
question of how QA is performed in other projects, and particularly when it is
undertaken as an organized activity.

If we understand who is performing the quality assurance process and how this
process is influenced then we can use and further develop these findings into best
practices that may come in useful when performing QA and team building for both
open source software as well as proprietary software.

2

http://www.qualipso.org/

The Emergence of Quality Assurance in Open Source Software Development

3 Research questions

Which OSS projects have formal QA procedures, and how do they define QA? This
question covers topics such as the ways in which QA teams operate, the backgrounds
and skill-sets of people doing QA, the time commitment for an individual performing
QA tasks, and the extent to which a few people perform most of the tasks while a

d
resource constraints it is impossible to cover all these topics in this research.

How do QA contributors fit into project communities? According to the onion
model of open source projects[3], community members can be split into three main
categories: active users, co-developers and core developers. However, more recent
studies [17] have suggested that the transition between the core developers and outer

[18], 20-25% of bugs are initiated by outsiders and migration patterns can be
observed in the sense that outsiders become members or the other way around. This
research project aims to investigate the extent to which QA is a step on the road from
end-user to developer, or whether it is become established as a separate category of
contributor.

What are the dynamics of QA teams? This research seeks to establish the ways in
which core developers and QA work together, the mechanisms for coordinating their
work, and the extent of migration between quality assurance teams and developer
teams.

Why do projects establish QA teams? Answering this question requires an
understanding of how QA practices and diffuse between projects, which in turn
requires a survey of how quality assurance contributors work across multiple

which quality assurance comes to be considered a necessary pre-release step.
The aim is to explore the relationships between users performing quality

assurance on different open source projects. Another important question in this

of dedicated quality assurance teams. Do independent projects have a formal quality
assurance step?

Does project type affect QA practices? Another variable that might influence the
existence and character of a formal quality assurance step is the project type. In
particular, projects developing software intended for use by non-technical users
might tend to evolve a particular set of QA practices. On the other hand, widely-
used, mission-critical software applications aimed at IT professionals, such as web-
servers, may develop a different set of formal QA steps.

4 Proposed research method

This research employs quantitative research methodologies to shed light on these
issues. Mailing lists, bug trackers, forums, wikis and any other form of

3

 Adina Barham1

communication used by the open source software communities to store actions
performed in the quality assurance phase will be primarily analyzed. By including all
communication channels, members performing QA tasks and members performing
other activities can be easily categorized using their activity levels or actions as
opposed to directly asking community members who may or may not respond or
give biased answers. Also, determining what projects have a formal QA step, how
they define it and how they implement QA in the development process can be
analyzed by mining the same datasources. Applying quantitative methods in the first
phase of the research process will provide a larger amount of data that can be further
analyzed with social network analysis methods that will lead to answering many of
the questions raised in the previous section regarding communication patterns,
project migration, evolution within project community as well as central figures that
coordinate the QA effort.

The first important step in gathering data will be identifying the projects that are
most relevant to this research. These projects should have reached a certain maturity
level in order to analyze their evolution over time. Also they should have at least an
associated bug tracker and a mailing list dedicated to communication between
members that are performing quality assurance. Size, programming language in
which they were developed and popularity rate will also be an important factor in
deciding which projects will be included in the data sample. The main focus will be
on projects in which the main communication language is English but if relevant data
is available for projects in which communication is in any other languages then they
will not be excluded from the data sample.

The FLOSSMetrics [8] database is one of the largest databases of quantitative
information regarding open source software; it covers about 2800 projects including
ones from forges such as KDE, SourceForge, ObjectWeb or OSOR. However, the
preliminary analysis suggests that the FLOSSMetrics database will not provide
sufficient data, especially mailing list archives, of many of the world's most widely
used open source projects.

From previous experience and other related research articles, it is expected that
considerable cleaning of mailing list and bug tracker data will be necessary in order
to carry out reliable, automatic data analysis. This step will be performed by writing
cleaning scripts, running already available tools and correcting manually the
remaining errors and inconsistencies.

To find a possible link between the existence of a defined QA team and type,
projects will be divided into categories. For example, some projects will have a
clearly defined quality assurance team, while in other projects core developers must
perform certain quality assurance steps.

The operationalization process will include methods used by researchers that
analyze social networks as well as methods previously used in the analysis of open
source software communities. For example, the social network analysis approach
will include global or node specific metrics such as closeness centrality, betweenness
centrality, degree centrality and so on as well as network visualization that allows
comparison between similar networks, peculiarity discovery and so on.

Projects participants will be represented as nodes (vertex) while interactions will
be represented as edges (arc). Defining interactions between members could impose

4

The Emergence of Quality Assurance in Open Source Software Development

some difficulties in the sense that data will be collected in different formats and in
some cases thread-based analysis could be difficult to implement. An alternative
solution would be quotation-based analysis in which participants quote e-mails to
which they are replying. Previous research successfully used both quotation-based
analysis as well as thread-based analysis [15,3], for example, Crowston et. al defined
a link between two developers as a reply (or follow up) to the previous message

-mails sent from one member

for the
while Mike never replied to any message.

Fig. 1. Network representation

Users that are active on the QA mailing list may be anything from core
developers to end users. It is therefore important to find out precisely to which group
or groups each participant belongs. This implies that other mailing lists and
communication channels should be taken into consideration. For example, if a
member is highly active on bug trackers and at the same time submitting code
frequently then it is safe to assume that he is not only performing QA assurance
tasks. Also, in order to track migration patterns between teams, the participants'
activity history in different teams in different periods of time must be checked. Bug
trackers will be a useful source of data regarding communication between QA
members and developers which will allow the author to identify how QA
contributors fit in project communities.

The structure of the groups taken into consideration will be represented using
specialized software. Interactions will be represented separately for each project
taken into consideration in order to visualize special properties. To find out if people
move from one project to another or interact with members from other projects, a
graph containing all the projects will be analyzed. On the other hand a collapsed
graph may bias certain values such as centrality and for this reason, examining the
network evolution over time is very important. For example, in case a leader (a node
with a large number of connected edges) leaves a project and is replaced with
another leader and the centrality level is maintained, in case we collapse the two
states of the graph we will obtain a lower overall centrality value. Another advantage
of using this approach is that we will get an idea of when and how new members are
added to the team, how and when they are eliminated or how the links start to form.

Mike Peter

5

Amy

5

 Adina Barham1

At a later phase of the research it may be possible to use questionnaires, short
interviews or other research instruments in order to confirm previous findings such
as who are the coordinating members or what are the QA practices within a certain
project. Such surveying methods might be used only on a random set of projects or
on ones which contain certain ambiguous data.

To answer the questions regarding team dynamics previously acquired data will
be processed with Pajek, social network visualization software, after which user
clusters (if any), connections, migration patterns will be identified and evolution at
different maturity points of the analyzed projects will be tracked. Pajek is a very
powerful tool that allows to quickly determine statistical information such as
clustering coefficient, distances between nodes and other relevant data. Based on the
results obtained at this stage, other tools and algorithms will be identified in order to
maximize data potential.

5 Preliminary Analysis

Outlining the current state of QA activities in open source projects is the first step in
this research. For that purpose, data availability and QA existence within the
FLOSSMetrics data was analyzed by comparing with other possible data sources. In
addition, a preliminary case study should provide enough data in order to determine
possible issues encountered during the research or flaws in the methods used.

5.1 Data

In order to get a sense of the situation a data dump from FLOSSMetrics [8]
containing the mailing lists for 581 open source software projects was downloaded.
This dump was first restored on a local machine using a MYSQL database. After

and other derivations 46728 messages in 334 projects were found. The next step,
which is currently being prepared, is to analyze manually each mailing list in order to
determine if there is indeed a quality assurance team, at what stage of maturity of the
projects was this decision taken and most importantly how QA is implemented.

It was necessary to check the extent to which the FLOSSMetrics project contains
mailing lists associated with 'big names' of the open source movement, in other
words successful or popular projects. To perform this verification task, a list of the
top 50 most downloaded applications as well as a list containing the top 50
applications ranked by number of users were downloaded from
https://www.ohloh.net [9]. Unfortunately, no mailing lists associated with any of
these projects is included in the FLOSSMetrics project. Therefore the author will
have to attempt to obtain an archive of mailing lists or messages from other
communication channels for each of these projects. However, a preliminary
verification within the first 50 'popular' applications (ranked by number of users) was

6

https://www.ohloh.net/
https://www.ohloh.net/

The Emergence of Quality Assurance in Open Source Software Development

conducted and it was found that at least one third have dedicated quality assurance
teams (see Table 1).

Table 1. Top 50 open source software projects ranked by user number (www.ohloh.net)
Software Name QA status

Mozilla Firefox Yes
Subversion No - tested before release
Apache HTTP Server No - community structure contains bug hunter
MySQL Yes
PHP Yes
Linux Kernel 2.6 No - tested before release
Firebug No - use test bots
Bash No - tested before release
OpenOffice.org Yes
Ubuntu Yes
PuTTY No
GIMP No - some tasks performed by developers
GNU Compiler Collection No - some tasks performed by developers
phpMyAdmin No
Vim No - some tasks performed by developers
TortoiseSVN No
GNU grep No
Thunderbird Yes
Python programming language No
VLC media player Yes
sudo No
X.Org Yes
GNU tar No
Git No
Eclipse Platform Project No
OpenSSH No
GNU Make No - alpha testing
jQuery No; Bug triage team
7-Zip No
GNU Core Utilities No
GNOME Yes; Bug squad
Pidgin No
Wget No; QA might be performed by third parties
GNU GRUB No

7

https://www.ohloh.net/

 Adina Barham1

Software Name QA status
GNU Screen No
OpenSSL No
PostgreSQL Database Server Yes
Debian GNU/Linux Yes
FileZilla No; further analysis needed
CakePHP No; further analysis needed
rsync Yes
Trac No; further analysis needed
Subclipse No; further analysis needed
WordPress No; tests performed by SVN and nightly build users
man No
Tomcat No
MPlayer Yes
GNU findutils No
Inkscape Yes
bzip2 No

Of course these results are based on a preliminary search which was conducted in
order to grasp possible categories and data availability. Further analysis is required
for the projects in which a formally defined quality assurance team was not easily
identified. For example, it is possible that in certain projects the QA team is defined
differently, has a different name or is performed by third parties. Some of the
projects taken into consideration have multiple mailing lists associated and quality
assurance is defined in a particular way which may bring some difficulties in
assessing if the development process contains a QA step or not. Nevertheless, the
significant number of major OSS projects now running QA teams supports the basic
assumption of this thesis, that we are witnessing the emergence and evolution of QA
in the open source software community.

5.2 Case study

The next step in the research was to analyze the mailing lists associated with the
Mozilla quality assurance team. The reason why Mozilla was chosen as a first case
study is because Mozilla produces one of the best known FLOSS applications
(Firefox browser) and has a dedicated quality assurance team since 2006 which
provided the right amount of data in order to perform a preliminary study.

Mailing list data was collected in the summer of 2011 and according to the
Mozilla Quality Assurance (QMO) website [16], at that time, there were 5 sub teams:

8

The Emergence of Quality Assurance in Open Source Software Development

Web QA, Desktop Firefox, Browser Technologies, Automation, Services1 which each
had a dedicated forum. The activity on the forums was low compared to the mailing
list activity and for that reason the mailing lists2 were analyzed as a starting point.
Web QA, Desktop Firefox, Browser Technologies, Services teams used the
mozilla.dev-quality mailing list while Automation team used the Mozmill developer
mailing list.

After downloading the data, in order to obtain results as accurate as possible the
data was cleaned by performing the following actions:

 spam was marked as such and removed
 double posts were removed
 a single username was assigned to participants posting with multiple

usernames3
 authors who did not post in reply to other authors were ignored

After cleaning the data, it was stored in a PostgreSQL database and queries were

ran in order to obtain general statistics. As expected, the traffic and number of users
is higher on the Mozilla.dev-quality mailing list (Table 2)4.

Table 2. Mozilla.dev-quality: 2006/17/2-2011/6/30, Mozmill developer 2008/10/1-2011/7/21

 Mozilla.dev-quality Mozmill developer Total

Topic 1042 313 1299
Messages 2535 1155 3690

Thread initiators 199 47 233
Distinct authors 293 61 332

If we consider that 5 messages is the lower limit for highly active users then
ly 9.8% of the users

post more than 5 messages and 21% of users receive more than 5 replies. Another
interesting detail that can be noticed after analyzing the number of messages posted

1 The structure of the Mozilla Quality Assurance teams is dynamic considering the fact that
the Services team was ulteriorly dropped and that since data was collected, other changes have
also taken place.
2 Two mailing lists are at the disposal of the QMO teams: mozilla.dev-quality which
contains more general discussion topics and Mozmill developer which contains more
technical discussions topics that are mostly about the Mozmill testing tool.
3 Users that would post only with substrings of the username they would usually use (for
example first name instead of full name and so on) were manually checked so it is possible
that some participants using multiple usernames were not detected at this phase.
4 Difference in the total is due to cross posting and users belonging to both lists.

9

 Adina Barham1

per year (Table 3) and the number of threads started per year (Table 4) is an increase
in traffic in the year 2009.

Table 3. Messages posted per year

 Mozilla.dev-quality Mozmill developer Total

2006 343 - 343
2007 361 - 361
2008 401 155 556
2009 881 426 1307
2010 411 328 739
2011 138 246 384

Table 4. Threads started per year

 Mozilla.dev-quality Mozmill developer Total

2006 89 - 89
2007 167 - 167
2008 190 50 238
2009 324 103 415
2010 219 92 282
2011 63 71 121

The next step was to prepare the data for further analysis with Pajek by ignoring

authors who replied to their own messages, or in other words eliminating 62 loops
and eliminating multiple lines (arcs) between pairs of authors by summing up their
values. The resulted directed simple graph contained 301 vertices connected by 1068
arcs.

10

The Emergence of Quality Assurance in Open Source Software Development

Fig. 2. QMO network

The average degree of the network is 7.09 which means that the average number

of connections a participant has is approximately 7. On the other hand, 742 arcs have
value 1 while only 326 have a value greater than 1 which means that the majority of
participants sent or received only one e-mail or in other words that the majority of
links created between distinct pairs of participants were created by sending only one
e-mail.

The density of a network is the number of lines expressed as a proportion of the
maximum number of lines which means that the greater the density the tighter the
network structure is. The density of the QMO network is 0.011 which means that
only 1.1% of possible connections between participants are present. The pairs of
participants (Table 5) that sent the highest number of e-mails are also the participants
with the strongest ties in the network.

Table 5. Arcs with the highest values

Rank Value Names
1 53 Skupin ➔ Rogers
2 45 Skupin ➔ Talbert
3 41 Rogers ➔ Skupin

11

 Adina Barham1

4 34 Skupin ➔ Darche
5 29 Darche ➔ Skupin
6 27 Talbert ➔ Rogers
7 24 Rogers ➔ Talbert
8 22 Talbert ➔ Skupin
9 18 Christian ➔ Rogers
10 15 Desai ➔ Skupin

In order to analyze the network's communication structure we need to find the

degree centralization of the network which represents the variation in the degrees of
vertices divided by the maximum degree variation which a network of the same size
could possibly have. In this particular case the all degree centralization is 0.20, input
degree centralization is 0.18 and output degree centralization is 0.22. The maximal
degree centralization score a network this size could have is 1 while the minimal
score is 0. This means that the mailing list participants' network has low degree
variation; in other words the gap between vertices with a high number of neighbors
and vertices with low number of neighbors is not that large.

While the degree of a vertex is the number of lines incident to it, the indegree of
a vertex is the number of arcs it receives and the outdegree is the number of arcs it
sends. In this network the highest value for outdegree is 72 and the highest value for
indegree is 59, both with an with an arithmetic mean of 3.54.

A semiwalk from vertex u to vertex v is a sequence of lines such that the end
vertex of one line is the starting vertex of the next line and the sequence starts at
vertex u and ends at vertex v while a walk between vertex u to vertex v is a semiwalk
in which none of its lines are an arc of which the end vertex is the arc's tail.
Similarly, a semipath is a semiwalk in which between u and v no vertex occurs more
than once while a path is a walk that respects the same condition. We can say that a
network is weakly connected if each pair of vertices is connected by a semipath and
strongly connected if each pair of vertices is connected by a path. A weak component
is a maximal connected subnetwork while a strong component is a strongly
connected subnetwork. The QMO network contains both strong and weak
components as follows:

 129 strong components where the largest component contains 173 vertices
 9 weak components where the largest component contains 289 vertices

The distance from the vertices Skupin (the participant with the most links in the
network) to all others (k-neighbours) has values between 1 and 5 except for 12
vertices to which there is no connection.

A k-core is a maximal subnetwork in which each vertex has at least degree k
within the network and by eliminating the lowest k-cores from a network we can
easily detect the existence of cohesive subgroups. By eliminating the lowest 3-cores
from the network the subgroup displayed in Figure 2 was obtained.

12

The Emergence of Quality Assurance in Open Source Software Development

Fig. 3. Lowest 3-core eliminated image

In order to analyze the communication patterns of more active users, a subgraph
was extracted by performing the following operations:

 transformed the directed graph to a simple undirected one
 eliminated lines with a value less than 2
 eliminated isolated vertices

So basically people without at least one reciprocal connection in the network or
people that communicated with an another participant by sending/receiving less than
2 e-mails were eliminated. The resulting graph has 164 vertices and 345 lines with a
value greater than 1. Density (no loops allowed) is 0.0258 while the average degree
is 4.207.

A clique is a maximal complete subnetwork containing three vertices or more
while complete triads are complete subnetworks consisting or three vertices. These
triads represent a strict definition of a cohesive unit, a basic measurement unit. The
total number of triads contained by the active users' graph is 238 while the highest
number of triads to which a vertex belongs to is 77 while the lowest is 0. Vertices
that belong to at least one triad represent approximately 50% of the total number
which means that half of the active participants belong to at least one cohesive
group.

13

 Adina Barham1

Fig. 4. Triads

A geodesic is the shortest path between two vertices. The betweenness centrality
of a vertex is the proportion of all geodesics between pairs of other vertices that
include this vertex while the betweenness centrality score is the variation in the
betweenness of the vertices divided by the maximum variation in a network of the
same size. The active users' graph has a betweenness centralization score of 0.354
while the betweenness centrality values range from 0 to 0.366 with 54.268% of the
vertices with a betweenness score equal to 0. This means that over 50% of the
participants are not well connected with other participants and they do not influence
the information flow.

The distance from u to v is the length of the geodesic from u to v. The closeness
centrality of a vertex is the number of other vertices divided by the sum of all
distances between the vertex and all others while the closeness centralization score is
the variation in the closeness centrality of all vertices divided by the maximum
variation in a network of the same size. The active users' graph has a closeness
centralization score of 0.386 while the closeness centrality values range from 0.192
to 0.517 with 68.2927% of the vertices with a centrality over 0.301 and 6.0976%
with closeness centrality over 0.409.

14

The Emergence of Quality Assurance in Open Source Software Development

Fig. 5. Central figures

A bridge is a line whose removal increases the number of components in the
network while a cut-vertex is a vertex whose deletion increases the number of

as

Fig. 6. Energized constraint

15

 Adina Barham1

components in the network. A bi-component is component of minim size 3 that does
not contain a cut vertex. The active users' graph contains 73 bi-components from
which 71 are bridges. The remaining two bi-components have a size of 3 and 91.

The dyadic constraint on vertex u exercised by a tie between vertices u and v is
the extent to which u has more and stronger ties with neighbors who are strongly
connected with vertex v while the aggregate constraint is the sum of the dyadic
constraint on all ties of a certain person. The aggregate constraint has values between
0.098 and 1.085.

If a relation between two participants is created when they exchange an e-mail
and that relation doesn't deteriorate time then the network evolution can be
visualized. For that purpose the timeline was split into 6 month periods and the
correspondent graph was generated for each period.

Fig. 7. Network evolution

If, on the other hand, relations can be deteriorated over time and users become
inactive in certain time frames then the network evolution looks completely
different. In return, it is much easier to observe the network's state in a certain
moment in time and compare it with previous steps.

16

The Emergence of Quality Assurance in Open Source Software Development

Fig. 8. Network state

6 Conclusions and issues

Based solely on the analysis performed so far on the mailing lists used by the
Mozilla quality assurance teams it can be concluded that user activity is not linked to
time progression but there are fluctuations which means that there are other variables
that must be found. There are basically no small groups of individuals working
together and participants from all the teams form a large group of 163 active users
spanning bot
graph have a high closeness centrality score (0.409) which indicates that a small
number of users represent the center of the network.

Regarding the Mozilla case study, the next phase is to attribute positions to key
users. For that purpose data available from code repositories and issue trackers will
be analyzed and in addition participants will be categorized. For example, if a user is
active on the mailing lists and issue tracker but has never submitted code then we can
assume he is not a developer, on the other hand, if a user is always committing code
to various projects (except Mozmill) then we can assume he is developer. Of course,
this step needs to be performed carefully because this participant categorization will
be used as a starting point for the research. Also, by analyzing the data available on
other channels, users migration between teams can be tracked by measuring their
activity levels in certain time frames.

To answer at what stage of the Mozilla projects' evolution was the QA team
officially formed it is necessary to analyze the version history and analyze data from
websites, tops, and blogs about the maturity level at that point.

17

 Adina Barham1

Of course, the steps performed for the test case should be performed for other
OSS projects. For this purpose, the next phase consists of retrieving projects featured
on the www.ohloh.net website and cross referencing them with projects that have
associated mailing lists and are included in the FLOSSMetrics database. Depending
on the results, any relevant communication channels will be analyzed and the
available archives will be added to the database.

When analyzing data, if a group of people can be clearly identified as performing
QA tasks, then it will assumed that QA is present. It is important that the
communication channels contain data that allow users to be uniquely identifiable in
order to measure the level of activity within the project, user migration from one
project to another and fluctuations in team size, in order to depict as accurately as
possible the dynamics of this group. A huge challenge will be identifying users that
migrated from one project to another considering that users may not use the same e-
mail address or that some might not divulge their real identity in which case the only
solution will be finding actual references to the users' past project involvement.

At this point, it is important to categorize projects in order to identify links
between the existence of a formal quality assurance team and type for example.
During the process of identifying individuals performing quality assurance tasks and
data cleaning, data should be slowly added to Pajek in order to gather preliminary
network statistical data as soon as possible and identify possible further processes
that are needed to obtain unbiased results.

Another issue is represented by committers and core developers who are also
performing quality assurance tasks. It is important to identify these projects and
include them in a separate category and follow their evolution as they might be in a
transitional state. Of course, this step will also be achieved while analyzing the
message exchange associated with different projects. At this stage, it is still unsure if
this case should be included in the research as a special category due to the fact that
the actual number might be insignificant.

From the preliminary assessment it was concluded that separating quality
assurance performed into different categories is necessary in order to get a clear
picture of what activities each category covers. Some quality assurance teams write
official documents such as test cases and test plans whilst others just test the
application or help with the issue tracker and it is important to make a clear
difference between them. For example, users that only help with triaging issue
tracker bugs can't be considered as performing quality assurance, which means that
they will be included in a separate category.

18

http://www.ohloh.net/
http://www.ohloh.net/
https://www.ohloh.net/
https://www.ohloh.net/
https://www.ohloh.net/

The Emergence of Quality Assurance in Open Source Software Development

References

[1]
[2] DiBona C., Cooper D., Cooper M. (2006), Open Sources 2.0: The

[3] Crowston K., Howison, J. (2004), The social structure of Free and Open

Source software.
[4] Spinellis D., Gousios G., Karakoidas V., Louridas P., Adams P. J,

Samoladas I., Stamelos I. (2009), Evaluating the Quality of Open Source
Software, Electronic Notes in Theoretical Computer Science, Volume 233,
Proceedings of the International Workshop on Software Quality and
Maintainability (SQM 2008).

[5]
Open Source Software Development: Apache And Mozill
Transactions on Software Engineering and Methodology, volume 11,
number 3, pp. 309 346.

[6] Lee S. T., Kim H., Gupta S. (2009), Measuring open source software

success, Omega, Volume 37, Issue 2, April.
[7] David Paul A., Waterman A, Arora S., FLOSS-US The free/libre/open

source software survey for, (http://www.stanford.edu/group/floss-us)
[8] http://www.flossmetrics.org/
[9] https://www.ohloh.net/
[10] http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
[11] http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csn

umber=35733
[12] http://www.opensource.org/
[13] http://oss2011.org/
[14] http://www.qualipso.org/
[15] Barcellini F., Détienne F., Burkhardt J-M, Sack W (2005), Thematic

coherence and quotation practices in OSS design-oriented online
discussions. Proceedings of the 2005 international ACM SIGGROUP
conference on Supporting group work

[16] https://quality.mozilla.org/
[17] Oezbek C., Prechelt, L. & Thiel F. (2010). The Onion has Cancer: Some

 Social Network Analysis Visualizations of Open Source Project
 Communication. Psychology, (Section 4), 4-

[18] Masmoudi H., den Besten M. L., De Loupy C. and Dalle J. M. (2009),
 'Peeling the Onion': The Words and Actions that Distinguish Core from
 Periphery in Bug Reports and How Core and Periphery Interact Together .
 Fifth International Conference on Open Source Systems - OSS 2009.

19

http://www.flossmetrics.org/
https://www.ohloh.net/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
http://www.opensource.org/
http://oss2011.org/
http://www.qualipso.org/
https://quality.mozilla.org/

Essential Properties of Open Development

Communities

Terhi Kilamo1

Tampere University of Technology terhi.kilamo@tut.fi

Abstract. Open development is reaching beyond the scope of open
source. At the same time open source software is gaining ground not
only as a development method but as a business model in the software
industry. What lies at the heart of development is a developer commu-
nity; a heterogenous, freely formed group of people working on different
aspects of their joined project. A sustainable product is dependent on
a functional community, especially if business success relies on it. The
focus of this research is to find answers to what makes it possible for
the community to form and grow – to identify the properties that are
key at growing an active and sustainable community.

Key words: open development, open source software, sustainability,
development communities

1 Introduction

Open source is continuously gaining ground both as a development platform and
as a business model. An increasing amount of companies such as Google have
their software products available as open source. In addition, companies such
as Nokia, are also releasing their formerly proprietary software to gain benefit
from open development. This means that an increasing amount of development
communities are there to attract participants – where do they come from and
what makes them stay?

At the same time, open development communities have reached beyond
software development into new areas. One such area is innovation where open
innovation environments are providing improved ways for companies to test
their ideas and forge ideas into prototypes in a fast pace and with a versa-
tile, enthusiastic group of people from a wider range of expertise than what is
available within the company [4]. Even entertainment content ranging from mu-
sic videos to feature films1 and commodities such cars2 are developed in open
development communities.

The development is heavily dependent on the developing community. Espe-
cially in the early stages of open development crucial decision that directly affect

1 http://www.wreckamovie.com/
2 http://www.sahkoautot.fi/eng

20

the future of the community need to be made. Open development is a multi-
faceted challenge ranging over aspects such as governance, legality, sustainabil-
ity in addition to the the development field itself. What is needed is framework
for leveraging success for new communities and following their progress. There
is a need for identifying the actions and properties that indicate likelyhood for
the community to succeed.

This paper describes the current plan for the resarch intended for the au-
thor’s doctoral thesis. The aim is to investigate the essential elements of viable
open development communities addressing the challenge from each of its key
angles. The thesis research also sets out to indentify elements that are central
for gaining success and in avoiding tragedy while there is no guarantee for fame
and glory.

The rest of the paper is structured as follows. Section 2 gives the background
for the research discussed in this paper. In Section 3 the research is motivated
and Section 4 discusses the research design. Section 5 gives an overview of the
completed parts of the research topic and finally the paper is concluded in
Section 6.

2 Background

Open source software is developed by a community of stakeholders: developers,
users, business partners and other individuals. The community behind the soft-
ware is a key component that affects the success of the project. The community
structure is often modeled with an onion model introduced in [6]. In the model
each member of the community is assigned with a distinct role. The community
is viewed to have an onion-like structure, where the most involved and thus
most influencial community members occupy the core layers, while the outer
layers hold the less active ones. The onion structure supports the view taken
into the open development communities in our research also.

Ever though the community is at the core of open source, it is not just
a structured community. Even the development community has organizational
issues, for example in decision making, release planning, acceptance of contribu-
tions and so forth, that need attention. There is a need for governance practices.
The community needs a technological infrastructure for communication, plan-
ning, coordination and maintenance of the product. Legal issues need to be
considered on the lines of intellectual property rights (who wrote which parts
of the software for example), copyright issues and possible licensing schemes.
The product itself needs to suit open community driven development. Finally,
there are business decisions that effect the decision making. These facets influ-
ence each other and cannot be viewed completely separately from each other.
However, each have several possible directions and angles to them.

Some studies on open source sustainability have been done. There are frame-
works for assessing the open source projects proposed [7, 3, 1] but their focus is
from the point of view of adoption and they provide processes of several steps

21

to evaluate and select viable projects out of seemingly suitable ones. There are
studies that identify success and tragedy after the fact [8, 5]. What we are in-
terested in are the dos and donts that may determine the success or tragedy
and essentially make the likelyhood of success greater.

3 Motivation for Research

Open source has marched to the forefront of practical software development
and software business models in the recent years. In addition different flavours
of open source development are now applied and can be identified in several
other fields as well. Open source, defined by a set of principles, practices and
development culture, consists of a range of aspects that must be addressed when
establishing a community. These aspects are identifiable not only in open source,
but in open development communities at large. Our main focus is software
development and hence open source communities but a wider view on open
development as a whole is also taken.

Despite the apparent opportunities open development offers, the generic
ability of open source to act as the basis for development, business and systems
has, however, gained only some research interest. Moreover, since the trend to
release proprietary software as open source is relatively recent, there are few
guidelines on how to create and maintain a sustainable open source community
[2]. Consequently, there is little evidence on how the different facets of an open
source platform should be taken into account.

4 Research Approach

The doctoral research focuses on the growing and developing open development
communities. How communities are born and how this process can be supported
before and after going open are studied. The main focus is software development
but the research aims at indentifying success factors for development commu-
nities in general.

4.1 Research Questions

The aim of the research is to answer the following questions:

Q1 What issues must be addressed in order to grow an open development
community?

Q2 How these are distributed according to different aspects of open develop-
ment?

These can be divided into subquestions in order to see the different things
to investigate under both of them. The first question (Q1) can be broken into
the following:

22

Q1.1 What properties indicate success?
Q1.2 What are the possible warning signs for tragedy?
Q1.3 How do the different actions affect the development community?

The second question (Q2) must further address issues such as:

Q2.1 What role does the product play?
Q2.2 How should the legal aspects be handled?

The goal of the research conducted in this work is not to give a checklist
for success. On the contrary the initial claim is that there is no paved road
to immortality. However, certain set of aspects are essential in growing a de-
velopment community that can be viable and the research aim is to identify
these.

Characteristics of open development communities that range over several
dimensions and which are depicted in Figure 1 are investigated. These are gov-
ernance of open development, open development community organization, pos-
sible business aspects, legal matters, technological infrastructure, software or
other product developed by the community and sustainability of the commu-
nity. These are overlapping and interleaving and cannot always be separately
addressed. It is however apparent that a viable development community needs
to give consideration to each. The goal is to form a framework to address the
essential properties of open development on the lines of each of the dimensions.

G
O

VE
RN

AN
CE

ORGANIZA
TIO

N

PURPOSE

LEGALITY

INFRASTRUCTURE

SUSTAINABILITY

open development
communities

CO
M

M
O

DITY

Framework of
essential

properties for

Fig. 1. Essential Community Properties

23

4.2 Research Method

A case study based approach is taken in the research. The research consists
of three community cases that are investigated both through a constructive
approach as well an analytic viewpoint. The constructive part relies on work
started in [12] where a model for analyzing the progress of a community based
on a set of measures is introduced. The analytic part focuses on evaluating
practical cases from industrial partners with open development communities
of different ages. The research may be somewhat hindered by failure in one of
the communities. However, the risk is small. One open community focusing on
open innovation provides a case for analysis of methods and practises. Addi-
tionally it provides a large data set to study. In total there are three separate
community types studied through cases shown in Figure 2 with open education
complementing the two more industrially driven ones. The completed research
on the case areas is discussed further in Section 5

SOFTWARE

INNOVATION

EDUCATION

Fig. 2. Communities Studied

5 Completed Activities

The thesis work is now close to two years in running. Some parts of the research
lean on work done earlier in the TUTopen research group and to work done in
collaboration with the group. In addition the author has worked on combining
the work and focusing on studying different types of settings for open develop-
ment. Currently three different kinds of open communities – software business,
innovation, educational – have been studied. All the research and publications
so far lay a foundation for the thesis work but there is still a need to complete
the picture with further research. A mostly unanswered question is the role

24

of the type of the community, what role does the product or commodity pro-
duced play. More work on voluntary based communities is needed. Completely
voluntary based communities have so far not been studied at all.

Open business ecosystems The main focus so far and thus also the work
furthest along is concerning open source software business and open software
ecosystems. There are two published articles, one on readiness for going open
source [11] and one on following the progress of the community in numbers [12].

The first paper introduces a framework for indentifying possible bottlenecks
and places for improvement when planning a release of a proprietary software
product as open source. The paper explores the research questions:

– What kind of evaluation criteria could be used to assess software readiness
for open source development?

– How the evaluation should be planned and which stakeholders are involved?
– How to obtain data for the evaluation process?
– How to exploit the results of the evaluation process?

The second paper in turn focuses on monitoring the evolution of the commu-
nity by a continuous measurement of a selected set of key data sources answering
the question: how can a large set of community data be utilized over time to
support decision making. The data sources are specific to the community of
interest. The model distributes the gathered data over the layers of the onion
to give information of the amount or activity of the community stakeholders.
The idea is to give a time dependent, continuous and easy method of following
the state of the community and to aid decision making especially when business
aspects and the community are concerned.

One minor article has been published in collaboration with a main author.
The paper discusses evaluation of open source communities and how welcoming
they are [9] for new community members. The paper addresses the issue directly
by reporting the participatory effort of one developer in getting more involved
and gaining bigger responsibilities in an open source software community that
has business importance.

There is a key article that combines the work done within the research group
on releasing a proprietary software product which is about to be published in the
Journal of Systems and Software. It provides a foundation for the thesis work
and is thus a major publication for the dissertation. The article brings together
the different stages of releasing software and discusses supporting processes,
guidelines and best practices for stages prior to the release, for preparing the
release and following the progress of the development community directly after
the release. It gives a good foundation for the work intended for this thesis.

Open innovation communities One open development community studied
as we speak is an open innovation environment working in the Pirkanmaa region
and in collaboration with the niversities and polytechnic in the area. So far
one paper has been written on the open innovation community and it was
presented at OSS2011 conference. The paper focuses on identifying open source

25

best practices as an essential part of a successful open innovation environment.
At the conference workshop an initial position paper on how the shortcomings
of the open source approach can be overcome through a set of practices known
from agile software development and self-controlling teams.

Open education University students and free learners form a open develop-
ment community in their studies when working on suitable course projects. This
provides a case to study communities from an open education perspective. Some
research focus has been given to how open source development practices can be
taught in such a community setting [10]. Even though this is not directly related
to the thesis work described in this paper, it plays a major supporting role. A
paper on open and collaborative online learning environment was presented in
OSS2011. The work there acts as a basis for the open education case.

6 Conclusions

Open source provides a viable platform for development that addresses not only
technical but economical, social and legal aspects as well. It provides develop-
ment methodology, infrastructure and environment. It addresses legal issues
such as IPR and acts as a business model. Open source can even be seen as a
clever marketing strategy. All these aspects have inherent threats to them. A
simple overlooked issue may have far reaching consequences. This research aims
to look into the different facets of open development and form a framework of
essential properties of them that enforce the possibilty of future success and
growth.

References

1. Golden B. Succeeding with Open Source. Addison-Wesley, 2004.
2. Lundell B., Forssten B., Gamalielsson J., Gustavsson H., Karlsson R., Lennerholt

C., Lings B., Mattsson A., and Olsson E. Exploring health within oss ecosystems.
In In Proceedings of OSCOMM 2009, Sweden, June 2009.

3. BRR. http://www.openbrr.org/. Last visited March 2009.
4. Chesbrough H. Open Innovation: Researching a New Paradigm, chapter Open

Innovation: A New Paradigm for Understanding Industrial Innovation. Oxford
University Press, 2006.

5. Crowston K., Annabi H., and Howison J. Defining open source software project
success. In in Proceedings of the 24th International Conference on Information

Systems (ICIS 2003, pages 327–340, 2003.
6. Nakakoji K., Yamamoto Y., Nishinaka Y., Kishida K., and Ye Y. Evolution

Pattern of Open-Source Software Systems and Communities. In IWPSE ’02:

Proceedings of the International Workshop on Principles of Software Evolution

(2002), pages 76–85. ACM Press, 2002.
7. QSOS. http://www.qsos.org/. Last visited March 2009.

26

8. English R. and Schweik C.M. Identifying success and tragedy of free/libre
and open source (floss) commons: A preliminary classification of sourceforge.net
projects. In Proceedings of the First International Workshop on Emerging Trends

in FLOSS Research and Development (FLOSS’07: ICSE Workshops 2007), May
2007.

9. Mikkonen S., Kilamo T., and Mikkonen T. My summer as a mole: Evaluating
an open source community via participation. In In proceedings of OSW 2009,
October 2009. Open Source Workshop 2009 in conjunction with the 4th IEEE
Systems and Software Week.

10. Kilamo T. The community game: Learning open source development through
participatory exercise. In In Proceedings of Academic Mindtrek 2010. ACM Press,
October 2010.

11. Kilamo T., Aaltonen T., Hammouda I., Heinimäki T.J., and Mikkonen T. Eval-
uating the Readiness of Proprietary Software for Open Source Development. In
OSS2010, volume 319 of IFIP Advances in Information and Communication Tech-

nology, pages 143–155. Springer, 2010.
12. Kilamo T., Aaltonen T., and Heinimäki T.J. BULB: Onion-Based Measuring of

OSS Communities. In OSS2010, number 319 in IFIP Advances in Information
and Communication Technology. Springer, 2010.

27

Open Source: From Mythos to Meaning

Alexander C. MacLean and Charles D. Knutson

Computer Science Department, Brigham Young University, Provo, Utah
amaclean@byu.edu, knutson@cs.byu.edu

Abstract. Free open source software (FOSS) projects expose rich de-
velopment, evolutionary, and collaborative data from which researchers
have formed theories and conclusions about the FOSS development
ecosystem. However, little work has been done to determine whether
FOSS projects are analogous to proprietary development efforts. We
propose several axes along which taxonomies of FOSS and proprietary
projects may be created and compared, and preview several future stud-
ies that will begin to populate these taxonomies.

1 What is “Open Source”?

Open Source proponents have long touted the advantages, be they financial, so-
cial, ethical, or moral, of developing software using an “open source” paradigm.
However, even among some of the earliest players in the “open source” space,
there is little agreement about its exact definition. Some claim that open source
is a convenient (and possibly more efficient) way for developers to collaborate
on major software projects.

Linus Torvalds: Me, I just don’t care about proprietary software. It’s not

“evil” or “immoral,” it just doesn’t matter. I think that Open Source can

do better. . . it’s just a superior way of working together and generating

code.

It’s superior because it’s a lot more fun and because it makes cooperation

much easier (no silly NDA’s or artificial barriers to innovation like in

a proprietary setting). . . [24]

Others elevate the paradigm to pseudo-religious stature.

Richard Stallman: We like to think that our society encourages helping

your neighbor; but each time we reward someone for obstructionism [not

sharing code], or admire them for the wealth they have gained in this

way, we are sending the opposite message [21].

Still others herald the potential business advantages.

Eric Raymond: [Open Source is] the process of systematically harness-

ing open development and decentralized peer review to lower costs and

improve software quality [19].

28

Bob Young: [Open Source] gives customers control over the technolo-

gies they use, instead of enabling the vendors to control their customers

through restricting access to the code behind the technologies [19].

Others are confused by what we’re even talking about in the first place.

Inigo Montoya: You keep using that word. I do not think it means what

you think it means.

It is clear that open source has changed the landscape of software develop-
ment. But what do we, as researchers, mean when we refer to “open source”?
You may notice that the preceding quotations aren’t actually definitions, but
rather descriptions of the attributes or benefits of an “open source” product or
organization. The problem is that when we conduct research, loose definitions
and vague conceptual notions aren’t good enough.

To illustrate the point, here are several definitions of “open source” we
have heard and/or used while discussing the open source movement with other
researchers:

1. A licensing model that requires redistribution of code along with a product.
2. A mythos concerning the operation and constitution of open source com-

munities that encourage volunteer participation by developers.
3. A mythology concerning the origins of open source that contrasts open

source operations with traditional, closed source operations.
4. A convenient licensing model that allows organizations to collaborate on

infrastructure (plumbing, if you will) while differentiating themselves in
higher level software.

5. A direct attack on “the man” and the closed source restrictiveness of impe-
rialist software companies.

6. A marketing ploy by large corporations to engender good will with cus-
tomers.

7. Any number of other definitions, depending upon the circumstance and
audience.

In each case (with the possible exception of Item 5), the definition is suf-
ficient for the particular case to which it is applied. However, none of these is
broad enough to capture the many variations of the open source paradigm.

A taxonomy that considers open source development organizations, as well
as the developers and organizations that contribute to open source projects,
would allow researchers to qualify results within the confines of the taxonomy
of the organization from which they were drawn, rather than from an arbitrar-
ily broad set of ambiguous definitions. Moreover, a taxonomy would ground
research findings within a common theoretical framework and provide a mech-
anism for determining the degree to which such results can be extrapolated to
other projects and organizations (whether open or closed source).

29

2 Open Questions

For the moment, let us ignore the vague definitions and distinctions of open
and closed source. Instead, let’s start with a broad definition of open source
software that simply requires that the source code is available to the end
user. . . eventually1, and refer to this as Free and Open Source Software (FOSS).
This definition only distinguishes between organizations that restrict access to
their source code and those that don’t.

Definitions:

FOSS: Software for which the source code is eventually available to the user.
Proprietary Software: Any software that is not FOSS.

Although some work has been done to explore the behaviors of open and
closed sourced development organizations, little effort has been expended to
understand the differences between the developers in such organizations. Many
questions persist:

1. Who are the developers who spend their time working on these projects?
2. Which organizations employ open source developers, and what are their

motivations? Although studies have examined this question, more work is
required to build a taxonomy of the results.

3. Are open source developers somehow different from those that work on
closed closed projects? More formally, what is the taxonomy of developers
who choose to (or are employed to) work on open source projects?

4. Is the taxonomy of open source developers significantly different than the
taxonomy of the general population of software developers? If so, how?
Along what axes are these two taxonomies analogous?

5. What does it mean if open source developers are not significantly different
from the general population of developers (along certain axes)?

6. What does it mean if open source developers are significantly different from
the general population developers (along certain axes)?

In the following subsections, we address some questions and posit theories
that arise from these potential lines of inquiries. In Section 3 we propose meth-
ods for answering some of these questions.

2.1 The FOSS Developer

Who are these developers that work on FOSS projects? Bird, et al. report that
much of Eclipse is written in-house at IBM. On the other hand, “[c]ontributions

1 The “. . . eventually” clause in this definition is required because the publicly avail-
able trunk for Android, a major open source project, is typically several months
out of date.

30

to Firefox come from a myriad of sources and no single commercial entity com-
pletely controls or owns the development process” [1]. A more complete under-
standing of the developer taxonomy would allow researchers to design better
studies and draw more accurate conclusions about the state of FOSS and pro-
prietary development organizations and practices. In this section we list several
axes of a potential taxonomy of FOSS developers.

Developer Motivation Lakhani and Wolf, in a study of 684 software devel-
opers in 287 FOSS projects, found that the key factor in developer participation
was “enjoyment-based intrinsic motivation.” However, they did not take into
account the power law distribution of developer contributions which describes a
common phenomenon in FOSS projects: a small (relative to the project size) set
of core developers often develop most of the functionality (see Figure 1). Many
questions remain regarding the core developers within FOSS organizations. For
example, are the central figures within these projects paid, while the ancillaries
are motivated by a desire for creative outlet?

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

'#!!!"

Fig. 1. Developer commit volume on the Apache HTTP Server project. The x-axis
is individual developers, sorted by commit volume.

Job Tenure During the dot com boom, conventional wisdom held that a
developer remained in a job for 18 months. By 2003, three years after the
bubble burst, IT workers who earned Computer Science degrees had an average
job tenure of 6.2 years [5]. In contrast, the median tenure of developers on
the Apache HTTP Server project is 3.7 years2, with a strong right tail (see

2 Tenure in this case is defined as the length of time between a developer’s first and
last commit. Potential issues with this definitions are addressed in Section 3.

31

Figure 2), just more than half the tenure of the general developer population.
However, the top 15 committers to the Apache HTTP Server project have a
median tenure of just under 8 years.

!"

#!"

$!"

%!"

&!"

'!"

(!"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'"

!"
#$
"%
&'
&(
#)

&*
+"

,&-./0"#$"1&-2*&"3-"4&5*+"

Fig. 2. Tenure of developers on the Apache HTTP Server project.

Job tenure is illustrative of expertise and seniority in a development project.
Tenure could vary based upon differences between an open source meritocracy
and traditional, corporate approaches.

Developer Background (Work Related) Two developer characteristics re-
lated to job tenure—age distribution and industrial tenure—reveal some mea-
sure of industrial, commercial, and organizational expertise. Other attributes,
such as education, illustrate the ability of an organization to attract top talent.
With respect to age distribution and industrial tenure, a major question arises:
is open source development dominated by youthful exuberance or aged wisdom?
Or is it composed of a healthy amalgam? We propose three theories based upon
the potential answers to the preceding questions.

Ghosh, et al. found that in 2002 the median age of FOSS developers was
26 and that only 10% were older than 35 [7]). If youth typifies the develop-
ment environment, we theorize that it reflects two attributes of the open source
economy:

1. Organizations that support FOSS projects view the projects as plumbing,
not an area in which to differentiate themselves, and therefore allocate less-
experienced developers, and/or

2. Outside of regular employment, younger developers are more likely to have
the free time required to make meaningful contributions to FOSS projects.

32

Lakhani and Wolf found that “formal IT training. . . reduces the number of
hours spent on a project” [11]. In their study, this result was incidental, and
therefore received little attention. Nevertheless, it leads to questions related to
the role of industrial experience in FOSS contribution and the shape of the
FOSS developer taxonomy. However, the aforementioned age distribution does
not consider developer prominence or role in an organization. On the other
hand, if FOSS projects, or more importantly, leadership within FOSS projects,
are the purview of elder hackers, we theorize contrasting economic attributes:

1. Organizations depend upon the success of a FOSS project in order to dif-
ferentiate their services or products, and therefore assign high priority to
its development, and/or

2. Older, more experienced, developers find time to contribute, even when not
compensated.

Of course, neither of these two polarized theories is likely to be found entirely
applicable in all projects. Instead, a mixture may exist where, for example, or-
ganizations tend to employ older developers, while younger developers tend to
have the flexibility to contribute code on their own time. Whatever the distri-
bution across developer age and experience, a more clear understanding would
provide insight into the motivation and monetization structures of companies
that contribute to open source projects, as well as to the experience level of the
developers.

If the distribution of developer age and experience does not, in fact, gravitate
towards one of these poles, it could indicate that leaders of these organizations
don’t discriminate for or against their FOSS collaborations, but instead view
them as parallel and complementary to their other development efforts.

Developer Background (Non-Work Related) Gender, race, and other per-
sonal attributes are discoverable in a typical development organization. In fact,
even in proprietary, distributed development organizations, these attributes are
known because hiring and promotion interviews are still performed face-to-face.
On the other hand, unless explicitly exposed by the developer, these attributes
are largely latent in meritocratic organizations such as the Apache Foundation.
Other attributes, such as socio-economic background, familial status (single,
married, married with children, single parent, etc.), and religion, are often la-
tent in both types of organizations.

A taxonomy and understanding of the personal attributes of developers
within a meritocratic FOSS development organization and within proprietary
organizations would allow us to analyze whether the latent nature of these at-
tributes protects FOSS projects from flexible definitions of merit [25] and other
types of discrimination. A positive result could suggest a fascinating feature of
distributed, FOSS development: insulation from discriminatory practices, both
intended and unintended [26].

33

Specialization and Private Information Previous work indicates both the
presence of private information3 in large organizations [10] and a lack of special-
ization (a subtype of private information) in the Apache HTTP Server project
[13]. Lack of private information and specialization in open source development
organizations contrasts starkly with many proprietary environments where spe-
cialization is often associated with efficiency and job security. If this contrast
holds across open development organizations as a whole, it represents a fun-
damental difference in both communication requirements and organizational
behavior.

Programming Languages Although not a core developer attribute, differ-
ences in programming language fragmentation, or the degree to which a devel-
oper utilizes more than one programming language, would illustrate differences
between imposed technical environments and less-structured, self-organizing,
distributed communities [8, 9]. We suspect that along this axis, FOSS and pro-
prietary organizations will appear similar (organizations must standardize upon
some set of tools and languages in order to be productive, whether FOSS or pro-
prietary). However, FOSS developers who work on multiple projects may have
higher language fragmentation than proprietary developers who only work on
a single project.

Salary Ghosh, et al. note that 52% of FOSS developers (in 2002) earned no
more than 2,000 U.S. Dollars or Euros per month [7]. In contrast, Choy et al.
reported that the average monthly income for all U.S. Computer Science grad-
uates 10 years after graduation4 (in 2003) was 6,050 U.S. dollars [5]. This dis-
parity is exaggerated by a high level of student contributions to FOSS projects:
17%. Also, only 14% of respondents live in North America, so it would be unwise
to make direct comparisons between the two studies. However, the large differ-
ence certainly suggests inequalities in our open and closed source taxonomies.

Or does it? Ghosh, et al. don’t take developer prominence or position into
account. Although many of the developers on the Apache HTTP Server project
are most likely students, it does not follow that the most or any of the 15 core
developers are as well [16]. Salaries for core FOSS developers may be on par
with their proprietary counterparts. If so, this seeming discrepancy fades in the
light of taxonomic clarity.

2.2 Contributing Organizations

Many organizations that build proprietary products also contribute to FOSS
projects [4].

3 We utilize a definition of private information as “. . . the challenge of utilizing dis-
tributed knowledge in an organization. . . where private refers to information pos-
sessed by a relatively small segment of the population—as opposed to information
that is widely held” [10].

4 According to Ghosh, et al., the median age of FOSS developers is 26 [7], close to
the average age of computer science graduates 10 years after graduation.

34

Motivations Lerner and Tirole present three motivations for organizations to
expend resources on products that don’t directly generate revenue: 1) Living
symbiotically off an open source project (Red Hat, Sun, and Oracle); 2) Code re-
lease to benefit a complementary market segment (Hewlett-Packard and IBM);
and 3) Acting as intermediaries (Collabet.net) [12]. In essence, the existence of
the product produces side effects that positively affect the bottom line of the
company.

Capek, et al., in explaining the genesis and integration of open source ideals
at IBM, stated “. . . open source did not pose an immediate threat to our existing
business, and in fact, our products could benefit from supporting and building
open source.” They note that participating in open source projects yielded two
key benefits (for IBM) [4]:

1. Reusing open source components decreased overhead versus building pro-
prietary solutions. Example: using the Apache HTTP Server as a key com-
ponent of the WebSphere Application Server.

2. Collaborating with others in the community to develop necessary but
low margin tools frees up resources for more lucrative projects. Example:
Eclipse.

In 1996, Apple acquired NeXT in an effort to modernize its aging operating
system and salvage its dwindling market share. The company then began using
NeXT’s BSD-based Unix variant, NextStep, as the base for its operating system.
It released the core components of its operating system as a BSD-licensed FOSS
project named Darwin, but kept the GUI and many of the APIs (including the
Java API) proprietary. This “layered” open-closed approach allowed Apple to
reap the benefits of using a proven FOSS technology while maintaining control
over many of the distinguishing components of its operating system [28].

Additionally, Sun slowly moved into FOSS in an attempt to stymie advances
by Microsoft and Linux [28].

Organizational Attributes As with developers, understanding the taxonom-
ical attributes of organizations that contribute to FOSS ventures—such as size,
revenue, location, and industry—would allow researchers to draw parallels to
the general population of organizations. In addition, such a taxonomy would
provide a standard against which to measure claims that attempt to extrapolate
results from open source projects.

2.3 The FOSS Organization

A taxonomy of developers is incomplete unless married to a taxonomy of the
structures within which they operate. On the surface, FOSS and proprietary
development patterns may appear different (methods of joining the organiza-
tion and metrics for defining prominence, for example). However, Mockus, et
al. describe developer communication and collaboration patterns in the Apache
HTTP Server and Mozilla Firefox that sound very similar to those found in

35

modern proprietary development organizations of comparable size [17]. In in-
terviews with FOSS developers, Schweik and English found similar results [20].

Commit Patterns Organizational commit patterns are indicative of types
and levels of developer collaboration. Monolithic commits may cause sweep-
ing changes, while small commits indicate incremental development. In Pro-
duction/Stable or Maintenance phase projects on SourceForge we found both
patterns of small commits and patterns of large, monolithic commits [14, 15].
Further work has refined our notion of the reasons behind large commits through
the development of a taxonomy of large commits [18]. However, correlation be-
tween commit behaviors in FOSS projects and commit behaviors in proprietary
projects has not been adequately defined.

File Level Collaboration and Code Ownership Bird, et al. demonstrated
that, in Windows Vista, Mozilla Firefox, and Eclipse 1) “software components
with many minor contributors will have more failures than [those] that have
fewer” and 2) ownership only had a consistent, statistically significant effect
on Windows Vista [1]. In addition, previous studies have uncovered patterns of
author contributions that may or may not be analogous to those in proprietary
development [22, 23].

Communication Patterns Crowston and Howison found that FOSS projects
on SourceForge exhibit myriad communication patterns. They contend that em-
ploying metaphors such as “the cathedral and the bazaar” [19] doesn’t capture
the complexity and variance within the many projects on SourceForge [6].

3 Toward a Taxonomy

We propose to begin to develop a taxonomy and theoretical framework of FOSS
developers and organizations. This framework should provide a common foun-
dation upon which researchers may base their dialogue. Specifically, we will
create sub-taxonomies of FOSS and proprietary projects along the following
axes 1) Job Tenure, 2) Developer Specialization, and 3) Code Ownership. In
addition, we propose future work developing taxonomies of Work Related De-
veloper Background and Non-Work Related Developer Background.

3.1 Data Sources

We use several data sources to draw conclusions about the state of these de-
velopment communities: 1) the Current Population Survey, 2) a local, small
company with which we have a research relationship, 3) two potential large
companies, and 4) online FOSS repositories.

36

Current Population Survey Aside from the decennary census, the U.S.
Census Bureau compiles a monthly Current Population Survey. The Bureau
collects survey responses regarding numerous subjects, ranging from labor to
living conditions, from a “multistage stratified sample of approximately 72,000
assigned housing units from 824 sample areas” [3]. Most importantly, this survey
collects information relating to job tenure, job satisfaction, occupation, job
industry, salary, number of hours worked at each job that a respondent holds,
race, age, familial status, living conditions, and religion.

Small Companies We have affiliations with a small (around 30 developers)
local company with whom we have run organizational studies. This company
has been a leader in its market for over 20 years and employs both long tenured
and newly hired developers.

Large Partners We have relationships with two large development organiza-
tions that have research divisions. In both cases, we should be able to leverage
those relationships to develop taxonomies of large, proprietary organizations
and their developers.

FOSS Repositories Publicly available data from the Apache Foundation, the
Eclipse Foundation, the Mozilla Foundation, SourceForge, other FOSS “forges,”
and the SourceForge Research Data Archive [27] provide rich information about
developer interaction and productivity. Many of the studies in Section 2 used
this data [1, 6, 8, 9, 14, 15, 16, 18, 22, 23].

3.2 Job Tenure

Determining job tenure from census data is straightforward, as is supplement-
ing the census data with data from companies with which we have research
affiliations. In contrast, before attempting to determine job tenure in a FOSS
project, we must first define what “tenure” means. If a developer commits a
patch, takes ten years off, and then commits another patch, is that considered
a ten year tenure? Common sense says no. But where does one draw the line?

Instead of a single definition of job tenure, we propose a taxonomy of FOSS
developer tenure that incorporates time spent on a project, productivity during
that time period, periods of inactivity and developer centrality. We can draw
this data from the commit logs and mailing lists of online FOSS communities.

3.3 Code Ownership

Previous studies have correlated code ownership with defects [1] and have ex-
plored patterns of code ownership in SourceForge [23], Eclipse projects [22],
Mozilla Firefox, and Windows Vista [1]. The taxonomy of code ownership would
contain attributes such as proportion of files owned by a single author, distri-
bution of file ownership measured through authorship entropy [23], density of
commits to a file, and frequency with which a developer replaces lines of code
contributed by other, less prominent developers.

37

3.4 Developer Specialization

Developer specialization can be gleaned from commit histories by identifying
the modules to which developers commit code. Commits can then be assigned
to categories such as UI development, database connectivity, and operating
system integration. When possible, developer interviews provide fine-grained
insight into the perceived specialization within the organization. Our analy-
sis of specialization hinges on our collaborative research efforts with outside
companies and the availability of FOSS repositories.

In addition to direct approaches for FOSS projects, we can also utilize indi-
rect methods such as topic analysis of bug comments and mailing lists to identify
developers within a FOSS organization who hold specialized information [2, 13].
Using this information, in conjuction with commit behaviors, should uncover
developers who have specialized information, but who use that information in
the aid of others in a mentoring or leadership capacity.

3.5 Future Goals

Although not yet formalized, and likely outside the scope of the work of a single
doctoral student, taxonomies of developer background, both work-related and
not, are vital to understanding the differences (if any) that exist between the
population in the FOSS community and the developer community as a whole.

Developer Background (Work Related) Work-related developer back-
ground would require interviews with developers in both FOSS and proprietary
organizations, a daunting, but achievable task.

Developer Background (Non-Work Related) Ironically, the data to deter-
mine non-work related background (socio-economic status, race, familial status,
etc.) is freely available for the general population of developers in the United
States through the Current Population Survey [3]. Ghosh, et al. provided survey
results on some of these attributes for the FOSS community, but, as noted in
Section 2.1, the granularity of the data is insufficient to build a taxonomy of de-
velopers. Determining these attributes for just FOSS developers would require
personal interviews as well as very personal questions. While we would love to
conduct these interviews, finding cooperative subjects may prove challenging.

4 Conclusion

Proclaiming the supposed advantages or disadvantages of FOSS and proprietary
development paradigms ignores the rich and diverse attributes of development
organizations. Likewise, qualifying research as resulting from analysis of open
or closed source organizations both overgeneralizes by extrapolating to projects
that may not be similar and misses possible applicability to similar projects

38

that have different paradigms. In qualifying research results, the question is not
“Are open and closed source projects the same?” Instead, we must ask several
questions, such as

1. What are the taxonomies of FOSS and proprietary project?
2. How do the projects from which we draw our data fit into these taxonomies?
3. Now that we understand how these projects are similar to or different from

other projects, how does that affect the interpretation of our results?

We propose taxonomies of FOSS and proprietary developers and organiza-
tions so that we, as a research community, can ground our findings within a
common theoretical framework. Doing so will enhance the dialogue among re-
searchers within the OSS research community as well as between the research
community and development organizations, both FOSS and proprietary. The
end goal of this effort is to more precisely define our lexicon and increase the
practical applicability and acceptance of our work.

References

1. C. Bird, N. Nagappan, H. Gall, P. Devanbu, and B. Murphy. An Analysis of
the Effect of Code Ownership on Software Quality across Windows, Eclipse, and
Firefox. Technical report, Technical report, UC Davis, 2010.

2. D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet Allocation. The Journal
of Machine Learning Research, 3:993–1022, 2003.

3. U.S. Census Bureau. Design and Methodology: Current Population Study. Tech-
nical report, 2006.

4. P.G. Capek, SP Frank, S. Gerdt, and D. Shields. A History of IBM’s Open-Source
Involvement and Strategy. IBM systems journal, 44(2):249–257, 2005.

5. S.P. Choy, E.M. Bradburn, C.D. Carroll, National Center for Education Statistics,
and Institute of Education Sciences (US). Ten Years After College: Comparing the
Employment Experiences of 1992-93 Bachelor’s Degree Recipients with Academic
and Career-oriented Majors. National Center for Education Statistics, Institute
of Education Sciences, US Dept. of Education, 2008.

6. K. Crowston and J. Howison. The Social Structure of Free and Open Source
Software Development. First Monday, 10(2):1–100, 2005.

7. R.A. Ghosh, R. Glott, B. Krieger, and G. Robles. Free/libre and Open Source
Software: Survey and Study, 2002.

8. Jonathan L. Krein, Alexander C. MacLean, Daniel P. Delorey, Charles D. Knut-
son, and Dennis L. Eggett. Language Entropy: A Metric for Characterization of
Author Programming Language Distribution. 4th Workshop on Public Data about
Software Development, 2009.

9. Jonathan L. Krein, Alexander C. MacLean, Daniel P. Delorey, Charles D. Knut-
son, and Dennis L. Eggett. Impact of Programming Language Fragmentation on
Developer Productivity: a SourceForge Empirical Study. In International Journal
of Open Source Software and Processes (IJOSSP), volume 2, pages 41–61, June
2010.

39

10. Jonathan L. Krein, Patrick Wagstrom, Stanley M. Sutton Jr., Clay Williams,
and Charles D. Knutson. The Problem of Private Information in Large Software
Organizations. In International Conference on Software and Systems Process,
New York, NY, USA, 2011. ACM Press.

11. K.R. Lakhani and R.G. Wolf. Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects. Perspectives on
Free and Open Source Software, pages 3–22, 2005.

12. J. Lerner and J. Tirole. Some Simple Economics of Open Source. The Journal of
Industrial Economics, 50(2):197–234, 2002.

13. Alexander C. MacLean, Landon J. Pratt, and Charles D. Knutson. Knowledge
Homogeneity and Specialization in the Apache HTTP Server Project. Publication
pending, 2011.

14. Alexander C. MacLean, Landon J. Pratt, Jonathan L. Krein, and Charles D.
Knutson. Threats to Validity in Analysis of Language Fragmentation on Source-
Forge Data. In Proceedings of the 1st International Workshop on Replication in
Empirical Software Engineering Research (RESER ’10), page 6, May 2010.

15. Alexander C. MacLean, Landon J. Pratt, Jonathan L. Krein, and Charles D.
Knutson. Trends That Affect Temporal Analysis Using SourceForge Data. In
Proceedings of the 5th International Workshop on Public Data about Software
Development (WoPDaSD ’10), page 6, June 2010.

16. A. Mockus, R.T. Fielding, and J. Herbsleb. A Case Study of Open Source Soft-
ware Development: The Apache Server. In Proceedings of the 22nd international
conference on Software engineering, pages 263–272. Acm, 2000.

17. Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two Case Studies of
Open Source Software Development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3):309–346, 2002.

18. Landon J. Pratt, Alexander C. MacLean, and Charles D. Knutson. Cliff Walls: An
Analysis of Monolithic Commits Using Latent Dirichlet Allocation. Publication
pending, 2011.

19. E.S. Raymond et al. The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly & Associates, Inc., 2001.

20. C.M. Schweik and R. English. Tragedy of the FOSS Commons? Investigating the
Institutional Designs of Free/Libre and Open Source Software Projects. 2007.

21. R.M. Stallman. Free Software, Free Society: Selected Essays of Richard M. Stall-
man. Joshua Gay, 2002.

22. Quinn C. Taylor, Jonathan L. Krein, Alexander C. MacLean, and Charles D.
Knutson. An Analysis of Author Contribution Patterns in Eclipse Foundation
Project Source Code. Publication pending, 2011.

23. Quinn C. Taylor, James E. Stevenson, Daniel P. Delorey, and Charles D. Knut-
son. Author Entropy: A Metric for Characterization of Software Authorship Pat-
terns. In 3rd International Workshop on Public Data about Software Development
(WoPDaSD ’08), September 2008.

24. Linus Torvalds. The Torvalds Transcript: Why I ’Absolutely Love’ GPL Version
2, March 2007.

25. E.L. Uhlmann and G.L. Cohen. Constructed Criteria: Redefining Merit to Justify
Discrimination. Psychological Science, 16(6):474–480, 2005.

26. E.L. Uhlmann and G.L. Cohen. “I Think It, Therefore It’s True”: Effects of Self-
Perceived Objectivity on Hiring Discrimination. Organizational Behavior and
Human Decision Processes, 104(2):207–223, 2007.

40

27. M. Van Antwerp and G. Madey. Advances in the SourceForge Research Data
Archive (SRDA). In Fourth International Conference on Open Source Systems,
IFIP 2.13 (WoPDaSD 2008), Milan, Italy, September 2008.

28. J. West. How Open is Open Enough?:: Melding Proprietary and Open Source
Platform Strategies. Research Policy, 32(7):1259–1285, 2003.

41

Semi-Automatic Evaluation of Free Software
Projects: A Source Code Perspective

Paulo Meirelles1, Fabio Kon1, and Carlos Santos Jr.12

1 FLOSS Competence Center - University of São Paulo
Rua do Matão, 1010, São Paulo, SP, Brazil

{paulormm,fabio.kon}@ime.usp.br
2 Horizon Institute - University of Nottingham
Triumph Rd, Nottingham NG7, United Kingdom

carlos.denner@nottingham.ac.uk

Abstract. There has been a trend towards managing software devel-
opment projects as any other production processes and systems. Conse-
quently, important technical aspects of software development have not
been explored in some software engineering communities. On the other
hand, free software communities tend to work based on technical ap-
proaches. Specially, they look at the source code. However, despite the
“show me the code” culture, source code metrics are often not perceived
as an indicator of quality. To promote the use of source code metrics
to optimize free software development, we are investigating the effect
of source code metrics on free software attractiveness. Besides, we are
defining a systematic approach and developing tools to use, interpret,
and understand software metrics.

Key words: Free software, source code metrics, clean code, attractiveness.

1 Introduction

An issue in any software system is its complexity. Since there are not physical
constraints in software (such as material wear, manufacturing costs, weight,
etc), there are not external factors that might restrict its development. Thus,
most non-trivial programs quickly reaches large complexity level, approaching
the limit of the ability of a software engineer understand the source code [1].

A consequence of this complexity is a higher cost because software develop-
ment involves the work of skilled professionals for long periods. Another con-
sequence can be a lower quality since it becomes difficult to perform effective
testing, eliminate bugs, and implement new features. However, free software1

development is guided by code sharing, which may allow to identify and fix
problems, as well as make improvements faster. It can involve a larger number

1 In this work, we consider the terms “Free Software”,“Open Source Software” (OSS),
“Free/Open Source Software” (FOSS), and “Free/Libre/Open Source Software”
(FLOSS) equivalent.

42

Paulo Meirelles, Fabio Kon, and Carlos Santos Jr.

developers and users than any other software development methodology [2],
so having the potential for peer-review from different collaborators around the
world [3].

In the context of methodologies used by free software communities, source
code is the main product of software development activities. In general, software
source code is written gradually and different developers make improvements
on an ongoing basis [4]. New features are inserted and bugs are resolved during
software development and maintenance tasks. Thus, features are constantly
delivered to users.

However, there is a significant gap between the numbers of lines of code
which a software engineer reads and writes. Usually, software engineers read
hundreds of lines of code to understand a software implementation to make im-
provements [4]. Therefore, source code should be written to be read by people
since software engineers need to analyze source codes to understand better soft-
ware projects, as well as Software Engineering requires the full understanding
of software, which is the result from the writing of source code.

In this scenario, software source code metrics can help software engineers to
observe the source code quality. Also, they can support the development of clean
code, i.e., clear, flexible, and simple [4]. However, many free software projects
do not practice source code quality evaluation and have no tools available to do
so. This lack of systematic code evaluation leaves a lot of room for improvement
in the development of free software [3].

To address these issues, we are investigating an approach that software en-
gineers should make decisions about their codes when they are programming
at the method and class level. To make the best decisions, we argue that they
should monitor attributes from their source code. The sum of these decisions
influences the source code quality [5].

Our proposal is based on an automated evaluation of source code metrics and
an objective way to interpret their values. Thus, software engineers can monitor
specific characteristics of their code. For that, we are developing a tool called
Kalibro Metrics. Moreover, we are selecting source code metrics according to a
study of the effect of source code quality on free software attractiveness [6]. Also,
we are defining a mapping among clean code concepts, troublesome scenarios,
source code metrics, and attractiveness to provide a systematic approach to
make decisions about the source code clarity, flexibility and simplicity.

To show our ideas and preliminary results, the remainder of this paper
is organized as follows: Section 2 describes related work. Section 3 shows our
research design. Section 4 presents the Kalibro Metrics tool. Section 5 concludes
the paper and discusses future work.

43

Semi-Automatic Evaluation of Free Software Projects: A Source Code Perspective

2 Background

2.1 Related projects

In this work so far, we have found some projects related to automatic quality
evaluation of free software:

– FLOSSMetrics (Free/Libre Open Source Software Metrics) is a project
that uses existing methodologies and tools to provide a large database with
information about free software development [7].

– Ohloh is a website that provides a web services suite and an on-line com-
munity platform that aims at building an overview of free software develop-
ment [8].

– Qualoss (Quality in Open Source Software) is a methodology to automate
the quality measurement of free software projects, using tools to analyze the
source code and the project repository information [9].

– SQO-OSS (Software Quality Assessment of Open Source Software) provide
a suite of that allows analysis and benchmarking of free software projects [10].

– QSOS (Qualification and Selection of Open Source Software) is a method-
ology based on 4 steps: used reference definition; software evaluation; quali-
fication of specific users context; selection and comparison of software [11].

– FOSSology (Advancing open source analysis and development) is a project
that provides a free database with information about the software license [12].

– QualiPSo (Trust and Quality in Open Source Systems) defined procedures
to boost the use of free software and adoption of its development practices
within software industry [13]. A set of tools was integrated with QualiPSo
Quality Platform.

– HackyStat is an environment for analysis, visualization, interpretation of
software development process and product data [14].

In short, we have identified from current available projects and their tools
the lack of the following features: (i) to collect automatically source code metrics
values considering different programming languages; (ii) to interpret measure-
ment results, associating them with source code quality. Therefore, we are de-
veloping the Kalibro Metrics tool that can be configured to show metric results
in a friendly way, helping software engineers to spot design flaws to refactor,
project managers to control source code quality, and software researchers to
compare specific source code characteristics across free software projects.

2.2 Source code analysis tools

During our research and development activities, we studied or used 11 free
software source code analysis tools: Analizo [15], CCCC [16], Checkstyle [17],
CMetrics [18], CPPX [19], Cscope [20] CTAGX [19], LDX [19] JaBUTi [21],
MacXim [22] and Metrics (Eclipse plug-in) [23]. Also, we have defined the fol-
lowing requirements for our tool, according to our theoretical and practical
needs, as well as our ideas to explorer better source code metrics:

44

Paulo Meirelles, Fabio Kon, and Carlos Santos Jr.

– The tool should support source code metrics thresholds to provide different
interpretations about metric values.

– The tool should support the analysis of different programming languages
(multi-language).

– The tool should provide clear interfaces for adding new metrics and support-
ing different programming language (extensibility).

– The tool should be free software, available without restrictions to allow
other researchers to replicate our studies and results fully.

– The tool should be supported by active developers who know the tool archi-
tecture (maintained).

Tools Languages Extensible Thresholds Maintained

Analizo C, C++, Java Yes No Yes
CCCC C++, Java No No Yes
Checkstyle Java No Yes Yes
CMetrics C Yes No Yes
CPPX C, C++ No No No
Cscope C No No Yes
CTAGX C No No No
LDX C, C++ No No No
JaBUTi Java No No Yes
MacXim Java No No Yes
Metrics Java No Yes Yes

Table 1. Existing tools versus our defined requirements

In Table 1, we can compare all of these tools. The Analizo [15] is the closest
tool from our requirements. It is able to analyze source code from our initial
three required languages (C, C++, and Java). However, also we want a tool
with thresholds support. Thus, Analizo was selected as the default source code
analysis tool integrated with our metric tool, called Kalibro Metrics (that will
be described in details in the section 4).

2.3 Related works

To select which metrics we should study their thresholds and relate them to
clean code concepts, we investigating which source code metrics influence in
free software projects success, i.e., its attractiveness. Santos Jr. et al. [24] de-
fined a theoretical model for attractiveness as a crucial construct for free soft-
ware projects, proposing their (i) typical origins (e.g., license type and intended
audience); (ii) indicators (e.g., number of members and downloads); (iii) conse-
quences (e.g, levels of activity and time for task completion). They suggested
that the success of any project depends on its level of attractiveness to poten-
tial contributors and users. Based on this model, we are exploring some of the

45

Semi-Automatic Evaluation of Free Software Projects: A Source Code Perspective

Fig. 1. Attractiveness research model – adapted from Santos Jr. et al [24].

factors that may enable projects to build a community by attracting users and
developers.

In short, we have proposed a new element that can explain attractiveness
partially. According to our first hypotheses, we added source code attributes
(from source code metrics) and expect that they would work in the same causal
chain manner as shown in Figure 1. To test our ideas empirically, we analyzed
6,773 projects written in the C language from SourceForge.net [6]. Our first
study was able to explain 18% of software download and 12% of project mem-
bers, through a set of four source code metrics. Currently, we are collecting data
from 42.335 projects written in the C, C++, and Java languages.

A systematic review of 63 empirical studies showed that there is little re-
search addressing the characteristics or properties of free software projects, such
as their quality, growth, and evolution [25]. In this context, we are analyzing
source code metrics from an unprecedented number of free software projects,
linking their source code characteristics and attractiveness.

For example (comparing our samples to others from related works), Bark-
mann et al. [26] analyzed 146 free software projects written in Java, identifying
the correlation between a set of object-oriented metrics and their theoretical
ideal values. Stamelos et al. [27] compared quality characteristics of 100 appli-
cations written for GNU/Linux to industrial standards. Midha [28] analyzed
450 projects from SourceForge.net and verified that high values of MacCabe’s
Cyclomatic Complexity and Haltead’s Effort are positively correlated with the
number of bugs and with the time needed to fix bugs. Capra et al. [29] have
shown that open governance is associated with higher software design quality
on a study with 75 free software projects. Finally, Bargallo et al. [30] analyzed
56 free software projects, studying the relationship between software design
quality and project success.

46

Paulo Meirelles, Fabio Kon, and Carlos Santos Jr.

3 Research Design

3.1 Research Hypotheses

In our first study about the relationships between source code metrics and at-
tractiveness [6], we investigated whether source code metrics might influence the
attractiveness of free software projects. Thereby, we can later observe whether
these attributes influence people’s perception of quality as a consequence of
attractiveness. We formulated our hypotheses according to the attractiveness
model showed in Figure 1:

– H1: Free software projects with higher structural complexity (coupling and
lack of cohesion) have lower attractiveness.

– H2: Larger free software projects (with higher lines of code and number of
modules) have higher attractiveness.

Fig. 2. An proposal of a reciprocal effect model.

We have defined a new attractiveness model that aims to explore the recip-
rocal effect between source code quality and free software project attractiveness.
Metrics have been including in this model according to a mapping from clean
code concepts to source code metrics. Thus, currently, we are working on the fol-
lowing hypotheses to investigate this feedback loop between source code metrics
and attractiveness, as showed in Figure 2:

– H1: Free software projects with lower number of clean code problems have
better source code metrics values (probably it can be applied to any software
project).

– H2: Free software project with better source code metrics values have higher
attractiveness.

– H3: Free software projects with higher attractiveness have better source code
metrics values (feedback loop).

47

Semi-Automatic Evaluation of Free Software Projects: A Source Code Perspective

3.2 Data Sample

SourceForge.net shares its data to support free software researchers. At the first
moment, we used the data available in a database managed by the University
of Notre Dame2 and another one provided by the FLOSSMole project3. Later,
we developed a set of scripts that access SourceForge.net pages. They collect
information such number of download, number of member, type of repository,
etc, providing us our own database. After that, we select data matching the
following criteria:

– Source code language: In our first study relating source code metrics and
attractiveness, we select C projects. Currently, we included the C++ and
Java programming languages.

– More than one download : Projects with no downloads are probably either
non-development projects, or projects that have just started, or are other
special cases.

At the first moment, this criteria provided us a list of 11,433 projects. When
including C++ and Java, we obtained a list of 42.335 projects. Also, we have
another script that gets a list of projects and visit the file pages of each project
and download the last source code package available. However, when we down-
load these files, some project had no available files (empty “files” section in
the SourceForge.net project pages). Thus, we have observed that we can collect
source code values to 60% of our original list of projects. For our next study,
we expect to analyze about 25.000 projects from SourceForge.net.

After that, we run Analizo that collects source code metric values sequen-
tially for all projects and stores the computed metrics in a single database.
Finally, both project information and source code values databases were cross-
joined, so we can perform the needed statistical analysis.

4 Kalibro Metrics

We are developing Kalibro Metrics to apply our research results about clean
code concepts, source code metrics, and free software attractiveness. It is a
free software and web-service-based tool to analyze and understand source code
metrics. Kalibro Metrics can connect different kinds of repositories to download
the source code from a software project.

Our final goal is to build a social network to monitor and analyze source
code metrics, called Mezuro. This source code monitoring network has been
developed. Mezuro is a Noosfero social network platform [31] instance with a
Kalibro Plug-in activated, connecting the Kalibro Web Service. Figure 3 shows
an interaction diagram, detailing all these possibilities to use Kalibro.

Kalibro Metrics provides the following features:

2 nd.edu/~oss/Data/data.html
3 flossmole.org

48

Paulo Meirelles, Fabio Kon, and Carlos Santos Jr.

Fig. 3. Kalibro interactions diagram

– Download source code from Subversion, Git, Mercurial, Baazar, and CVS
repositories.

– Download source code from local and remote zip and tarball (.tar, .tar.gz,
and tar.bz) files.

– Creation of configurations, i.e., a set of metrics for being used in the evalua-
tion of a software source code.

– Creation of ranges associated with a metric and a qualitative evaluation.
– Creation of new metrics (via JavaScript) based on the ones provided by the
metric collector tool.

– Calculation of statistics results for higher granularity modules (e.g. average
LOC of classes inside a package).

– Possibility of exporting results to a CSV (comma-separated values) file.
– Calculation of a grade for the source code analysis projects, based on given
weights for each metric and grades for ranges. This allows cross-project com-
parisons.

– Possibility of making interpretation more user-friendly by associating colors
with ranges.

4.1 Kalibro Plug-in for Mezuro networking

Mezuro is a social network to track source code metrics. This environment pro-
motes an open and collaborative networking to analyze hundreds of thousands

49

Semi-Automatic Evaluation of Free Software Projects: A Source Code Perspective

software projects, specially Free Software, through an automated tracking of
their source code repositories.

Mezuro is a powerful environment to enhance Kalibro features, using the so-
cial network potential. The idea is based on the fact that people improve their
writing skills when they read good books and papers. Similarly, software engi-
neers can increase the quality of their source codes reviewing good and clean
codes. They can find related projects through source code and compare their
source code characteristics. Thus, a social network associate with Kalibro Met-
rics features can provide a collaborative technology roadmap for an automated
source code analysis approach.

Kalibro Metrics was adapted as a Noosfero plug-in. Kalibro plug-in devel-
opment steps have led the Noosfero plug-in framework. Figure 3 presents that
we have connected this plug-in to Kalibro Web Service. At this moment, we
are implementing the source code analysis history with a graphical software vi-
sualization to complete the Kalibro/Mezuro source code metrics interpretation
approach.

Mezuro provides a friendly service on the Internet from the user point of
view. In short, users just need to give a source code repository URL. In addition,
users can access the source code analysis report from an asynchronous way, i.e.
when they wish or need. The history of source code metric values and analysis
are recorded. Moreover, all free and public project analysis are available to any
user.

Finally, any user can suggest metric threshold configurations and share them
on the Mezuro network. This provides a Bazaar style, as defined by Eric Ray-
mond [2] for Free Software development, but in this case to evolve and define
the best way to explore the source code metrics potential. In other words, an
semi-automated source code analysis approach via source code metrics inter-
pretation.

5 Final remarks

This paper presented the current status and preliminary results of this Ph.D
research. We are defining an approach that promotes the use of source code
metrics to optimize free software development. Our first results indicated that
source code metrics explain a relevant percentage of free software projects at-
tractiveness. It is based on human perceptions and influenced by people’s cog-
nition, making it a complex issue, hard to understand and explain completely.
Nevertheless, our first study was able to explain partially the number of down-
loads and number of members through a set of source code metrics.

Our first sample was restricted to projects written in C available. Currently,
we included projects written in C++ and Java, as well as extend our study to
other source code metrics. The next step is a study about the reciprocal effects
between attractiveness and source code metrics in free software projects.

50

Paulo Meirelles, Fabio Kon, and Carlos Santos Jr.

From a practical point of view, we are developing Kalibro Metrics, which
represents a new generation of source code metrics analysis tool, to apply our
research result and support a better use of source code metrics. Kalibro provides
an environment where software engineers can define their own threshold config-
urations, according to software implementation context and their experiences
in software development.

Future Kalibro Metrics features include the integration with other met-
ric collector tools, especially to provide Perl, Python, and Ruby source code
analysis. Moreover, we are developing the Mezuro source code network. It is
an environment for source code tracking, analysis, and visualization. Mezuro
connects the Kalibro Web Service via the Kalibro Plug-in for Noosfero social
network platform.

Acknowledgment

The authors of this paper were supported by Brazilian National Research Coun-
cil (CNPq). Also, a special thanks to Dr. John Pearson and his department to
receive PhD. student Paulo Meirelles as visiting researcher at Southern Illinois
University Carbondale (SIUC).

References

1. R. Stallman, “Software patents – obstacles to software development,” Spoken
presentation, 2002. [Online]. Available: http://www.cl.cam.ac.uk/∼mgk25/
stallman-patents.html

2. E. S. Raymond, The Cathedral & the Bazaar , T. O’Reilly, Ed. Sebastopol, CA,
USA: O’Reilly & Associates, Inc., 1999.

3. M. Michlmayr, F. Hunt, and D. Probert, “Quality Practices and Problems in Free
Software Projects,” in First International Conference on Open Source Systems,
M. Scotto and G. Succi, Eds., Genova, Italy, 2005, pp. 309–310.

4. R. C. Martin, Clean Code - A Handbook of Agile Software Craftsmanship. Pren-
tice Hall, 2008.

5. K. Beck, Implementation Pattens. Addison Wesley, 2007.
6. P. Meirelles, C. Santos Jr., J. Miranda, F. Kon, A. Terceiro, and C. Chavez, “A

study of the relationships between source code metrics and attractiveness in free
software projects,” Software Engineering, Brazilian Symposium on, vol. 0, pp.
11–20, 2010.

7. FLOSSMetrics, “Flossmetrics - free/libre open source software metric,”
http://www.flossmetrics.org/, 2011.

8. Ohloh, “Ohloh - the open source network,” http://www.ohloh.net, 2011.
9. Qualoss, “Qualoss - quality in open source software,” http://www.qualoss.org,

2011.
10. SQO-OSS, “Sqo-oss: Software quality assessment of open source software,”

http://www.sqo-oss.eu/, 2008.

51

Semi-Automatic Evaluation of Free Software Projects: A Source Code Perspective

11. QSOS, “Qsos - qualification and selection of open source software,”
http://www.qsos.org, 2011.

12. FOSSology, “Fossology - advancing open source analysis and development,”
http://www.fossology.org, 2011.

13. “Qualipso: Quality platform for open source software,” Web Site, April 2011.
[Online]. Available: http://qualipso.org

14. HackyStat, “Hackystat - a framework for collection, analysis, visualization, in-
terpretation, annotation, and dissemination of software development process and
product data.” http://code.google.com/p/hackystat/, 2011.

15. A. Terceiro, J. Costa, J. Miranda, P. Meirelles, L. R. Rios, L. Almeida, C. Chavez,
and F. Kon, “Analizo: an extensible multi-language source code analysis and
visualization toolkit.” in Brazilian Conference on Software: Theory and Practice
(CBSoft) – Tools, Salvador-Brazil, 2010.

16. “C and C++ Code Counter,” Web Site, April 2011. [Online]. Available:
http://cccc.sourceforge.net

17. “Checkstyle,” Web Site, April 2011. [Online]. Available: http://checkstyle.
sourceforge.net

18. “Cmetrics: Size and complexity metrics for c source code files,” Web Site, April
2011. [Online]. Available: http://tools.libresoft.es/cmetrics

19. A. E. Hassan, Z. M. Jiang, and R. C. Holt, “Source versus object code extraction
for recovering software architecture,” in Proceedings of the 12th Working Confer-
ence on Reverse Engineering (WCRE’05), 2005.

20. “Cscope,” Web Site, April 2011. [Online]. Available: http://cscope.sourceforge.net
21. A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C. Maldonado, “JaBUTi:

A Coverage Analysis Tool for Java Programs,” in XVII SBES — Brazilian Sym-
posium on Software Engineering, 2003, pp. 79–84.

22. “Macxim,” Web Site, April 2011. [Online]. Available: http://qualipso.dscpi.
uninsubria.it/macxim

23. “Metrics,” Web Site, April 2011. [Online]. Available: http://metrics.sourceforge.
net

24. C. Santos Jr., J. Pearson, and F. Kon, “Attractiveness of Free and Open Source
Software Projects.” in Proceedings of the 18th European Conference on Informa-
tion Systems (ECIS), Pretoria, South Africa, 2010, (forthcoming).

25. K.-J. Stol, M. A. Babar, B. Russo, and B. Fitzgerald, “The Use of Empirical Meth-
ods in Open Source Software Research: Facts, Trends and Future Directions,”
in FLOSS’09: Proceedings of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 19–24.

26. H. Barkmann, R. Lincke, and W. Löwe, “Quantitative Evaluation of Software
Quality Metrics in Open-Source Projects,” in AINA Workshops, 2009, pp. 1067–
1072.

27. I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code Quality Analysis
in Open Source Software Development,” Information Systems Journal, vol. 12,
pp. 43–60, 2002.

28. V. Midha, “Does Complexity Matter? The Impact of Change in Structural Com-
plexity On Software Maintenance and New Developers’ Contributions in Open
Source Software,” in ICIS 2008 Proceedings, 2008.

29. E. Capra, C. Francalanci, and F. Merlo, “An Empirical Study on the Relationship
Between Software Design Quality, Development Effort and Governance in Open

52

Paulo Meirelles, Fabio Kon, and Carlos Santos Jr.

Source Projects,” IEEE Transactions on Software Engineering, vol. 34, no. 6, pp.
765–782, Nov.-Dec. 2008.

30. D. Barbagallo, C. Francalenei, and F. Merlo, “The Impact of Social
Networking on Software Design Quality and Development Effort in Open
Source Projects,” in ICIS 2008 Proceedings, 2008. [Online]. Available:
{http://aisel.aisnet.org/icis2008/201}

31. “Noosfero: A free web-based platform for social and solidarity economy
networks,” Web Site, April 2011. [Online]. Available: http://noosfero.org

53

����������	
�����
�
�����������������

����������������������

����������	�
�
�

����

��������������������������	�����
��������
�����
�������	���
�������

��������������
��	��������� �
	�
!�"�����#���	�
�
$%��#���

&&&��������'�(�����())*	�'#�����	#���

��������# �+�������� ���%�����
�!�����*�
'���,�����������
�� �
 ����
���%����

�����������,����-%�	�������������!�����%���
����.�����������#�/
���������

'��	� � �� � �� �!�����*� ���,���������
! � ����,��� �!���	����� �%
!�����
! ����
�

��%�������������#�+���������!�����0����		�1�����������0���%
������
�2�,���

��!�	� �,���� � �
�	%!�� � ��%� � !����
����� � ����� � �� � ��,�� � 3��� �
���! � �������

��*�'%�%�	�4 � �� � �
�	%!�(� �4 �
��,����
' � ��,��� � 54 �
��,��� � ��,��� � �4�

��,����!���,����
!��4�
��,���6����
'���,��#�+��������!���������		����!�

,�������	�
'�!��*��������
��
!��%	���	���
������,���
��!�����.������%
���#�

7���
'�,������������%
�����
!��*�����
'����*���������������
�*	�����	�����
�

�����%���%	����
�������%
������
���
��������%����������������,��������*���!��
�

�����!��
������,#�������*���!��
������,������%��!�����,�������������
�!�

!%��
' � ��� � ���
�� �,��� � ��� � ���
'�! � �
! � ��,# � ��	����! � �
������,��� � ����

!���	�������,�����,����������
���%������	���!#������

� �
�������	�
��
�����	���	�

/��
���%��������%
�������������!��������
!�%����������
��%��������������
�������

�88��#���������%�������/��
���%����!���	����
����������		�
'�!����!����
�	��	���!�

��%����!���	����
�#���������
����!	��*���
��
�����!�
�������������
������/��
�

��%���# ����������	��� ���'%�� ���� ��������
!����
���%��� �����%
����� ������*��
�

�����!���������
��������*%��
����������'����

������
����������
!�,�������������
'#�

���� � �� � ��%� � �� � 	���� � �
 �/������
' �������� 3/�4 � !���	����
�# �0%���
� �/������
'�

������� � ���� � *����� � �9�����	� � ����	�9 � �
! � !���	����
� � ��-%���� � � � 	�� � ���

����%�����!%�����!���
!��������!�*���������#������������������������������!���
!�

����! � �����
�� � �
! � -%��� � ���%	��# � :��!	� � �
� � �����
� � ��
 � �����! � �� � !� � /��

!���	����
� ��	�
���
! �*���
!��	���!�!����# �/����%��� � ����� ���� ��9������
�� �*%��

��
!�
������������*��������������#�

/��
 ���%��� � ����%
����� � ���� � *��
 � ���%
! � ��� � � � ��, �!���!��� � *%� � �%���
��

!���	����
���
����
���%������������
������!�����������
'��	������
�,�������%��!����

*�#�������	�����	���������,�����
��*�%����������
'���
���!%�������
!���������!�'��

������;��������5���<=#��
�����*�'�

�
'�������
���%����!���	����
������,�������	� �

*���! � �
 � ��	%
����� � �	�� � �
�,
 � �� � ��� � *�>��� ���!�	 � ;5?=# � 2���	� � �����������!�

!���	����
� ��
 � ����� � ����6���� �,����%� � �
� ���
����� � �����
�����
����� �,����

!��
'����1"%������������%
1�;��=#�

54

����������	�
�

�
���������������������
�����������!��%'��+@A�!�������
���,�����%
!��!�����

��'�	������
�!��
!����!�!���	�����#�/�������������!���!��������������
'�!�!%�����

�����%�������
�#��
���
�	�+@A����������*��
�����	%�*	��������'��������������*������

�����9��
������
!��	�,��������������������
��!#�/��
���%����!���	����
������	�����

��
���
�
' � 	��'� � ���	������
� � �
! � /� � !���	����
�� � �%���
�	� � �
�	%!�� � ����
'�

������������
 � �� � �����
��� � �
! ����� � ����	�9 ���!�� � �� � ��	����
����� � *��,��
�

!������
� � ���������
�� � �� � !���	����
�# � .����
��
��� � �����
���� �
�
6�������

��%
!����
� � �
! �%
���������� � ���� � �
����! � ��� �,��	! � �� � ���
 � ��%��� � ��� ������%��

�����
��!�����*�!��
����,���1��1����������.��!�1�;58=#������������
���
�	%!��"%������

��
���
�����,�����
'��
��������������!������
������������������������������
!�'��,��

�
��%��'� � �
��������*�	���� ����
 ����
!��!� ��
! ����
���� �!���	����
�� ��
!�*%�	!�

���%�����
#�&��	�������������
���%����!���	�������������		���	%
�����������'
�����
��

���%
��3�BC4����!���	�������������!�����������������
�!������
�����
���%�������"�����

;�D=#� ��>'���	!�����	�*�	�!������
�,���������/��
���%����!���	����
�����1/���5#�1�

;��=#��������%	��������
'����
�*��	�����!�%
!���������
���������1/��
��

������
1����

1/��
���%��������,��� �E���������1# �A������
�� �*��,��
� ������
����� � �� ����
� ����

���,��
!���������#�

/��
 � ��%��� � !���	����
� � �� � �
 � ���
�����
 � �
! ����� � �����
��� � ��� � '����
'�

�
��	��!��
�/��
���%����E����������3/�E4#������
�,	�!'���*�%��/�E�����������

	�����!��
!��������� ���� �*��
 ����� ��� � 	��� ����
�����	 � ������ � ���
 ��%	�%��	 ��
!�

!�����*�
'#�������������������������9��
!��
�,	�!'���*�%��/��
���%����E����������

���� � !���	����� � ���,���
�(� �4 � ��, � !���	����� � %
!�����
! � /�E� � 54 � ,��� � ����

�%
!���
��	 ����������/�E���4���,���������������
������
��
�	%�
���!���	����
��

���������
!��%��%�����4���,�!������
6����
'��%
����
���
!�D4���,�!������
6����
'�

���
'���!%��
'�����������%����
���
!�������������'���		���������
�����
��#�+��%	�����
�

*� � %��! � �� � �!"%�� � ������'��� � �� � �����
��� � �����������
' � �
 � /�E � !���	����
�#�

�
�,�
' ���,�/�E� �%
����
�� � '���� � ���	� � �� ����� ����!�����
� � �*�%� � �%�%�� � �
!�

�!"%��������
��������'���#�

�
�������������,�������!���
��
��'������'��	���
!���������������!��������%!��
'�

����*�	�
��������,����
��
����
���%�������������#� ��%������
���"���������'������
���

!%��
'�!���	����
���,�������������������!���	����
���
�!������
��,���#���	����!�

�������������,����!���	��������,���
���
������
�����	#��

�
�������
��5��
!����,��!���%�������*���'��%
!����������������
!��������������

���������!�,����������������
!���,��#��
�������
���,���
���!%�����������������!��

�����,�		�*��%��!�����������%��������������#��
�������
�D��,�������!���
������,��������

,����-%�����
���
!�!���%����%���
������%�������������#��
�������
�<�,��!��,������

��
�	���
�	%���
�#

� ����������������

�
�������������������������������������!���
�������
����������%����������'�
���	��
!�

�� � 	�����! � �� � �

������
# � %���������� ������������������� � �� ����� ���	����� ��
!�

��
����������%�����������������������	%��%����
�������,������������������	�'�������#�

55

+����'�����
'�/��
���%����E�����������F��������%!��������.��

��������������%
�����
!���������������%
!������!��
��������������������		�,�#�

0���%
���� ������ � �� ��		 �!���	������ �%����� �!���'
���� ������������ �*���! ����*�����

��
�'�����
!���	%
������,�������*���
!��		�����1'��!�1����!%��!�*�����������#��
�

������,��!�������%
���������������%��
���
��	��!��
����������#�������
��������

����,����E������������������'�
���	��
�
��%������
�/��
��

������
#���������������

�
!��>��������;5�=������,�����
���*����,������9�	��
����������
����
!��������������

G����,����E��������G#�H����!�
'�������������,��������������������������*%��
������

�%
����
�
'������%
����
!��
�������
'�,�����������!����������������,�����
!���������� �

��'����� � ,��� � ��	����
����� � ���
' � ����# � ����� � ��	����
����� � ��� � ���-%�
�	��

%
!����

�!�*���������
�����
�	�'���	��	��������
!�������������%'�������9���
'��

����
��������
������%�������
!����������#����������
�	���2�����
!�������;5<=������

!���%���!�����,������������������������,������
!��1�������������#�

2����!���
���������������������
�����	����������������I��������������
����;###=�

�9���
'�����!%��������������������������������
�'��	�����������������'����	���	�����

�
!���!%�	 � '��	�J � ;5B=# � 2��� � ����'���>�� � ����,��� � ���������� � �� � ����� � !������
��

�����(��4��%��	���������������54�����
��������������
!��4��%����������������#�;5B=�

��������
���������������
���
������,��������
�����
�	%!�
'�����������,������
!����

�
! �������� �
��'������# ����� 	����� ������!�� � ���	���
�����
 ��������� � ��� �!������
��

��
!��1� � ��	%���
�# � 0%������ � ��������� � �
�	%!�� � *��� � �9����
' � �
! � ����
���	�

�%�������#�2����!����
���!���
��,��������
�	%!�!��
������%��	�������������#�

��� � ���� � ��������� � �
 � ����,��� � !���	����
� � �� �
�� � �!����! � �� � ���
 � ���

������������*���		#����		��

�,����������
��������!��������������������������������,����

������
�� �!��� �
�� �������� � 	�*�	�
'� ���� � ����,��� �����%
������ ��
 �����������

;��=# �H����!�
'�������		��
�� ����,��!�I���	���������*��
������������	 � "%!'��
�J�

;��=#��
�������,��!���	�*�	�
'�����%
��������������������	����	���%''����������,��

%���
�
"%!'��
��	 ��*��������
��������'�
�������
�%�������� ���'�
������������

���		��
��%������I;,=��!��
�������,�����������������������
��,	������������%������������

��%�������������	�
���,���
	���*����������������!����#J;��=����		��
��	���������������

����,��!�*���%�� � �� � ������ � �� ����	�'���	 �����������,���� ������
�
�� �,���������

,�����%
��	��*	���������%
�*	������!����������
'�
'�����%����
����-%���	��*���%������

� � 	��� � �� � �	�9�*�	��� � ,�		 � ����
 � *����� � 	��� � �����
 � ��������# � �
 � ����,����

����������������
�
����	������	��������,����
!�����*���������������	���9��
��������

������%���*	�����	�����
� ������%
!��
!��!����!�*���		 �%����# ����		��
�������� � ���

�������������	����
���,������%������	�'���	����
���
�
������������!��
!�*��
'��

��
�!���!�����������������
'���������'��������,������
���#�

E���������������*��
 ���%!��!�����	����������
�����	 ������������# �����������

���
���%����������������	���!�������������
��!�!���������		�������!���	��������
�����

���,#��
������������������%������
�!���
�
'����
���%�������������������!���	����1��

���,#�H
���������%������
�!�����*�
'�!������
�����
'���������
���
!�����������!%��
'�

��"������
���,����������������'������	������
����'��!�
'����������1���%�%��#��
�����

	���������,����������*�	��������
�	%�
��������������
��������������	���
��#��

56

����������	�
�

� �������� ��

���� � �������� � �!���� � 0����		�1 � ������ � �� � ��,�� � !�����*�! � �
 � ��� � 	����� � *����

10���%
������
 � 2�,��1# � H����!�
' � �� � 0����		� � ����%
������
 � ��,�� � ��� � ��%��

!������
�������(��4�
��,����
'���,����54�
��,������,�����4�
��,����!���,����
!��4�

��,���6����
' ���,��#;�= ���� � ����� � ��� � ����,��� � ��*�'%�%�# � �
 � ��'%�� �� � ����

�	���
��������,��������		%������!����	������ �,�����������,��	��������������
������

�����'�
���	�����,�������������#���
������*������
���
�!�*����0����		����'%��������

����%
������
�
��,��������������������	!�������,����
�����
��,������������;�=#�:��

!�����*����,�������
�����6����'�����
'��
!��,�����
'�6�������%�
�
��,������
���

��"�����%����������,��#�

0����		��!���
���
��,��������I����������	��
��		������	�����
������������
��
�����

������� � ��
����
�� � �� � �����	������	� � ��	��
����� � �
��	� � � � ��� � �� � ����� � ���� �

�������	������ � �	��
� � � � �	��� � �� � ��
���� � �	� � ����������� � �� � ��������	 � �� � ����
 �

�����������������������
���	���	��
�	��	�J�;�=#�������'��	���
!��%	��������������
���

����I3��4���'�����!J����������	%����
!��
����������������		�!����'���������,�����

��� � ���	 � ����	�� �
�� � ��'�
�>����
�# � 2��'������� � �
�	%!� � ����� � ,�� � �
'�'� � �
�

!������
6����
'�,���������
��
���
������������
!���
�'�����
��,����#��,�����
'����

�*�%���	����
'������!����
'�����
��,������
!���

�����
��*��,��
�����#��
�������

,��!���,��������3!��4��

����
��,�����!������
��
��,������������������'����		��
����

�
!����6��������
����,��!���������������
#���

!	�"��"��		%�������
�������
����	�����
����*�
�!�,����0����		1��������������,����,�����,�		�*��

%��!�����
�	����#�

��	����! � ���
��� � ���%
! �,���� � �
������,� � *%�	! � ��� � �		%������! � �� � 1�����1# � E��
��

��	�����
����!�����*�!��
�!����	���
������������������*�	�,#

57

+����'�����
'�/��
���%����E�����������F��������%!��������.��

���$���%���

���� � �������� � �� � -%�	������� � �
! � !����������# � �
 � ���� � �������� � �*��������
 � �
!�

�
������,�������������
�!������		�����
������!�#�H���������!�����*�����
���
�
���

!���
�!�*�����������-%�����
��*�	�,����������%
!	����������*	�#�����������
'����
��

��� � ���� ���%!� �,�� �'��%
!�!� ������ � ;�56��=� �,���� � �� �� �!���6!����
 � ������# ������

�������� ����� ���������	 ����%����
���
!������!�� ���	���
� ����!�����
�� ��9�	�
����
���

�
�����������
����
!����	������
�#������'���*���%���*	������
������������!��������������

��%!�����
������%������	������
����'��%
!�!�������#�H���%!����������������!����
���

	�����
������%%������������	���%������J;�=
�,	�!'������	,������!����!�*������9����
'�

�!�����
!���	%����,������������������
�,	�!'�!�*�����������������
��J�;��=#������

!���
����
���
!���!�	������������
���
�
���������
������������%��������������%	���

��������%������	���#�

#"� ��������	�
��
��	
����	� �

+�����������������������*���������.������%
����*����	���		���
!��
���
����
�		�#�

K��
'�����������������%
����,������������
���	�������������������������������%�����
!�

����
'��������������� �����
��9���	��������
�'���������������������
'#����������������

���%��! ��
���,�� ��	%��%����
�� �
 ��
��������%	�� �/��
���%��� ������������
���	��

���.�#���������������!�����*��������	����!����
���
�
�����
'�
'���,�����	����
���

,������������
#�7���
'��
���������������%*"��� �,��	!� � �
���������������%�	��
!����	 �

,��	!��������
�����
!�����
'��������%
������
�'����
� �

�������.������%
�����

'������
��!��
��'�#�����'
���������*��������
'����,�%	!�
���*��,���#���������������

�������� � �����!�	�'� � �
�	%!�� � ���� � ����%��� � �� � �����	 � �
������	�'� � �
!�

���
�'������ � ��������# � H����!�
' � �� � H�'��;�= � ���
�'����� � I�� � ����
���		� � ��

!���!�
' � ��������
#J � %���������� � �� � �� � I� � !���������
 � �� � �����! � �
�,	�!'�� � ���

��'
����
�J�,������I�
�*	�� �%�����!���!�������*�����!�*�������#J ����!������� ����

���
�'��������%����9���
����
!�����
���		��	���
�����'��%�L��	�
'%�'�����!����%�����

��� � ���
� � ����%'� � ���� � �
�,	�!'� � �� � ���
������! � �
! � �
�������%
�����!# � ����

���
�'��������%����!�
���������������
�������
!����������������!�	�
'%������	�*�	�����

	�9���� � ;��=# � ��� � �*��� � ������� � �� � ���!	� � ���� � ����� � �� � ����	�# � 7�
��	
 � �
!�

.%*�;5D=�!�����*��I���	�
'�!��
'�'���
�J��������I�
������
������%������
������J����

��%	��	���
�������%
���L���%	�%��#�����	���
�
'������������������
�*	�������
'���������

����
�����������
�����
��������
��
!��*��������
����
!����*%�	!���%����
!�����*	����

��������,�����������*���������������%
���#�.�����
�'���������������%''����
'������

��� � �*"������ � �� � �� � ���������	� � ��
������ � ��� � ����%
���� � ���
 � �� � ��� � ���
� � ���

*�����
'������*��������������%
�������'��%��;�<=#���������������!�
�	����%���
������

��������#�+����������������*����������%
�����
!�������������%
������
�'�������

 �

��� � ����%
���# �H� � � � ��
��-%�
�� ��� � ��� � �*���� � ���
�'����� ��� ������!����

�������� � !�����	�
� � ��� � ��� � !���!��
��'� � �� � *��
' � ����6��
�%��
'# � 2��	�
'�!�

�
'�'���
����������	����'��
����������������*%�������!�
'����7�
��	
��
!�.%*��;5D=����

���
����
�%'������������������������������%�����!���������
������
�	�������������%*"���# �

58

����������	�
�

A��������
��!�!��
!��������!�,������������
���*��������
#�2�������
���*��������
��
!�

���	�
'�!��
'�'���
�������
��%�
���	���!�����
�������������
��������������	�!�����
!�

�%��������;��=#

�
 � ���� � ��%!�� � ��� � ��	� ��� � ���������� �,�� �*��,��
 ��*������ ��� ����������
� ��
!�

���������
� ��� ��*������ � ���%'�� ��� � 	����� �,�� �%��! � �
 � 	����� ��������
�# �0���	����

�*���������	��,����9�	%!�!�*���%������,�%	!�	���������!������
!��
��������
�������

,�!������!���#�0���	�������������
����	��,����	����9�	%!�!#��������
������
��������� �

,�����������,�%	!���������������������1���1�!�����
����������,��	!�����
�����
��#�������

,���
�����	�
��!������!�������������������!�
���������������
�����
����,�����,�%	!�

�����*��
�����,����%
������	#�K���!���������������������*	���
�����
��������*��
�

�,�������������%!������-%����	�
'�������������	������,�������
�#� ����	����������������� �

����*��
�����������������
�������������%
������
���5����,����������
�	%!�!�������	 �

!���%����
���*�%� �������������# ������%�������� �,�����
�������	 �*	�'��
����� ��*�%��

���.� � ����%
��� �,���� � ���� � '��
�! � ���� � ����
���
 � �
 � ��� � ����%
���� � *����

	���		� ��
! � �
���
����
�		�# ������%����1� �*	�'� �
�	%!�� �� ������� �!���������
 ��� � ����

�%����� �,����� �!�
������ ��%������� �� � ����������# �����
!	�� ��%���
� � �������� � �������

�����*��
�!���%���!�*����	���	����
�������	��+0����

�	���
!�!���%����
�	����#�0	���	��

���������������
��������%
	���	������������
�����
���,�%	!�
���*��3���	���������,���4�

�,������� �����%���������������������%�# �����
�*	�������� ���������� ���
�,��!�
�����

���%	!������*��
�*%�	!��,�����,�%	!����������
�������
!���-%���!������%��������	����

��	���������1!�%*	���'�
�1#�

#"�
�%���	
��	
����	� ����

.��
'�1�����1��
!�������������
��
�����%
���������������*�����
�	���	��
!��
���
����
�	�

	���	 � �%
����
� � �	�� � �� � � � ��%�� � �� � ��
���� � ��� � �%������%� � !���	����� �,�� ���'���

�����,��� �*� � ����,��� � ��	%���
� � �� ������������ ��� ����! � �� � �����# �K�� ����
' ��
!�

�*�����
'���������������������%'�����6������!���%����
��,��������������������
!�������

����%
��� � ���*���� � ��� � ��%���%� � !���	���� � *������ � ���� � ����	��� � ,��� � ����

���������� ��
! �,��� � ��� ����� ��� � ���� �������� � ;8=# ����� ��
�*	�� �����
'���
�� � ����

�
������,��
�����������������
���%�������
����.����
����
������%�������
!�	���	�

����%��#�

�������������
������,����%	����
����!���	�����#�H����!�
'����.�����
�I��������

�
�����
�������������,�������!�����	�����������!�,�����������%�������������������
���

��"���,��J�;��=#������
������,�������������������'��%��,������%
!�,����������	�����

����������1� ������
�	 �
��,���� �,���� ���� � �����! ��� � � � ���%	� � �� � *��
' � �
 ��������

���*���������.������%
���# �����
��,����!�
��%���������.��!���	����� �,���

�	�� � %��	�>�!# � �
�,*�		 � ������ � �� � !�����! � *%� �
�� � �
����	 � ���� � �� � ��-%���
'�

�
������,���#�

����������
������,�����%	��!��������������
����������������
�����*���
������,�!#�

���� �
������,�! �,���!�! �
�� � �!�
���� � ������	��� ��� ����.��!���	����� ��� �,����

��%
!�����%'��������!���	����������	�*�	�!������������
!����'��%�#���������
!����

'��%���
�	%!����%�������
!6%�������������
'���	���!���	����
!�	�'�	����%��������	����#�

59

+����'�����
'�/��
���%����E�����������F��������%!��������.��

#"�
�%���	
�����
��

��	����
'����
���,����������
�	�>�!�����%'������0���%
������
�2�,����������*��

0����		��������	����!�*��%��
'�����������	������!���
!��*��������
#�����������	������!��

����%��!�����
�	�>���������
������
�������%�
�
'����
����
����.�����������#��+0�

!���%����
�	�'��3�����9���	���
�M���'���
!�M���'�6!������

�	�4��!������
�����	�
'�

	��� �!���%����
� � 3��� ��9���	� ����'���
! ����'�6!��4 ��
! � �+0������
' � 	�'� ��
!�

�������� ���� � �
�	�>�! �,��	� � ��� � �������� �������!�# �K��%��
' �����������	 ������!���

��
!�!�����������
������
�����
�*���!�
�����!�#� ������������
!�!��������
����
�

������ �����������
���
!��������%���%	 ��
���������	����!�*����������������# ���������

�����*	� � *���%�� � ��� � ���������� � �� � 1	���
'1 �,��� � ��� � ����%
��� � �
! � 1�
��!�1 � ����

���������#�H����������
����	����!����
�������
���	�����!�����
�	%!���
	��������
�

�����������%����
���%������������#������	���������������������������	�����
��
!���%��

!����
���	�����������������#�

������
���	���������*	������!�
������%���*	�����
���*��������
!#���������
�����
� �

����*��
��!�
�����!#�N����1��!������
������
���>�����.�1����	���
�������������'������

�������!�,��	�����������#��
������,����'��!�
'���������
������������!��
�����5���#�

������		�,�
'����
������*����	����!��������		�%
�
�,
#���
��
���
��������!�
��������*��

�,�������������������
��������
������,��!%��
'�������		�,�
'�������
!�����	�#�

H�������������
��������!�
�����!���������������
����!��		�����!���%����
�����%
!�

���� � ����
� � �
! � ���� � ��� � ��
�	 � !������
 � ,������ � ���� � ������%	�� � ����
� � ���

1�
�������
'1 � �
�%'� � ��� � �%����� � �
�	����# � ����������	 � ���	� � �
! � �����!� � ��� � ���

�%������
'������!#�����!�
�������������
���,��������������
'��������	����!�6��!��

���	���9������,�������
�!��,���*	����
!���'%����������+0�	�'���
!�����	���������# �

��������	���
�*	�����
���

�����
������������
�� �!�
1� ��
�,������������	�����		�

������������!��
�%'��������%	!������'��������,
#������		��,�%	!�	��������������	6

���� � �
�	���� � ��(� �+0 � !���%����
�� � ����	 � 	���� � �
! � ���%� � !���%����
�# � �� � �����

����������
	������	6������
�	�����3����������	4����	�������
'��
!�!���	���
'�����*��
�

!�
���	���!���
!��
��'�����
�����
����'����#��
��
���
����������*�
�����,����,��������

���	���
!����.������%
����!���*���!�!���	����
�#������,�%	!�*������%	�������

���	�����*���������.�������������������%
���#�

& �������$��$������
�������
��������

�
������,��,�		�*��������*���!#���	����!�����������(

�" ����������
����
�����������������

� ���%��%��

� �!��	�����������

� +�	����������
�����
!�����%
���

� +�	�����7�
%9� �%
!����
O

�" '� ���	
�����������������(
������ ��)*

� &��������������
�	%�
����
����.�����������O�

� ������'%�����,�������	����!����
�������!��,
����1�����1#�

60

����������	�
�

� H�����������,���'��%��O�H�����������*	�O

� /��

�����
!����
�����
������!������
�����
'��������

� 2��*	�����	��
'��
!�!���%����

� :�,�����
�,�����%����@��!����*��%'���%�O�

� &�� ������ � �
! � ��, � ��� � 1*�'1 � !������
� � �*�%� � ��� � !�������
��

���.��������!�
'O

� 0���%
������
�F������!������%
�����
��
�#��

&"� +����
��������

�
������,� �*�'�
���!� �� �����5���#� ���� �������'�� ����
� ����%
!�,����� �
������,��

��
���%�������N����1��!������
�������
'����
!6��	!�/��������'�� �*������5���#��
����	�

�
������,��� �,��� ���	����! ��������

�������.������%
���# ��
�,*�		 ������� �����

,����!�,�		��
!����%	��!����������	�
�,��
������,���
!�!����#�H		���������
������,�

��
!�!�����������'���!���������������#��������'����%''������������.������%
�������

���%��
' � %�� � ��
�� � �� � �� � �
�������! � �*�%� � �
��������
 � ���!%��! � �*�%� � ��# � E����

�
������, � ����� � �*�%� � �
 � ��%�# � E9�����! � ���%�����
 � �� � ������! � ����� � �� � �� � �D�

�
������,���,���������
��*�%������
��#���

, +�
�%��	�
�

�
����������������*��
�!���%���!���,�-%�	���������
!�!���������������������*�%������

*�	�
��������,����
��
����
���%��������������,�		�*����
!%���!#�A���%����
��*�%��

�����!�	�'���
�	%!�!(���	����!��*��������
������!���
������,����������
������,���

�
!����'������
����	�����
��������# � �H	����%���
� �����%��������������,���!���%���!�

*����	�#���

������
���

�# �# � H�'��# � E��
�'����� � �
! � 0�'
����
� �
 � +# � �# � E�����
 � 3�!#4��

0�
�������������	!���������(�H���		�����
�������!�
'�#��8?�#�

5# 2#.#�0�������2� ��
����#�.��!����
!�A#�����	!�#�H�������������K�1�����
6

��%����

�# �
��	����
���
!�������'�#����������������
	������354(5�865DB��5��D#����N�

���?6?<B�#�

�# ��
%�	# �0����		�# � ����	������	�����
�� /9���!�

���������2�����P�N�,�

������5��8#�

D# :#&#�0���*��%'�#�!��	��		������	"�#���	�������
��������
��
����	���	� �

�
�����	� � �
�� � ����	�����# � :�����! � K%��
��� � 2����� � 5���# � ��KN�

�DB?D�?�BB#�

61

+����'�����
'�/��
���%����E�����������F��������%!��������.��

<# :#&# � 0���*��%'�� �&# � Q�
�����*���� � �
! � �# �&���# �!��	 � �		������	"�

$����
���	����	�����
�����#�/9���!�

���������2������
�H��5��<#���KN�

��8858�B5D#�

B# �# #�0������
��
���#:#�/	���
���
!��#�#��"R�#������
!%�����	�!�
���������

/��
 � �

������
 � 6 � E��!�
�� � ���� � ��� � ���
���������
 � �� � ��
�%����

�	�����
���#�$����
���%���������3��4(�D��M�D�8��5��D#����N����?6B���#�

?# �#�0��
'��
!��#�0���#�&��	�����	��
������#���'��2%*	������
��7�!��5��B#�

8# N#�#�A�
>�
��
!��#�#�7�
��	
#�#���'������	����(����)�����������
����
��#�

��'��2%*	������
����
���5��D#�

��# +#�# �E�����
# � �	�����
�
� � ����� �
����
��" �* � ���������	 � �� �
����	��#�

7���	��K��,
��
!�0����
����8?�#�

��# K#� ��>'���	!#��������
���������
�������
���%��������,���# �����+��
��
����

���3�4(D?B6D8?��5��<#�

�5# /#�.�����

��
!�E#�E
��	#���,��!�����������������
��

������
(������������

������������������#��
�$,&���	�����	�� �	��
�	����5���#�

��# �# � .�
>%�# �* � ��	������ � �� � ���	��
����� �
����
��# � 5���# � ��%����
�

0�	����
��(�

�������� � �� � ��%����
 � 0�	����
�� � 0�
��� � ��� � �%	��	�
'%�	��

�%	���%	�%��	�+���������5���#�

��# 0#2#�.�����
#�E��
�'�����(�-�
��	��
����
��"�*�)��������������
����������

��'���5�B6���5���88�#�

�D# +#H# �.����# �

!�����
!�
' ����� �����,��� �!���	�����(� �
!�
'������� ����

 7/�����%!�#�%�
�����������	��
����	�����	����
���������
�����'���5�6�D��

5��D#�

�<# E# � .�����
� /
 � ��	!,���# �.��
	�� � �� � �	�����
�
� � /��	��
������

�?354(�5����8?8#�

�B# �# �:�
��	# ���	������������	�
'��
����
��

������
����������(�������������

��*�!!�!�7�
%9#�$����
������������D3B4(8D�6�8<8��5��<#����N����?6B���#�

�?# �#�#����>#�E�
�'�����������������
�	#"#�'%����@��#�#�	���3�!4�����������
�

����
���	�����%
������
��5��5#�

�8# +# � ������*�%�# � /��
 � �

������
 � �
 � ��������# �$����
��0#���	������

��	�����	����?3�4(5�65?��5��D#����N��?8D6<��?#�

5�# +#Q# ���>�
���# �-��	��
����" � ���	� � ���	��
����� �
����
�� � �	��	�# ���'��

2%*	������
��7�!��5��8#�

5�# �#�.���	��	���
��:#�.%�������
��+#����	���
��0#�7�

����	���K#�7�
'���H#�

�������
� ��
! �E# �/	���
�/����
�	� �������������	 � �	�1�
�� � �	��
	����	�� �

2�
(������	�������	��'�����	�����!��	�'��
��� ����	������ 3/�0/���

5��84�������!����,�!�
��5��8#�

55# 0# ���

 ��
! � # ����,���# ��	 �3�4�	��� �-��	��
����" ����	� ����	��
����� �

����
���#���'��2%*	������
��7�!��5��8#

5�# A#.#����������������
!�0#��>�������# �'�����
�����������"��	��
���	��	��

�	��	�����	����������	�������	���	����
�����	%����#���������2������5��D#�

5�# �#A# ������ ��
! ��# �N�,��
# �����-%�	�������� �
������,� �
 ��� ���������(�

E9���
�
'����������#��	��
�����	��	��!
��	�4����	���B3�4(565<��5��B#�

5D# �#�#�7�
��	
�@�E#.#�.%*�#�N��%��	�������
-%���#�K����	��:�		���0H(���'��

62

����������	�
�

2%*	������
����
�#��8?D

5<# �#�2�����
!�+#������#�%
������
���'�����
��/���������"�����	����������� �

/��������� � �	� � %�
�	�
����� � �	 � ��� � '�����
��	����
�# � K�A6K���� � �
�

A���
!��5���#���KN��?�5���D��#�

5B# �#�# � 2���# � .��	� � �� � ����,��� � Q�
!��� � ��� � 2���
�� � E���������MH�

2��������
����Q��,#�5���#�

5?# E#�#�+����
!#�#���������
����	��������4��
"�����	����	�5�	����	�����	 �

���
�� � �� � �	 � ������	��� �
��������	�
�# � /1+��		� � @ � H���������� � �
�#�

��*������	��0H��
�H��5���#�

58# 0#�# � ���,���# �#�� � !��	 � '��
�� � '�����
� � /���������� 5��8#�

����()),,,#%����#�!%)!�'���	��
���)��������),����
'S������)�8S��5���,�

��E��������#�!�#�

��# 0#����	�#�T%�	�����
�-%�	����������������#�+������������)��
���D3�4(�<D6�<?��

�888#�

��# +#�#����		��
� � �# �.��� ��
! �7# �7����'# �1
���������
�� � �
�� � �������# �.
%�

2������5��5#���KN��??5���8?�#�

�5# H#7# � ����%�� � �
! � �#�# � 0��*�
�6
��	��� � ����
� � �	 � �
������# � �H.E�

2%*	������
����
����88B#�

��# H#7#�����%����
!��#�#�0��*�
�����������)�����������
����
��"�#���	�)��� �

�	���
�����
�� � ��
 ���������	� ��
��	���� ����
�# ���'��2%*	������
�� � �
���

�88?#�

��# 7# ������	!� � �
! �A# �A����
!# �.��� � ��
 � ��	" �#�� � ���
� ��� ��	 �������	��� �

��������	�
�#�:������2����*������5��5#�

63

Understanding Code Forking
in Open Source Software

Linus Nyman
Hanken School of Economics

Arkadiankatu 22, FI-00100 Helsinki, Finland
linus.nyman@hanken.fi

Abstract. The right to fork code is one of the central rights of open source
software. Among the implications of this right, which can be used by anyone,
are that entire codebases can be forked and used in the creation of new
programs; or, if someone is not pleased with how a project is being managed,
they can fork a new version of the project. Despite its significance, code
forking in open source has seen little study. My doctoral thesis strives to
increase our understanding of code forking in open source software. The two
main areas of interest are 1) the motivations behind code forking: what reasons
do developers have for forking? What are the main categories of reasons, and
how common are they? And, 2) how is forking perceived: when is it
acceptable to fork a program and when is it not? Are these perceptions tied to
the forks ramifications for the community? In addition to these questions, my
thesis seeks to explore the problematic issue of defining a fork and present a
typology of forks for use in academic study of the phenomenon.

1 Introduction

During the past decade researchers have looked at many both significant as well as
interesting aspects of open source software; however, code forking is among the
topics in which there are still many gaps in our knowledge. A deeper analysis of
code forking is significant not only due to its previous scarcity of study, but also due
to the central role code forking as well as the possibility of code forking plays in
open source software. Code forking is at the same time both the potential saviour and
downfall of an open source project: while a fork may dilute the efforts put into a
project, the potential to fork also insures that an open source project will never die as
long as there is a community with an interest in keeping the project alive. Indeed, the
fork is arguably a large part of what makes much open source software possible.

64

Linus Nyman

1.1 Purpose and aim

This paper outlines the purpose and approach of my doctoral thesis. The purpose of
the thesis is to increase our knowledge about code forking in open source software.
Based on this overarching goal, two specific sub-questions have been defined:

1. What are the motivations behind forking, i.e. what reasons do
developers have for forking a program? A common perception
appears to be that forks are largely driven by disagreements among the
community; however, is the truth quite so one-sided?

2. How is forking perceived when is forking acceptable and when is it
not? Considering the importance of community participation in open
source projects, perceptions of a fork is a central question. A further,
related area of interest in this question is what affect a fork has on a
community: this would seem to be causally linked with how the fork
itself is perceived.

This paper is structured as follows: Section 2 describes and discusses code
forking as well as the related concepts of code reuse, code fragmentation, software
distributions, and, finally, software licenses, while Section 3 is an overview of my
research approach, including a discussion on some of the relevant findings of my
research to date.

2 Code forking in open source software

-
open source project participants privately invest time and resources to create new
code which they then make available to all as a public good [1]. The open source
initiative (OSI) offers ten criteria which must be met in order for a program to be
considered open source. The first three criteria cover the right to free redistribution,
the necessit
modifications and derived works1. Open source software, then, is licensed in a way
which gives users the right to not only use the program free of charge, but also to
access its source code. Furthermore, users are stipulated the right to both change the
source code as well as incorporate the code into other programs. One of the results of
these rights is that open source programmers do not have to reinvent the wheel: if a
program or section of code exists which fits their needs they are free to incorporate it
into the software they are working on.

The success story that is the Linux operating system was made possible in no
small part by these very rights. Operating systems, which enable users to interact
with the computer, consist of a number of different components (among them the

1 The full list is available at http://www.opensource.org/docs/osd

65

 Understanding Code Forking in Open Source Software

kernel, memory management, input/output, file management, and a user interface).
Linus Torvalds had developed an operating system kernel; an important piece of an
operating system but not the entire puzzle in itself. The GNU Project, started in 1984
by Richard Stallman2, had completed much of what was needed for an operating
system but did not have a kernel. Because of the nature of open source licenses
Torvalds was able to combine these elements into the Linux operating system, also
known as GNU/Linux. This same right has since been used by many other
programmers, and there are now hundreds of different versions (also called

The right to reuse existing code takes many forms, not all of which are easy to

distinguish from one another. The most central concepts are those of code reuse,
code fragmentation (including different distributions of a program), and code
forking.

2.1. Code reuse, code fragmentation, and code forking in open source software

Code reuse, using existing software in the construction of a new software program
(often in the form of reusing software components), has long been a source of both
academic and practitioner interest. During the late 1960s both the use of software
components and code reuse were proposed as a solution to the problem of building
large, reliable software systems in a controlled, cost-effective way [2, 3]. While early
data has shown that capitalizing on the promise of code reuse has proven more
challenging than perhaps originally thought [4], code reuse nevertheless remains a
common practice in open source programming [5].

Code forking is a somewhat more recent concept3 and one tied even more
strongly to open source software. Fogel [6] identifies two different types of forks:
one group due to amicable but irreconcilable disagreements and interpersonal
conflicts about the direction of the project, the second and, as the author notes,
perhaps more common group due to both technical disagreements and
interpersonal conflicts; however, it is not always possible to tell the difference
between the two types. The most obvious form of forking takes place when a
program splits into two versions, due to a disagreement among developers, with the
original code serving as the basis for the new version of the program.

More common than code forking is code fragmentation, where different versions
or distros (distributions) of a program emerge. Raymond [7] sees the actions of the
developer community as well as the compatibility of new code to be central issues in
differentiating code forking from code fragmentation. He calls different distributions

- are not perceived as

[8]

2 http://www.gnu.org/gnu/thegnuproject.html, accessed March 2, 2011
3 Arguably the first big cases of open source software code forking were the variants of

AT&Ts UNIX in the 1970s.

66

Linus Nyman

traditionally lead to a split in the community and is thus considered less of a concern
than a fork of the same program. These sentiments both echo a distinction made by
Fogel [6]: it is not the existence of a fork which hurts a project, but rather the loss of
developers and users.

Code forking has seen little discussion in the academic literature, perhaps due to
negative connotations associated with the word. Forking is often perceived to be a
threat, the outcome of a community failure. These kinds of connotations may lead to
reluctance to use the term. However, code forking or at the very least the option to
fork is a vital part of open source, and something which ensures its survival. A
deeper analysis and understanding of code forking is important because of the central
role that code forking as well as the possibility of forking plays in open source
software. Fogel [6]

 fork is bad for
everyone, the more serious the threat of a fork the more willing people are to
compromise in order to avoid it. The potential to fork is also a strong element in the

ical

Both Weber [9] and Fogel [6] discuss the concept of forks as being healthy for

they also note that while a fork may benefit the ecosystem, it is likely to be harmful
for the individual project.

commercial vendor attempts to privatize the source code [10]. However, and perhaps
somewhat paradoxically, the potential to fork any open source code also ensures the
possibility of survival for any project. As Moody [11] points out, open source
companies and the open source community differ substantially in that companies can
be bought and sold but the community cannot. If the community disapproves of the
actions of an open source company, whether due to attempts to privatize the source
code or other reasons related to an open source program, the open source community
can simply fork the software from the last open version and continue working in
whichever direction they choose. (A recent example of such an occurrence was
OpenOffice.org, a trademark owned by Oracle, which was forked into LibreOffice4.)

A point worth mentioning when discussing the consequences of forking is that,
even in the case of an actual split of the developer and user base, a fork can
potentially offer some benefit to the program. In a situation in which a programmer
would be interested in working on a program, but be reluctant to work with a specific
person or team working on the same project, a fork would solve such a problem.
Also, given that a fork is kept under an open source license, anything the forked
version of a program develops, the original program can reuse i.e. incorporate into
the original version of the program. Sometimes the forked versions either merge
back together, or the fork becomes so popular among both developers and users that
it becomes the new de facto main version5.

4 http://www.documentfoundation.org/faq/
5 As was the case with EGCC which forked from GCC.

67

 Understanding Code Forking in Open Source Software

In addition to concerns regarding the dilution of the workforce, another concern
regarding program forks is their compatibility with other programs, i.e. the ability of

[12] notes:

In the open source world, everyone has the unfettered right to change and fork
a code base, but people tend not to. Although they possess the right, they
forgo it voluntarily. Lack of standardization has obvious practical problems. If
there are 500 [incompatible] versions of Linux, no one will write applications
for it. So there is at the same time a legal freedom to fork and a social pressure
to avoid forking.

[7], who notes that while open source
licenses arguably encourage both forking and pseudo-forking, it is only pseudo-
forking (i.e. different distributions of a program) which is common; due to the strong
social pressure against forking projects it is rarely done.

Existing literature is limited as far as offering a clear distinction of a fork is
concerned. The practice of differentiating between a forked and a fragmented code is
not necessarily a clear one unless defined by elements outside of the actual use of the
code itself, as for instance differentiating between the two by looking at their affect
on the community of developers rather than the use, or movement of, the code.

2.2 Open Source Licenses

The right to fork is stipulated in the program license. Open source licenses can be
divided into two groups: copyleft (also called hereditary, or viral) and permissive.
The main unifying feature of the copyleft licenses is that certain obligations must

Copyleft licenses are often divided into strong and weak copyleft. Strong copyleft
licenses stipulate that any derivative works, including code forks, must be licensed
under the same license. In practice this means that if a program is licensed under a
strong copyleft license, while one is guaranteed the right to fork the program, one
cannot re-license it under either a permissive or proprietary (i.e. commercial) license.
A license can be considered a weak copyleft license if not all derived works need
inherit the license. The permissive licenses, on the other hand, allow forked versions
of the program to be re-licensed under a hereditary or, depending on the license,
even under a proprietary license.

Due to the differences in licenses the question of license compatibility becomes
significant when combining open source software components in the same software
system. As an example, programs licensed under a strong copyleft license cannot
generally be combined with programs licensed under a permissive license. A practice
used to navigate this issue is that software components with different licenses are
isolated from one another through architectural design, for instance by adding an
additional program, which is compliant with both licenses, in-between the non-
compliant licenses, which can then communicate information between the two [13].

While there are thousands of different open source licenses, the half dozen most
common licenses account for over 80 % of all license use [14]. The most commonly

68

Linus Nyman

used open source license is the strong copyleft GNU General Public Licenses,
commonly known by the abbreviation GPL; a license used by roughly half all open
source programs (ibid.). The GNU Lesser general Public License, or LGPL, is the
most common of the weak copyleft licenses. Among the most popular permissive
licenses are the Apache, BSD, and MIT licenses. For a more in-depth discussion of
open source licenses see, for instance, Meeker [12] or McGowan [15]. For a
discussion of open source legality patterns and architectural design see Hammouda
et al. [13].

2.3 Previous research

Over the past decade the open source software phenomenon has attracted a growing
number of researchers. Von Krogh and von Hippel [16] reviewed existing research
on the open source phenomenon, noting that it can be categorized into three areas of
study: motivations of open source contributors; governance, organization, and the
process of innovation in open source software projects; and competitive dynamics
enforced by open source software.

Open source licenses have received interest particularly among legal scholars and
practitioners [17], who have addressed such questions as the enforceability of the
GPL under existing copyright and contract law and what role the law plays in
enabling the production of open source software (ibid.), what the legal implications
of open source are (e.g. [15]), and what the risks and opportunities of open source
software are (e.g. [12]).

Aksulu and Wade [18] conducted a comprehensive literature review of the
research done into open source during its first ten plus years, dividing the 1 355 peer-
reviewed articles they found into seven categories: conceptual, performance metrics,

focused on: questions relating to terms and risks as well as determinants of license
selection, consideration of the potential impacts of license choice on activity and the
success of the OSS project, and deliberation of steps that can be taken to ensure
license compliance and related infringement risks.

3. Research approach

The overarching goal of deepening our understanding of code forking is divided into
two sub questions: 1) what are the motivations behind forking, i.e. what reasons do
developers have for forking a program; and, 2) How is forking perceived: when is
forking acceptable and when is it not? To answer these research questions I will use
both qualitative and quantitative methods. The thesis will be article based.

Answers to the first question, identifying the motivations behind forking, is
sought in (at least) two different ways: firstly, using software databases like
SourceForge to gain information about a large sample of code forks; and, secondly,
through a survey. The issue of motivations is both interesting and significant. What

69

 Understanding Code Forking in Open Source Software

reasons do developers have for forking? Certainly a common perception appears to
be that forks are largely driven by disagreements among the community; however, is
the truth quite that simple? As the findings from one of the first articles of my thesis,
a recent paper by this author and Tommi Mikkonen [19] indicate, forking in practice
is much more practical and pragmatic then is commonly perceived, with
disagreements among developers consisting of only a fraction of the motivations
behind forking.

In another paper6 I analyze 451 cases of code forking, with a total of 491 cases of
license use, among programs registered on the SourceForge.net database during
2000-2010. The license use of forked programs is compared to that of a sample
representing the entire population of open source programs. A Chi squared
probability value of <0.001 for the findings strongly suggest that forked programs
are more likely than non-forked programs to be licensed under the GPL. Overall
there is significantly less use of permissive licenses than hereditary licenses among
forked programs. The findings imply that programs under permissive licenses, when
forked, gravitate towards the GPL. These results speak to one motivating factor
being a protecting of the code through forking programs licensed under permissive
licenses and re-licensing them under the GPL. While further study is needed to
confirm this, there is evidence from the study by this author and Mikkonen that one
of the (less common) reasons for forking a program is, indeed, license-related. The
spectrum of motivations behind forks, however, appears to be a broad one, and
further study is needed to understand it in greater detail.

As the information available on sites such as SourceForge is limited, once the
initial study is completed and the results analyzed, a survey will be put together and
sent to programmers who have forked a program. This will enable both a deepening
of the understanding gained from SourceForge, as well as make possible a further
inspection of interesting aspects which emerge in the data from the first articles.

In order to answer the second question, deepening our understanding of
perceptions of forking by answering when forking is considered acceptable and

 I will conduct semi-structured interviews. It is also significant to note if
there is a difference in opinion about forking among different groups; therefore,
interviewees will be chosen from both corporations and from the open source
community. Through these interviews I will also seek to answer the related question
of what effect, or what different kinds of effect, a fork has on a community.

An issue which has surfaced during my work on this thesis so far has been the
problematic nature of defining a fork compared to, for instance, a quasi-fork,
fragmentation, or distribution. One of the added goals which a thesis on code forking
necessitates is, thus, to propose a definition of how to define a code fork7.

6 ware code forks from 2000-

 At the time of writing, this paper is in review.
7 While I have a completed rough draft of an article which puts forth such a typology, my

goal is to rework and rewrite it after I have had the chance to conduct the other research
necessary for my thesis, and thus deepened my understanding of the topic. The article,
however, is not so much a goal of my thesis as it is a necessary step in order to achieve the
aim of the thesis.

70

Linus Nyman

References

1. von Krogh and von Hippel (2003). Open -
innovation model: Issues for Organization Science. Organization Science, Vol. 14, No.
2, pp. 209-223.

2. Naur, P. and Randell, B. (1969) Software Engineering, Report on a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th October
1968, Scientific Affairs Division, NATO, Brussels, 138-155. Available at:
http://www.cs.dartmouth.edu/~doug/components.txt, accessed 4 March, 2011.

3. Krueger (1992). Software Reuse. ACM Computing Surveys, Vol. 24, No. 2, pp. 131-183.
4. Lynex and Layzell (1998). Organizational considerations for software reuse. Annals of

Software Engineering. 5, pp. 105-124.
5. Haefliger, von Krogh, and Spaeth (2008). Code Reuse in Open Source Software.

Management Science, Vol. 54, No. 1, pp. 180-193.
6.
7. Raymond (2001) The Cathedral & the Bazaar: Musings on Linux and Open Source by

an Accidental Revol Available at:
http://catb.org/~esr/writings/homesteading/, last checked 21 November, 2011.

8. Moody (2011) The Deeper Significance of LibreOffice 3.3. ComputerWorld UK, 28
January.

9. Weber (2004) The Success of Open Source. Harvard University Press, Cambridge,
Massachusetts and London, England.

10. Lerner and Tirole (2002) Some Simple Economics of Open Source. The Journal of
Industrial Economics, Vol. 50, No. 2, pp. 197-234.

11. Moody (2009). Who owns commercial open source and can forks work? Linux Journal,
Apr 23. Available at: http://www.linuxjournal.com/content/who-owns-commercial-
open-source-%E2%80%93-and-can-forks-work, accessed 24 February, 2010.

12. Meeker (2008) The Open Source Alternative: Understanding Risks and Leveraging
Opportunities. Wiley, Hoboken, N.Y.

13. Hammouda, Mikkonen, Oksanen and Jaaksi (2010) Open Source Legality Patterns:
Architectural Design Decisions Motivated by Legal Concerns. Published in the
proceedings of the 14th International Academic MindTrek Conference: Envisioning
Future Media Environments. ACM, New York, NY.

14.
http://www.blackducksoftware.com/oss/licenses, last checked 21

November, 2011.
15. McGowan (2005) Legal Aspects of Free and Open Source Software. In: J. Feller, B.

Fitzgerald, S. Hissam, and K. Lakhani (Eds.), Perspectives on Open Source And Free
Software. MIT Press, Cambridge, Massachusetts. Available at:
http://mitpress.mit.edu/books/chapters/0262562278.pdf, accessed 7 March, 2011.

16. von Krogh and von Hippel (2006) The Promise of Research on Open Source Software.
Management Science, Vol. 52, No 7, pp. 975-983.

17. McGowan (2000) The Legal Implications of Open-Source Software (Undated).
Available at SSRN: http://ssrn.com/abstract=243237 or doi:10.2139/ssrn.243237,
accessed 6 March, 2011.

71

 Understanding Code Forking in Open Source Software

18. Aksulu and Wade (2010) A Comprehensive Review and Synthesis of Open Source

Research. Journal of the Association for Information Systems, Vol. 11, pp. 576-656.
19. Nyman, L. and Mikkonen, T. (2011) To Fork or Not to Fork: Fork: Motivations in

SourceForge Projects. Proceedings of the 7th International Conference on Open Source
Systems (OSS 2011), 259-268, Springer.

72

FLOSS QUALITY: DEFINITION,

ANTECEDENTS, AND THE ROLE OF
MODULARITY

Claudia Ruiz
Georgia State University, Computer Information Systems Department

35 Broad Street, Atlanta, GA, 30302, USA
cruiz5@gsu.edu

Abstract. After Linus’s law was formulated, which says that, “given enough
eyeballs, all bugs are shallow,” it has been assumed that open source software
has high quality. This assumed quality is a major factor when businesses and
individuals decide to adopt open source software products. To determine if this
assumed quality is real, this dissertation will answer the following questions:
(1) what is quality in open source software? (2) What determines open source
software quality? (3) What is the role of modularity in determining open
source software quality? To answer these questions, a three-paper approach is
to be undertaken. Moreover, this dissertation will contribute to knowledge
because there is no single definition of open source software quality, there is
no model to predict open source software quality, and the actual role of
modularity in determining quality has not been addressed. Understanding open
source software quality in a way that can be measured will help researchers to
assess and predict the quality of open source software and practitioners to
evaluate different open source software products for adoption decisions.

1 Introduction

Linus’s law, named after Linus Torvalds, the architect of the Linux kernel, says
that “Given enough eyeballs, all bugs are shallow” [1], meaning that public peer
review was the reason for open source software’s higher quality over traditionally
developed commercial.

Higher quality is now considered a characteristic of open source software that is
taken for granted, with firms citing open source software’s quality as a motivation
for adopting it in their organizations [2].

It would seem that having a public peer review with many people, including
developers and users, would produce a software product with less bugs and defects
than a closed review with few people, all of them developers. However, studies out
to prove the higher quality of open source software over closed source software have
produced mixed results [3-6].

There is no single definition of quality for open source software with most
research referencing theories developed for traditional software development, which
is different from open source software development in terms of actors,
methodologies, and expectations.

Researchers have operationalized quality as independent and dependent variable;
they have defined it using object-oriented software product design measures, number
of defects, defect resolution rates, etc. Without a common definition of quality,
research on the antecedents of open source quality is being limited [7].

73

2 Claudia Ruiz

Since quality is one of the major determinants of system success in traditionally
developed closed source systems [8], understanding open source quality is the first
necessary step to understand the success of open source systems.

In order to understand open source software quality, one has to take into account
the emergent nature of open source software, the lack of a discrete separation of roles
between developers and users, and the collaborative nature of its elaboration.
Studies that have measured defect rates and bug resolution rates take into account the
emergent and community aspects of open source software, with some measuring
them in cumulative terms [9-13] (the defect rate for the project since inception, or for
a set period of time) and others measuring them by release version [14-18].

Using the release version as the unit of analysis is important because open source
software is emergent and evolves with each release. Therefore, studies that look at
open source software quality from a cumulative perspective fail to capture its true
nature.

Past research on open source software quality has had the following
characteristics: differing definitions of quality, differing operationalizations of
quality by using different types of measures, lack of antecedents of quality.

Table 1. FLOSS Quality Definitions

Approach Definition Measures Metrics
Counts

Articles
Mapped

Product Software product
structure and
characteristics

Cohesion
Complexity
Size/effort
Issue/bug
Change/patch/version
Compliance
Documentation
Deployment
Interoperability
Object coupling
End user UI
experience
Data access
Licensing
Testing
Maintainability
Modularity

158 [3, 4, 13, 17-
22]

Community Developer,
contributor, and
user characteristics
and interactions

Adoption/usage
Contributions
Community member
activity
Social network
analysis
Community culture

115 [3, 5, 6, 13, 19-
21, 23, 24]

74

FLOSS QUALITY: DEFINITION, ANTECEDENTS, AND THE ROLE OF
MODULARITY

3

Project management
structure
Community
demographics
Project distribution
and inclusion
Problem report
activity
Evolution
Documentation

Process Established and
repeatable
procedures set in
place to minimize
defects and
simplify work.

Testing
Planning
Versioning/branching
Budget
Bug/issue tracking
Meetings
Quality review
Methodology/process
description, execution,
and compliance
Consulting services
Group consensus
General project
management
Training

66 [9, 11, 16, 20,
25-28]

These differing definitions of open source quality are not surprising given
quality’s subjective nature. From indescribable excellence all the way to
conformance to specification and customer satisfaction, quality can be different
things to different stakeholders. If quality is defined differently it will also be
measured and evaluated differently.

Traditional methods of quality assessment cannot be used with open source
software because they do not account for its differences and do not incorporate them
into their calculations, producing an incomplete and inaccurate picture of the quality
of the open source project.

1.1 Research Questions

This dissertation addresses the limitations in the literature by proposing and
evaluating a model of open source software quality. In order to achieve this, the
following questions will be addressed: (1) What is quality in open source software?
(2) What determines open source software quality? (3) What is the role of modularity
in open source software quality?

The first step in proposing a model of open source software quality is to first
develop a definition of quality to be measured and evaluated. This is what the first
question will address.

75

4 Claudia Ruiz

The second question will address the antecedents of quality. Quality here will be
the dependent variable and the goal will be to discover which factors affect quality
and how.

The third question will address how modularity affects quality. Modularity has
been touted as the key to open source software quality because it prevents the bugs
introduced by one collaborator to impact the rest of the product [29]. However, there
are many definitions and measurements of modularity in the literature. To address
this question, I will first collect the many definitions of modularity, select the one
that most addressed the nature of open source software and will analyze to determine
its relationship to quality.

2 Design and Overview of Research

This dissertation proposes to answer the above postulated questions by following
this approach: (1) define open source quality, (2) determine the antecedents to open
source quality, and finally, (3) determine what role modularity plays in quality.

Table 2. Overview of Research

 Study 1 Study 2 Study 3
Chapter in this
dissertation

2 3 4

Approach Literature review Factor analysis Factor analysis
Chapter’s
contribution

Provide an
understanding of
FLOSS quality and a
definition.

Determine the
impact of certain
factors on FLOSS
quality.

Determine the
impact of
modularity on
FLOSS quality

2.1 Define Open Source Quality

This part of the dissertation presents a literature review of the open source
software research that deals with quality. Specifically, this chapter sought to
understand how the community of open source researchers defined, measured, and
evaluated quality.

This study defined quality as defect density and defect resolution rate. It states
that the unit of analysis needs to be the software release. FLOSS is a dynamically
developed product, which depends on the community’s commitment to quality,
which is evolving. That is why quality not only needs a static measure (defect
density) but a dynamic measure (defect resolution rate).

76

FLOSS QUALITY: DEFINITION, ANTECEDENTS, AND THE ROLE OF
MODULARITY

5

2.2 Antecedents to Open Source Quality

This part of the dissertation will test a set of constructs for their power to predict
the FLOSS quality measures that were defined in the previous part of the
dissertation.

The main constructs are defect fixes and enhancements introduced into a
particular software version. These constructs were chosen because they represent the
work items that go into a software development project.

Other constructs that were included to determine if they can predict quality are
maturity, popularity, age, release development time, and active contribution rate.
These constructs were chosen from the literature review performed in part one.

The hypotheses to be tested are the following:
H1: The greater the number of enhancements introduced in a release, the greater

the defect density of the release.
H2: The greater the number of enhancements introduced in a release, the greater

the defect resolution rate.
These hypotheses would seem to be common sense but in open source software,

new features are contributed by core developers, while defect fixes are introduced by
periphery developers [20]. It is necessary to determine the effect of these different
types of contributions by two different types of contributors have on quality and to
confirm that adding new features does in fact negatively affect defect fixing [12].

Defect fixes should reduce the number of defects in a release, but they could
increase the count if they break other functionality in the process.

H3: The greater the number of defect fixes introduced in a release, the lesser the
defect density of the release.

H4: The greater the number of defect fixes introduced in a release, the lesser the
defect resolution rate.

Comparing FLOSS projects with differing characteristics has produced mixed
results. Here, the three main factors of FLOSS success are tested for their effect on
quality. Age is how old is project (from the date it was first registered), popularity is
how often it has been downloaded, which gives it a high ranking in SourceForge
lists, and maturity, which specifies how many releases have been produced.

Also, it is important to note, in addition to the project age, the time it took to
develop a particular release. Shorter releases should include less defect fixes and
enhancements, thus reducing the change of generating new defects.

H5: The greater the age, popularity, and maturity of a project at the time of a
release, the lesser the defect density.

H6: The greater the age, popularity, and maturity of a project at the time of a
release, the lesser the defect resolution rate.

H7: The lesser the release development time for a release, the lesser the defect
density.

H8: The lesser the release development time for a release, the lesser the defect
resolution rate.

77

6 Claudia Ruiz

There has been controversy regarding the effect of the number of developers
involved in a FLOSS project [30]. An important distinction is that not all registered
developers contribute to a release. The rate of active contribution, the percentage of
the total registered developers who actually contributed to the release, will help
determine how many people are actually working on the release, since it is
postulated that software that has too many people working on it will have more
defects [13].

H9: The lower the rate of active contribution of a release, the lesser the defect
density.

H10: The lower rate of active contribution of a release, the lesser the defect
resolution rate.

The Sourceforge repository at Notre Dame University [31] will be source of the
data. A random sample of projects will be select within a given a software type
using the same programming language. This will allow the collection of successful
and popular projects as well as those that are less so, while controlling for software
type and programming language. By controlling these variables, variability that
could be introduced by development complexity and difficulty will be removed.

After the projects to be examined are selected, their corresponding releases will
be considered. Projects with less than three stable releases will be removed from the
sample because less than that would not allow for much data to analyze.

The data will be collected per project per release. In the table above, to calculate
the quality of stable release1 of project1, the defect density and defect resolution rate
will be calculated using data from Date1 to Date2.

This data collection reflects the emergent nature of open source software. When
a version is released, it is not known what defects it has. It is necessary to go
backwards from the next release in order to determine the quality of the former
release.

Defect Resolution
Rate

Defect
Density

Enhancements

Defect Fixes

Maturity,
Popularity,

Age

H1

H2

H3

H4

H5

H6

Active Contribution
Rate

H7 H8 Release
Development time

H9

H10

78

FLOSS QUALITY: DEFINITION, ANTECEDENTS, AND THE ROLE OF
MODULARITY

7

Fig. 1. Research Model

It could be argued that there is no benefit in knowing the defect count and the
defect resolution rate of a previous version that only the latest version matters.
However, given open source software’s emergent nature, the pattern in the measures
from release to release should reveal an improvement in defect resolution rate; defect
count will vary depending on the number of enhancements introduced.

Project progress in in agile development is monitored using velocity rate and
burndown charts [32]. Velocity can be used to estimate future completion rates based
on past ones [33]. A pattern of increasing and then plateauing velocity will indicate
a stable and cohesive team [33]. The burndown chart is a graphical representation of
how a team is progressing against the estimated velocity along the spring (set
development time.) A team will then add or remove backlog items depending on
how it is meeting the estimate.

Backlog items are enhancements and defect fixes. The burndown rate will be
higher than the estimated velocity if there are too many backlog items, while it will
fall short of the estimated velocity if there are too few. The velocity and burndown
chart provide a quick pulse check for the team progress: meeting or going below
estimates means that progress is on track while going above the estimates means that
a closer look needs to be taken to determine what is affecting the progress of the
project.

A project’s progress also depends on its efficient use of its human resources. The
rate of developer engagement [34] has been used to determine the agility of FLOSS
projects: failed projects will have a high rate of developer engagement in the
beginning, but will fail to attract new developers and eventually phase out [34].

The table below contains a description of the constructs and their measures.

Table 3. Constructs and Measures
Construct Description Measure Source

79

8 Claudia Ruiz

Dependent Variables

Defect Density This will describe the
quality of the software
product. The lower the
number, the better.

Number of defects added weighted
by priority/KLOC added

[20]

Defect Resolution
Rate

Measures the project
community’s
commitment to quality.
The lower, the better.

Average of the time it took to solve
defects.

[5, 20]

Independent Variables
Enhancements New functionality

added to the project.
Number of enhancements included in
release.

[12, 20]

Defect fixes Code that changes
existing code.

Number of bug fixes included in
release.

[24, 35,
36]

Maturity The stage of
development the
project is in. More
mature projects have
produced more releases
than less mature ones.

Number of releases produced.
Initiation – before first release (< 1).
Intermediate Growth – after first
release (1 < x < 3).
Advanced Growth – at least three
releases (> 3).

[18, 19,
23, 37,
38]

Popularity Success of the project. Number of downloads [19, 23]

Age Age of project. Present date – Date registered [38, 39]

Release development
time

Time it took to make
the release.

Release date – previous release date. [13, 16]

Rate of active
contribution

What percentage of all
developers actually
contributed to the
release

Number of unique developers whose
contributions were included in the
release / Number of developer
accounts

 Number of developers
associated with the
project

Number of developer accounts [17, 19]

 Number of developers
who contributed to
release.

Number of unique developers whose
contributions were included in the
release.

[18, 20,
35, 38-41]

Controlling for

Software type Sample cases will be selected from the same product topic. [5, 9, 13,
18, 28,
42-46]

Language Sample cases selected will develop their product using the same
programming language.

[18, 19,
38]

The contribution of this study will be to explain if and how certain factors affect

quality in an open source setting. Quality is defined twofold, as the static defect
density in a release and the evolutionary defect resolution rate.

80

FLOSS QUALITY: DEFINITION, ANTECEDENTS, AND THE ROLE OF
MODULARITY

9

The model here explained will predict quality for a FLOSS version, allowing for

the analysis of quality within a product and among products.

2.3 Role of Modularity

This part of the dissertation will test the role of modularity in predicting FLOSS
quality. This study uses a metric of modularity chosen from the literature review
performed on part one. It then tests all possible models where modularity could
predict quality. These models include direct, causal, moderating, and mediating.

Additional constructs will include enhancements and defect fixes added to a
software release (the same ones from part three). If any constructs from part two
prove to be significant in predicting quality, they will also be included in the analysis
to determine the best relationship among constructs and modularity in predicting
quality.

Modularity is used to manage system complexity by reducing the number of
working parts [47]. Elements are hidden from the system when they are
encapsulated [48] into a smaller number of units or modules. The modules can then
be designed independently of each other but will work together as an integrated
system when brought together [49].

Modularity can be achieved by implementing an architecture to establish their
functions and membership in the system. Interfaces determine how the modules will
interact, fit together, and communicate. They will also need to conform to design
rules set up by standards, which are also used to assess module performance [49].

The highest level of modularity is realized by systems composed totally out of
components. Components are modules that have weak coupling and strong
cohesion, meaning that they are independent of each other and have minimal
interaction with one another because each component groups functionality with high
dependency [50].

A system’s modules are said to be true components if they can be combined and
reconfigured with other components (even with those from different systems) to
create new systems. Components are designed for many uses, even unimagined ones,
while modules are designed for a specific use and context [50].

Some FLOSS projects have implemented modularity with plug-in application
program interface (API) architectural styles. A module team can take the plug-in
API specification and develop a modular extension for the system using any
development process in complete isolation from the rest of the community [51].

FLOSS interest in modularity can be traced back to the Linux project.
Modularity in Linux was defined as having a core functionality (the kernel) that was
separate from the features of the product, which live in modules that can be
configured and compiled separately [20]. This means that the changes to the core
would be more infrequent and carefully managed and tested because they would
affect all components of the software. But the feature modules could be changed

81

10 Claudia Ruiz

more easily because they did not affect the core, thus allowing implementers to add
them or remove them more easily.

However, studies on open source modularity have not measured it using the
Linux definition. They have used object oriented measures such as coupling [14, 17-
19, 21, 52], correlation between functions added and functions changed [4], function
call dependencies among source files [53, 54], inheritance [13], and other measures
which can be seen in table 4.

Table 4. Modularity Metrics

Metric Explanation Source
Coupling Loosely coupled objects (those with low

coupling scores) are considered more
independent and thus more modular.

[14, 17-19,
21, 52]

Average component size Smaller component size equals higher
modularity.

[3]

Function call dependencies among
files

References in a file to classes in other
files. Few references equal higher
modularity.

[53, 54]

Amount of commits performed by
developers that contribute to at
least two modules

In highly modular projects, this number
will be lower.

[55]

Correlation between growing rate
and changing rate

Correlation between functions added and
functions modified.

[4]

Number of children (NOC)
Depth in inheritance tree (DIT)
Number of inherited methods
overridden by a subclass (NORM)

Correct use of inheritance makes code
more modular.

[13]

Number of directories into which
the source code is divided.

One directory, two directory, more than
two directory levels.

[56]

Number of subprojects Number of subprojects with at least one
task launched by a project.

[57]

Number of modules that can be
separately compiled and
configured.

Separately compiled and configured
modules are considered to be
independent.

[20]

The problem with using code structure metrics, which look at source files is that

files within a module will be tightly coupled, and a module could be composed of
several files. A module groups related and dependent features, as in the Linux
project, into subprojects which are separate from the core functionality.

This separation into subprojects can also be seen in the projects hosted in the
SourceForge repository. The subprojects are also built and versioned independently.
Looking at the individually versioned and compiled subprojects within a project in

82

FLOSS QUALITY: DEFINITION, ANTECEDENTS, AND THE ROLE OF
MODULARITY

11

the SourceForge repository will provide a proxy that best captures how modularity is
implemented in FLOSS projects.

Three models will be tested to determine modularity’s role on open source
quality. Modularity will be evaluated in the roles of mediator, moderator, and on its
direct effect on quality.

If modularity has a direct effect on quality, the more modular a project, the fewer
defects it will have and the faster those few defects will be fixed.

H1: The greater the modularity of the project at the time of the release, the lower
the defect density of the release.

H2: The greater the modularity of the project at the time of the release, the lower
the defect resolution rate of the release.

If modularity improves quality, it will result in a lower number of defect fixes
being introduced, and increased growth of the project with more modules with more
enhancements being introduced.

H3: The greater the modularity, the greater the number of enhancements in a
release.

H4: The greater the modularity, the lesser the number of defect fixes in a release.
Modularity could be caused by more enhancements and fewer defect fixes being

introduced, thus increasing the quality of the product by reducing the number of
defects and the time it takes to fix them.

H5: Modularity mediates the relationship between the number of enhancements
in a release and their effect on the defect density and the defect resolution rate of
that release.

H6: Modularity mediates the relationship between the number of defect fixes in a
release and their effect on the defect density and the defect resolution rate of that
release.

Modularity could increase the quality of a product by moderating the effect of
introducing enhancements and defect fixes into the product.

H7: Modularity moderates the relationship between the number of enhancements
in a release and their effect on the defect density and the defect resolution rate.

H8: Modularity moderates the relationship between the number of defect fixes in
a release and their effect on the defect density and the defect resolution rate.

This study will determine the role of modularity in affecting quality in open
source software projects. It will explain if the best fitting model is shows a direct,
causal, mediating, or moderating relationship.

Future research projects will look at the quality of the modularity implementation
itself and whether certain approaches produce higher quality than others.

2.4 Empirical tests

The predictive models in part three and four have formulated hypotheses that will
need to be tested using a factorial design. The factorial design is the best design for

83

12 Claudia Ruiz

these predictive models because it helps understand the effect of independent
variables on dependent variables.

Chapter two uses qualitative grounded theory to understand and interpret how
quality is defined and operationalized by the FLOSS research community.

Table 5. Empirical Tests

Chapter Design Level of
analysis

Methods Subjects

2 Qualitative
text
analysis

Research
article

Literature review using
grounded theory to code
definitions and measures of
quality.

FLOSS research
community

3 Factorial Software
version

Quality measured by counting
the number of defects,
enhancements introduced in a
software version from the time
it was released going back to
the date the previous version
was released.

SourceForge
projects from
Notre Dame
University
repository

4 Factorial Software
version

Quality will be measured as
above. Modularity will be
measured as the number of
individually versioned products
in the project directory at the
time the main software product
version was released.

SourceForge
projects from
Notre Dame
University
repository

2.5 Data Analysis

Chapter two performed a grounded theory analysis of FLOSS quality literature
and did not use any statistical methods. Chapters three and four are looking for the
best predictive model and will use SEM (structured equation modeling) to find it. In
SEM, the best fitting model will have the lowest chi square score.

The data to be analyzed will be collected from the SourceForge repository at
Notre Dame University [31]. This repository contains monthly dumps of data from
SourceForge. From this data, a sample will be selected of projects from the same
category and written using the same programming language; this is necessary in
order to control for complexity that might be inherent to a given programming
language or a certain type of software product. The projects chosen will need to
have at least two stable versions released in order to provide enough data to analyze.

84

FLOSS QUALITY: DEFINITION, ANTECEDENTS, AND THE ROLE OF
MODULARITY

13

Table 6. Data Analysis Approach

Chapter Sample Statistical Method Analytical Test
2 40 N/A N/A
3 500 SEM (structured

equation modeling)
Tests whether the constructs can predict quality.
The best fitting model will have the lowest Chi
square score.

4 500 SEM (structured
equation modeling

Tests whether the constructs can predict quality.
The best fitting model will have the lowest Chi
square score.

2.6 Threats to Validity

The greatest threat to validity in this dissertation is the limited generalizability of
the study. The sample is taken from one repository (SourceForge.net) and is
controlled for product category and programming language used. By doing this, the
internal validity will be high because the cases will be similar to each other and
issues such as complexity due to product category and programming language are
eliminated. The problem with this approach is that the results will only be
generalizable to FLOSS projects of the same category and programming language as
the sample.

This dissertation is seen as a starting point in a longer research stream. Whatever
is learned in this study will be applied to future research that will include FLOSS
projects of different categories and programming languages.

 Table 7. Threats to Validity

Type of threat Effect Countermeasures
Selection Differences in cases might be

responsible for the effect found.
Projects hosted in
SourceForge.net might be
different from projects hosted by
other environments.

Cases will be selected from the
same product category and using
the same programming language.
SourceForge.net hosts the largest
number of projects and is the
most popular hosting
environment.

Measurement Statistics and metrics may not be
reliable reflections of the
phenomenon.

Project quality measures are
operationalizations of the
concepts theorized and taken
from literature and previous
research.

Mortality The data source is archival so
there is no risk of participants
dropping out.

Not necessary.

External validity May only be generalizable to
FLOSS projects of a certain
category and written in a certain
programming language, hosted by

This is a limitation of this
research and will need to be
addressed by future research
extending what is learned here

85

14 Claudia Ruiz

SourceForge.net. into other project categories,
programming languages, and
repositories.

3 Contributions to Knowledge and Practice

This research aims to develop a theory of FLOSS quality by identifying the
factors that predict the quality of a FLOSS product. The theory will also contribute a
measurable definition of FLOSS product quality and modularity.

These contributions are significant because there is single definition of FLOSS
quality, there is no model to predict FLOSS quality, and the actual role of modularity
in determining quality has not been addressed.

Understanding FLOSS quality in a way that can be measured will help
practitioners to evaluate different FLOSS projects in order to decide which ones to
integrate into their environment.

4 References

[1] E. Raymond, "The cathedral and the bazaar," Knowledge, Technology, and
Policy, vol. 12, pp. 23-49, 1999.

[2] A. Bonaccorsi and C. Rossi, "Comparing Motivations of Individual
Programmers and Firms to Take Part in the Open Source Movement,"
Knowledge, Technology and Policy, vol. 18, pp. 40-64, 2006.

[3] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, "Code Quality
Analysis in Open Source Software Development," Information Systems
Journal, vol. 12, pp. 43-60, 2002.

[4] J. W. Paulson, G. Succi, and A. Eberlein, "An empirical study of open-
source and closed-source software products," Software Engineering, IEEE
Transactions on, vol. 30, pp. 246-256, 2004.

[5] J. Kuan, "Open Source Software as Lead-User's Make or Buy Decision: A
Study of Open and Closed Source Quality," presented at the Second
Conference on The Economics of the Software and Internet Industries,
2003.

[6] S. Raghunathan, A. Prasad, B. K. Mishra, and H. Chang;, "Open source
versus closed source: software quality in monopoly and competitive
markets," IEEE Transactions on Systems, Man and Cybernetics, Part A, ,
vol. 35, pp. 903-918, November 2005.

[7] K. Crowston, K. Wei, J. Howison, and A. Wiggins, "Free/Libre Open
Source Software Development: What We Know and What We Do Not
Know," ACM Computing Surveys, vol. 44, 2012.

86

FLOSS QUALITY: DEFINITION, ANTECEDENTS, AND THE ROLE OF
MODULARITY

15

[8] W. H. DeLone and E. R. McLean, "Information Systems Success: The

Quest for the Dependent Variable," Information Systems Research, vol. 3,
pp. 60-95, 1992.

[9] K. Crowston and B. Scozzi, "Bug fixing practices within free/libre open
source software development teams," Journal of Database Management,
vol. 19, pp. 1-30, 2008.

[10] C. L. Huntley, "Organizational learning in open-source software projects:
an analysis of debugging data," Engineering Management, IEEE
Transactions on, vol. 50, pp. 485-493, 2003.

[11] T. J. Halloran and W. L. Scherlis, "High Quality and Open Source Software
Practices," presented at the Proceedings of the 2nd Workshop on Open
Source Software Engineering (ICSE 2002), Orlando, FL, USA, 2002.

[12] Y. Kidane and P. Gloor, "Correlating temporal communication patterns of
the Eclipse open source community with performance and creativity,"
Computational & Mathematical Organization Theory, vol. 13, pp. 17-27,
2007.

[13] S. Koch and C. Neumann, "Exploring the Effects of Process Characteristics
on Product Quality in Open Source Software Development," Journal of
Database Management, vol. 19, pp. 31-57, 2008.

[14] T. Gyimothy, R. Ferenc, and I. Siket, "Empirical validation of object-
oriented metrics on open source software for fault prediction," Software
Engineering, IEEE Transactions on, vol. 31, pp. 897-910, 2005.

[15] D. G. Glance, "Release Criteria for the Linux Kernel," First Monday, vol. 9,
5 April 2004.

[16] L. Zhao and S. Elbaum, "Quality assurance under the open source
development model," Journal of Systems and Software, vol. 66, pp. 65-75,
2003.

[17] C. A. Conley, "Design for quality: The case of Open Source Software
Development," PhD, Stern Graduate School of Business Administration,
New York University, New York, NY, USA, 2008.

[18] E. Capra, C. Francalanci, and F. Merlo, "An Empirical Study on the
Relationship among Software Design Quality, Development Effort, and
Governance in Open Source Projects," IEEE Transactions on Software
Engineering, vol. 34, pp. 765-782, 2008.

[19] D. Barbagallo, C. Francalenei, and F. Merlo, "The Impact of Social
Networking on Software Design Quality and Development Effort in Open
Source Projects," presented at the Proceedings of the International
Conference on Information Systems, 2008.

[20] A. Mockus, R. T. Fielding, and J. Herbsleb, "A Case Study of Open Source
Software Development: The Apache Server," presented at the Proceedings
of the 22nd International Conference on Software Engineering (ICSE),
2000.

87

16 Claudia Ruiz

[21] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, "The SQO-OSS

Quality Model: Measurement Based Open Source Software Evaluation,"
presented at the 4th International Conference on Open Source Systems
(OSS2008), Milan, Italy, 2008.

[22] N. Tsantalis and A. Chatzigeorgiou, "Identification of Move Method
Refactoring Opportunities," Software Engineering, IEEE Transactions on,
vol. 35, pp. 347-367, 2009.

[23] K. Crowston, J. Howison, and H. Annabi, "Information Systems Success in
Free and Open Source Software Development: Theory and Measures,"
Software Process: Improvement and Practice, vol. 11, pp. 123-148, 2006.

[24] A. H. Ghapanchi and A. Aurum, "Measuring the Effectiveness of the
Defect-Fixing Process in Open Source Software Projects," presented at the
Proceedings of the 44th Hawaii International Conference on System
Sciences, Hawaii, USA, 2011.

[25] M. Michlmayr, F. Hunt, and D. Probert, "Quality Practices and Problems in
Free Software Projects," presented at the Proceedings of the First
International Conference on Open Source Systems, Genova, Italy, 2005.

[26] P. C. Rigby, D. M. German, and M.-A. Storey, "Open source software peer
review practices: a case study of the apache server," presented at the 0th
International Conference on Software Engineering (ICSE2008), Leipzig,
Germany, 2008.

[27] M. Aberdour, "Achieving Quality in Open Source Software," IEEE
Software, vol. 24, pp. 58-64, 2007.

[28] A. G. Koru and J. Tian, "Defect handling in medium and large open source
projects," Software, IEEE, vol. 21, pp. 54-61, 2004.

[29] L. Torvalds, "The Linux Edge," in Open-Sources: Voices from the Open-
Source Revolution, C. DiBona, S. Ockman, and M. Stone, Eds., ed
Sebastopol, CA: O'Reilly & Associates, Inc., 1999, pp. 101-111.

[30] C. M. Schweik, R. C. English, M. Kitsing, and S. Haire, "Brooks' Versus
Linus' Law: An Empirical Test of Open Source Projects," presented at the
Proceedings of the 2008 international conference on Digital government
research, Montreal, Canada, 2008.

[31] Y. Gao, M. Van Antwerp, S. Christley, and G. Madey, "A Research
Collaboratory for Open Source Software Research," in Proceedings of the
29th International Conference on Software Enginering + Workshops
(ICSE-ICSE Workshops 2007), International Workshop on Emerging
Trends in FLOSS Research and Development (FLOSS 2007), Minneapolis,
MN, USA, 2007.

[32] M. Cohn, Agile Estimation and Planning: Prentice Hall, 2006.
[33] D. Hartmann and R. Dymond, "Appropriate Agile Measurement: Using

Metrics and Diagnostics to Deliver Business Value," in Proceedings of the
conference on AGILE, Washington, DC, USA, 2006, pp. 126-131.

[34] P. Adams, A. Capiluppi, and A. de Groot, "Detecting Agility of Open
Source Projects Through Developer Engagement," in Open Source

88

FLOSS QUALITY: DEFINITION, ANTECEDENTS, AND THE ROLE OF
MODULARITY

17

Development, Communities and Quality. vol. 275, B. Russo, E. Damiani, S.
Hissam, B. r. Lundell, and G. Succi, Eds., ed: Springer Boston, 2008, pp.
333-341.

[35] E. Petrinja, A. Sillitti, and G. Succi, "Comparing OpenBRR, QSOS, and
OMM Assessment Models," in 6th International Conference on Open
Source Systems (OSS2010), Notre Dame, IN, USA, 2010, pp. 224-238.

[36] V. del Bianco, L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, "The
QualiSPo approach to OSS product quality evaluation," presented at the
Proceedings of the 3rd International Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development (FLOSS '10),
Cape Town, South Africa, 2010.

[37] C. M. Schweik and R. English, "Identifying Success and Abandonment of
Free/Libre and Open Source (FLOSS) Commons: A Preliminary
Classification of Sourceforge.net projects," Upgrade, vol. 8, December
2007.

[38] I. Chengalur-Smith, A. Sidorova, and S. L. Daniel, "Sustainability of
Free/Libre Open Source Projects: A Longitudinal Study," Journal of the
Association for Information Systems, vol. 11, pp. 657-683, 2010.

[39] J.-c. Deprez, F. F. Monfils, M. Ciolkowski, and M. Soto, "Defining
Software Evolvability from a Free/Open-Source Software Perspective,"
presented at the Third International IEEE Workshop on Software
Evolvability, Paris, France, 2007.

[40] J.-C. Deprez and S. Alexandre, "Comparing Assessment Methodologies for
Free/Open Source Software: OpenBRR and QSOS," presented at the
PROFES 2008, 2008.

[41] R. Glott, A.-K. Groven, K. Haaland, and A. Tannenberg, "Quality Models
for Free/Libre Open Source Software--Towards the "Silver Bullet"?,"
presented at the 36th EUROMICRO Conference on Software Engineering
and Advanced Applications, Lille, France, 2010.

[42] Y. A. Au, D. Carpenter, X. Chen, and J. G. Clark, "Virtual organizational
learning in open source software development projects," Information &
Management, vol. 46, pp. 9-15, 2009.

[43] B. Wray and R. Mathieu, "Evaluating the performance of open source
software projects using data envelopment analysis," Information
Management & Computer Security, vol. 16, p. 449, 2008.

[44] A. G. Koru and H. Liu, "Identifying and characterizing change-prone
classes in two large-scale open-source products," Journal of Systems and
Software, vol. 80, pp. 63-73, 2007.

[45] L. Yu, S. R. Schach, K. Chen, G. Z. Heller, and J. Offutt, "Maintainability
of the kernels of open-source operating systems: A comparison of Linux
with FreeBSD, NetBSD, and OpenBSD," Journal of Systems and Software,
vol. 79, pp. 807-815, 2006.

89

18 Claudia Ruiz

[46] I. Samoladas, I. Stamelos, L. Angelis, and A. Oikonomou, "Open source

software development should strive for even greater code maintainability,"
Commun. ACM, vol. 47, pp. 83-87, 2004.

[47] R. N. Langlois, "Modularity in technology and organization," Journal of
Economic Behavior & Organization, vol. 49, pp. 19-37, 2002.

[48] D. L. Parnas, "On the criteria to be used in decomposing systems into
modules," Commun. ACM, vol. 15, pp. 1053-1058, 1972.

[49] C. Y. Baldwin and K. B. Clark, "Managing in an age of modularity,"
Harvard Business Review, vol. 75, pp. 84-93, 1997.

[50] D. Messerschmitt, "Rethinking Components: From Hardware and Software
to Systems," Proceedings of the IEEE, vol. 95, pp. 1473-1496, 2007.

[51] W. Scacchi and C. Jensen, "Governance in Open Source Software
Development Projects: Towards a Model for Network-Centric Edge
Organizations," in Proceedings of the 13th International Command and
control Research and Technology Symposia (ICCRTS 2008), Seattle, WA,
USA, 2008.

[52] A. G. Koru and J. Tian, "Comparing high-change modules and modules
with the highest measurement values in two large-scale open-source
products," Software Engineering, IEEE Transactions on, vol. 31, pp. 625-
642, 2005.

[53] D. Spinellis, "A Tale of Four Kernels," presented at the 30th International
Conference on Software Engineering, 2008. ICSE '08, Leipzig, Germany,
2008.

[54] A. MacCormack, J. Rusnak, and C. Y. Baldwin, "Exploring the structure of
complex software designs: An empirical study of open source and
proprietary code," Management Science, vol. 52, p. 1015, 2006.

[55] G. Robles Martínez, "Empirical Software Engineering Research on Libre
Software: Data Sources, Methodologies and Results," PhD, Universidad
Rey Juan Carlos, Madrid, Spain, 2005.

[56] A. Capiluppi, P. Lago, and M. Morisio, "Evidences in the evolution of OS
projects through Changelog Analyses," in 3rd Workshop on Open Source
Software Engineering at the International Conference on Software
Engineering (ICSE), Portland, OR, USA, 2003, pp. 19-24.

[57] P. Giuri, F. Rullani, and S. Torrisi, "Explaining leadership in virtual teams:
The case of open source software," Information Economics and Policy, vol.
20, pp. 305-315, 2008.

90

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

	University of Massachusetts Amherst
	From the SelectedWorks of Charles M. Schweik
	2011

	Proceedings of the OSS 2011 Doctoral Consortium
	ohj_rap_19.indd

