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Abstract In many jurisdictions, organ allocation is done on the basis of the health
status of the patient, either explicitly or implicitly. This paper presents a self-promoting
priority queueing model for patient waiting times which takes into account changes in
health status over time. In this model, most patients arrive as “regular” customers to
the queue, but as the health of a patient degrades, their status is promoted to “priority”
to reflect the increased urgency of the transplant. We model the queueing system
as a level-dependent quasi-birth-and-death process, and the steady-state joint queue
length distribution as well as the marginal delay distributions for each queue are
computed via the use of matrix analytic techniques. The model is calibrated using
liver transplantation wait-list data, provided by a regional health centre in Canada,
which tracked approximately 1,100 patients over nearly 13 years. Blood-type-specific
models are fit and performance measures, such as the mean and distribution of the time
until transplant, are obtained and compared to empirical estimates calculated using
the raw data.
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1 Introduction

Solid organ transplantation is a therapy that is used widely around the world, to treat
patients whose life expectancy can be meaningfully increased by the replacement of
one or more organs that are failing. During the half century or so that transplantation
has been a viable option in the treatment of patients with a failing organ, wait lists
have been established for patients awaiting a suitable organ. In many jurisdictions,
these wait lists have operated under a variety of modifications to the first come, first
transplanted (FCFT) discipline, to account for the patient’s health status. In recent
years, however, patterns have developed which specifies this modification in a formal
way. For example, Wiesner et al. [27] developed the “Model for End-stage Liver Dis-
ease (MELD) Score” as a means for ranking patients periodically so that those whose
health status was degrading more quickly would gain priority access to a deceased-
donor liver. The resulting service discipline used for the liver transplant wait lists does
not fit into the realm of existing FCFT or priority queueing models, since a wait-listed
patient’s priority depends upon their health status, which in turn is influenced by the
amount of time they have spent waiting.

Delays while patients await transplantation are frequently lengthy, often in the order
of years, as has been observed by numerous authors for multiple organ types in a variety
of jurisdictions. A sample of these studies follows which gives an indication of the
variety of contexts in which this problem has been recognized: kidneys in Germany
(Glander et al. [7], Liefeldt et al. [18]), hearts in the UK (Hussey et al. [9]), kidneys
in the US (Zenios et al. [29]) and livers in the US (Barone et al. [2]) and in Canada
(Stanford et al. [21]).

Despite this fact, the use of analytical queueing models specifically to address trans-
plant waiting times on the wait lists has been somewhat limited. The goal of this paper
is to present a full analysis and application of a queueing model which we develop
for liver transplant patients of each ABO blood type that reflects the sickest patient
first aspect and allows for abandonments. We derive the steady-state queue length and
marginal delay distributions. We derive estimators for the parameters, and we cali-
brate and assess the fit of the model using real wait-list data. Our work demonstrates
how queueing theory can produce a model which can be used to provide a reasonable
indication of key performance measures, such as the likelihood of successful trans-
plantation (either prior to or after a degradation in health status), and the likelihood of
abandonment or of death while waiting.

Zenios [28] appears to have been the first to present a queueing model for transplant
waiting times. This queueing model was used in turn by Zenios et al. [29] in their study
of kidney transplant wait lists in the US. The kidney allocation problem was revisited
by Su and Zenios [23], from the perspective of customer choice. Further details on the
specific assumptions of these papers follow later on in this section.
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Stanford et al. [21] combined a statistical analysis of patient placements and
deceased-donor organ availability with a section presenting simple queueing mod-
els to assess the consequences of three strategies to try to close a well-documented
gap between the demand for donor livers and their availability in Canada. The statis-
tical analysis revealed that in most of the Canadian regional liver transplant wait lists
between 2000 and 2004, deceased-donor organ availability was well approximated by
a Poisson process. At the same time, patient placement differed significantly from a
Poisson process in all cases. Working with a GI/M/1 model, the authors investigated
the relative merits of increased donor card signing, greater reliance upon living donors
and a lottery system to allocate the limited number of organs available.

Recently, Stanford et al. [22] used a queueing model to respond to a recent devel-
opment in addressing the so-called “Blood Type O Problem” (see [7]), in which too
many type O organs are cross-transplanted to compatible blood groups, causing notably
longer waits for blood type O recipients due to the reduced supply of O organs. Glander
et al. [7] noted that this frequently has led to situations in which blood type O recip-
ients experience worse health outcomes in terms of statistically significant higher
mortality rates during their longer waiting times. The authors also observed that there
are “poorer graft outcomes” for type O recipients as a result. The analysis in [7,18]
led to a change in the kidney transplant policy employed by the Eurotransplant zone
effective late 2011, insisting upon ABO-identical transplantation. Being aware of this
development, Stanford et al. [22] developed a construct called the “Array of Idealized
Transplant Queues (AITQ)”, which was used to show that an ABO-identical transplant
policy would be incapable in the long run of delivering comparable waiting times for
all blood groups in the Canadian context (and by implication, any jurisdiction with a
close match to the Canadian blood mix of 46 % O, 42 % A, 9 % B and 3 % AB—
see [5]). While ABO-identical transplantation would indeed resolve the blood type O
problem, it would replace it with an even worse problem for patients of blood types B
and AB, due to the relative rarity of these organs in the population at large. The analysis
in [22] established that ABO-identical transplantation would lead to delays typically
five (respectively, 15) times longer for blood group B (respectively, AB) patients in
Canada and other countries with a close mix of blood types in the population.

We note as an aside that there are also studies involving simulations from queue-
ing models which have been used to numerically examine the behaviour of kidney
transplant wait lists; we note in particular the work of Abellán et al. [1] in this regard.
However, we will not be considering simulation models in the remainder of this paper.

The goal of Stanford et al. [22] was to establish the long-run inability of an ABO-
identical transplantation policy to deliver comparable waiting times for all blood
groups. The question being addressed was the long-run system waiting time expe-
rience of the four blood groups, rather than individual patient experience. As such, its
purpose was to address transplant policy, whereas the present paper has as its goal the
development of a queueing model to assess patient waiting times on the wait lists. In
our view, all of the previous models have either ignored or inadequately described one
key aspect of deceased-donor transplant wait lists or another, as we now review. The
interested reader is advised to also review the text in [22] where the distinguishing
factors which arise in transplant queue settings are discussed at some length.
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The first such factor is queue abandonment: the tendency for patients to leave
the wait list due to death, a degradation in health status, personal reasons, or even
in some cases, improvement in patient health to the point where transplantation is
no longer the preferred therapy. Stanford et al. [22] commented upon, but did not
incorporate a mechanism for abandonments, as it affects all blood groups and as
such had secondary impact upon the blood type issue they addressed. Zenios [28] did
account for abandonments, but did so at an exponential rate independent of the queue
length, as opposed to a rate that is proportional to the number on the wait lists, which
is a feature of the model we present herein.

The second factor is the service discipline: the fact that many transplant queues do
not at present typically follow a FCFT discipline, but instead treat wait-listed patients
who experience a degradation in health status on a priority basis (so long as they are
still candidates for transplantation). None of the foregoing transplant papers reflected
this priority aspect, which we attempt to do by invoking the idea of patients who
“self promote” from regular status to priority status at an exponential rate, while wait-
ing. The “self-promoting” literature is fairly extensive, comprising Krishnamoorthy
and Narayanan [11], Wang [26], Gómez-Corral et al. [8], and Krishnamoorthy et al.
[12–15]. In telecommunication systems, the idea of promoting packets with low-
priority status to the high-priority queue is referred to as “priority jumps” and has
been studied in the recent past as well (e.g., Maertens et al. [19], and references
therein).

It is our view that a third factor, not adequately discussed in the queueing models
apart from [22], is the fundamental role that patient and donor ABO status play in deter-
mining individual patient waiting time experience. We feel that it needs to be explicitly
factored into the wait time modelling, as we do, for most jurisdictions in the world. A
particular exception might be the US case, where the transplant system comprises a
large network of centres arranged nationally, regionally and locally, in which organs
are procured under the Organ Procurement and Transportation Network (OPTN) and
allocated under the rules of the United Network of Organ Sharing (UNOS). The UNOS
rules include aspects which indicate under what circumstance compatible transplanta-
tion is allowed or not alongside the decisions about where the organ will be allocated.
The complicated nature of these interactions of the various levels tends to obscure the
role that blood type plays in the US environment. In most jurisdictions that we are
aware of, such as Canada and the Eurotransplant zone, organs are routinely allocated
on an ABO-identical basis. Rules for access to ABO-compatible organs on the basis
of urgent need vary depending on the organ to be transplanted and the jurisdiction.
The numerical examples we present, which considers the experience of one particular
Canadian liver transplantation centre, reflect the fact that there are interlinked wait
lists. The principal way that this will manifest itself herein is that, in the data used
for model calibration, we will aggregate both ABO-identical and ABO-compatible
organs that were transplanted into patients of each of the four blood types.

We remark that the model presented herein is one for deceased-donor transplant
wait lists. It is true that transplanted kidneys and livers can come from deceased donors
or living ones. Widely known in the case of kidneys, this is also true for the liver, one
lobe of which can be grafted into the recipient, while the donor retains the other. While
living-donor transplantation could be viewed as another type of abandonment from
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the queue, such abandonments are planned, not random. We do not directly address
the issue of such planned transplants in our model.

In summary, the pursuit of a suitable analytical queueing model to infer a likely
waiting time for patients awaiting a deceased-donor organ transplantation is both
timely and warranted, given the importance of the problem. The present paper is the
first we are aware of to address the sickest patient first aspect, and to adequately address
the question of abandonments. Such a model would be useful for decision makers to
explore qualitatively the impact of various changes that could arise on the waiting
times experienced by individual patients, in advance of such changes taking place. An
example of potential decision makers, but by far not the only ones, would be teams of
medical professionals and performance modellers interested in exploring the impact
of the types of changes we list below.

Examples of policy changes that would likely impact waiting time include such
aspects as (i) the merging of formerly separate wait lists, (ii) changes in policies regard-
ing ABO-identical versus ABO-compatible cross-transplantation, or the controlled
policies in this regard in light of Stanford et al. [22], (iii) a decrease in deceased-donor
organ rates due to improvements in accident prevention and (iv) in the case of kid-
neys, a change in demand for deceased donor organs (and possibly the blood mix of
the remaining recipients on the list) due to the increased use of “transplant chains”
involving living donors. Other like examples can be thought of readily.

The present work presents a model for patients of each ABO blood type, reflecting
the factors stated above, that can be used to provide a reasonable indication of the
relative likelihood of the possible outcomes that individual patients can experience:
successful transplantation prior to perceived health degradation, successful transplan-
tation as a priority patient due to health degradation, the likelihood of abandonment
or death while waiting, etc., as well as estimates of the time spent waiting.

The rest of the paper is organized as follows. In the next section, the details of our
queueing model are specified. In Sect. 3, the underlying steady-state distribution for
the model is obtained. Delay distributions for high-priority (HP) and low-priority (LP)
wait-listed patients are investigated in the subsequent two sections. Section 6 devel-
ops estimators for the model parameters using a maximum-likelihood-based approach
under a competing risks framework. Section 7 presents the results from an initial case
study of real liver transplantation wait-list data: blood-type-specific models are fit to
this data, and model-based performance measures are compared to qualitatively assess
goodness of fit. The paper ends with some observations and concluding remarks in
Sect. 8.

2 Description of the queueing model

Consider the queueing model depicted in Fig. 1 in which a single server provides
service to two classes (class 1 and class 2) of transplant requests, each having its own
respective line. Wait-listed patients are served on a FCFT basis within their own line.
As organ availability is always the limiting factor, the service time constitutes the
interval from when a wait-listed patient reaches the head of their queue until an organ
becomes available to him/her. Furthermore, class 1 has preemptive priority over class
2, implying that a class-2 patient in service (i.e. next in line to receive an organ) would
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Fig. 1 Proposed queueing model

be preempted by an arriving class-1 patient to the system. Let m < ∞ and n < ∞ be
the buffer sizes of the LP and HP queues, respectively.

We define λ1 and λ2 to be the respective (independent) Poisson arrival rates of HP
and LP patients to the system. We allow for different service rates for HP and LP
patients, both for reasons of generality, and to reflect situations in which patients with
an urgent need for transplant have wider access to deceased-donor organs. Let μ1 and
μ2 be the (individual) independent and exponentially distributed HP and LP service
rates, respectively.

We distinguish between the reneging/abandonment behaviours of the two patient
classes. At the class-1 level, reneging patients leave the system at rate α1 and are
unrecoverable (reflecting deaths and “coming off-list”). In contrast, at the class-2
level, patients renege at rate α2, and either leave the system with probability q (for
patients who die or come off-list) or are immediately promoted to the end of the HP
queue with probability p = 1 − q (reflecting degraded health status still suitable for
transplantation). Once in the HP queue, further reneging for such promoted patients
occurs at the class-1 rate α1. Note that a patient who reaches the service stage is still
subject to potential reneging (since service constitutes waiting for an organ to become
available).

The concept of self-generation of priorities was proposed by Krishnamoorthy and
Narayanan [11] and subsequently analysed in a series of papers by Wang [26], Gómez-
Corral et al. [8] and Krishnamoorthy et al. [12–15], most of which essentially concern
a model where regular customers in a multi-server, single-class queue would “self-
promote” at a constant rate while waiting, independently of other customers in the
queue. A self-promoted customer would displace any non-priority item in service. For
the foregoing models, in the event that no regular customers were found in service, the
promoted customer leaves the queue to obtain urgent service elsewhere. In contrast, our
self-promoted customers join the HP queue and only immediately depart the system
if no waiting space is available in the HP queue.

In this paper, we determine the following main performance measures associated
with our queueing model:

123



Queueing Syst (2015) 79:87–115 93

(i) The steady-state joint queue length probability πi, j = Pr(X L = i, X H = j) for
the number of HP patients, X H , and LP patients, X L , present in the system, as
well as the respective LP and HP blocking probabilities given by

LP Block =
n∑

j=0

πm, j

and

HP Block =
m∑

i=0

πi,n .

The joint queue length distribution {πi, j ; i = 0, 1, . . . ,m, j = 0, 1, . . . , n} is
obtained in Sect. 3.

(ii) The cumulative distribution function (CDF) and moments related to the stationary
waiting time W ∗

H of an originally arriving HP patient who successfully completes
service prior to reneging, obtained in Sect. 4.

(iii) The CDF and moments related to the stationary waiting time W ∗
L ,1 of an arriving

LP patient who successfully completes service within the LP queue prior to
reneging, obtained in Sect. 5.

(iv) The CDF and moments related to the stationary waiting time W ∗
L ,2 of a promoted

LP patient from the point of transfer to the HP queue until that patient successfully
completes service prior to reneging, obtained also in Sect. 5.

(v) The probabilities HPRenege, LPRenege and PromLPRenege representing the
various likelihoods that a patient reneges prior to receipt of an organ. Specifi-
cally, HPRenege is the probability that a patient who arrives as HP will renege,
LPRenege is the reneging probability for a LP patient, and PromLPRenege is the
reneging probability for a HP patient who initially arrived as LP. These proba-
bilities are determined in Sects. 4 and 5.

3 Determination of the steady-state probabilities

Our first objective is to determine the steady-state joint probabilities {πi, j ; i =
0, 1, . . . ,m, j = 0, 1, . . . , n}, where πi, j = Pr(X L = i, X H = j). We say that
the process is “at level i” whenever X L = i . For k ≥ 0, we define the kth steady-state
probability row vector (of dimension n + 1) to be πk = (πk,0, πk,1, . . . , πk,n). Let
π = (π0, π1, . . . , πm) be the concatenated steady-state probability row vector having
a total of m + 1 levels. To determine π , we need to solve 0̃ = πQ where Q is the
infinitesimal generator of the process, and 0̃ = (0, 0, . . . , 0) is the concatenated row
vector (having a total of m + 1 levels) in which 0 denotes a 1 × (n + 1) row vector of
zeros.

With X L serving as the level of the process (and X H as the sub-level), we note that
Q is block structured with blocks Qi, j (of size n + 1) containing all transitions where
X L changes from i to j . Due to the presence of reneging in the model and the fact that
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X L can only change by ±1, we end up with a level-dependent quasi-birth-and-death
(QBD) process having infinitesimal generator of the form

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · m − 2 m − 1 m

0 Q0,0 Q0,1 0 · · · 0 0 0

1 Q1,0 Q1,1 Q1,2
. . . 0 0 0

2 0 Q2,1 Q2,2
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...
...

m − 2 0 0 0 · · · Qm−2,m−2 Qm−2,m−1 0
m − 1 0 0 0 · · · Qm−1,m−2 Qm−1,m−1 Qm−1,m

m 0 0 0 · · · 0 Qm,m−1 Qm,m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

In (1) above, 0 denotes an appropriately dimensioned square matrix of zeros (which,
in this case, is of dimension n + 1). The overall dimension of Q is (m + 1)(n + 1)×
(m + 1)(n + 1).

Note that Q0,1 = Q1,2 = · · · = Qm−1,m = λ2 In+1 where Ik , in general, denotes
the k × k identity matrix. Moreover, it readily follows that

Qi,i−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · n − 1 n

0 μ2+iqα2 i pα2 0 · · · 0 0

1 0 iqα2 i pα2
. . . 0 0

2 0 0 iqα2
. . . 0 0

...
...

. . .
. . .

. . .
...

...

n − 1 0 0 0 · · · iqα2 i pα2
n 0 0 0 · · · 0 iα2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i = 1, 2, . . . ,m.

For notational convenience, we define λ = λ1 +λ2, βi = μ1 +iα1, and γi = μ2 +iα2.
Also, let ek be a 1 × k row vector with 1 as the first entry and zeros everywhere else.
Based on this notation, the diagonal components of Q can be expressed as

Q0,0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · n − 1 n

0 −λ λ1 0 · · · 0 0

1 β1 −(λ+ β1) λ1
. . . 0 0

2 0 β2 −(λ+ β2)
. . . 0 0

...
...

. . .
. . .

. . .
...

...

n − 1 0 0 0 · · · −(λ+ βn−1) λ1
n 0 0 0 · · · βn −(λ2 + βn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Qm,m =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · n−1 n

0 −(λ1+γm) λ1 0 · · · 0 0

1 β1 −(λ1+β1+mα2) λ1
. . . 0 0

2 0 β2 −(λ1+β2+mα2)
. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.

n−1 0 0 0 · · · −(λ1+βn−1+mα2) λ1

n 0 0 0 · · · βn −(βn +mα2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Qi,i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · n−1 n

0 −(λ+γi ) λ1 0 · · · 0 0

1 β1 −(λ+β1+iα2) λ1
. . . 0 0

2 0 β2 −(λ+β2+iα2)
. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.

n−1 0 0 0 · · · −(λ+βn−1+iα2) λ1
n 0 0 0 · · · βn −(λ2+βn +iα2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for i = 1, 2, . . . ,m − 1.
Level-dependent QBDs have been well studied in the literature (for example, see

Bright and Taylor [4]), and it is possible to adapt a computational procedure proposed
by Gaver et al. [6] to calculate the steady-state probabilities associated with our model,
which we now summarize below. The equilibrium equations in block form are as
follows:

0 = π0 Q0,0 + π1 Q1,0, (2)

0 = λ2π i−1 + π i Qi,i + π i+1 Qi+1,i , i = 1, 2, . . . ,m − 1, (3)

0 = λ2πm−1 + πm Qm,m . (4)

Solving (3) and (4) in a backward fashion ultimately yields

π i = π0

i∏

j=1

R j , i = 1, 2, . . . ,m, (5)

where the set of matrices {R j }m
j=1 satisfy the recursive relation

R j = −λ2
(
Q j, j + R j+1 Q j+1, j

)−1
, j = 1, 2, . . . ,m − 1,
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with

Rm = −λ2 Q−1
m,m .

Defining R0 = Q0,0 + R1 Q1,0, (2) becomes

π0 R0 = 0. (6)

The summation of all the probabilities can be expressed as

π01′
n+1 + π0 R11′

n+1 + π0 R1 R21′
n+1 + · · · + π0 R1 R2 . . . Rm1′

n+1 = 1, (7)

where 1′
k , in general, denotes a k × 1 column vector of ones. Factoring out π0 from

(7) and defining the column vector

u′ =
⎛

⎝In+1 +
m∑

i=1

i∏

j=1

R j

⎞

⎠ 1′
n+1,

(6) and (7) give rise to the following system of linear equations which must be solved
to determine π0, namely

π0[R0, u′] = (0, 1). (8)

In (8) above, [R0, u′] and (0, 1) represent concatenated matrices of sizes (n + 1) ×
(n + 2) and 1 × (n + 2), respectively. Once π0 is determined, we obtain π i , i ≥ 1,
via (5).

4 Delay distributions for HP transplant requests

We focus initially on the stationary distribution of a random variable WH , representing
the duration of time from the arrival of an external HP patient to the system until this
patient successfully completes service. We refer to WH as the “nominal” HP patient
delay, as we implicitly assume that there is room in the HP queue for the arriving
patient to enter the system, and that the arriving HP patient is not subject to reneging.
(Later on, we will incorporate the reneging behaviour of this patient in our analysis.)

Define the following conditional steady-state probabilities, given that a random HP
arrival is able to enter the HP queue:

θi, j = πi, j

1 − HP Block
, i = 0, 1, . . . ,m, j = 0, 1, . . . , n − 1.

Let FH (ω), ω ≥ 0, denote the CDF of WH . Assuming successful entry into the HP
queue, the PASTA property (for example, see Tijms [25], Theorem 2.4.1) ensures that
our tagged Poisson-arriving HP patient finds the system in state (i, j)with probability
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θi, j . Therefore, conditioning on the state of the system encountered upon entry, we
obtain

FH (ω) =
m∑

i=0

n−1∑

j=0

θi, j Pr(WH ≤ ω
∣∣ X L = i, X H = j). (9)

Due to the nature of the preemptive service rule in place, the quantity Pr(WH ≤
ω

∣∣ X L = i, X H = j) does not depend upon the number of LP transplant requests
present upon arrival of our tagged HP patient, so that (9) reduces to

FH (ω) =
n−1∑

j=0

θ•, j Pr(WH ≤ ω
∣∣ X H = j), (10)

where θ•, j = ∑m
i=0 θi, j denotes the marginal distribution of the HP queue length.

With X H = j , we observe that WH initially consists of the total time required to
clear the j class-1 patients ahead of the newly arriving HP patient. Since all class-1
patients ahead of this HP patient might renege (including the one receiving service
at rate μ1), the total delay (including the service time of our tagged HP patient) can
be represented by

∑ j
k=0 Y H

k , a sum of j + 1 independent random variables in which
each Y H

k is exponentially distributed at rate βk = μ1 + kα1. The resulting distribution
is a member of the phase-type family of distributions (for example, see Latouche and
Ramaswami [16], Chapter 2), so that

Pr(WH ≤ ω
∣∣ X H = j) = 1 − e j+1 exp{Tj+1ω}1′

j+1, (11)

where Tj+1 is a ( j + 1)× ( j + 1) matrix of the form

Tj+1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β j β j 0 · · · 0 0

0 −β j−1 β j−1
. . . 0 0

0 0 −β j−2
. . . 0 0

...
. . .

. . .
. . .

...
...

0 0 0 · · · −β1 β1
0 0 0 · · · 0 −β0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Substituting (11) into (10), it is possible to express the distribution of WH in terms of
a single, succinct phase-type representation of dimension n, namely

FH (ω) = 1 −	nexp{Tnω}1′
n,

where 	n is the 1 × n row vector given by 	n = (θ•,n−1 , θ•,n−2 , . . . , θ•,1 , θ•,0).
We now incorporate the reneging behaviour that our tagged HP patient can exhibit

while residing in the system. Let W ∗
H denote the “actual” HP patient delay, representing

the arriving HP patient’s total time spent in system (which incorporates successfully
completing service prior to reneging). For ω ≥ 0, G H (ω) = Pr(W ∗

H ≤ ω) =

123



98 Queueing Syst (2015) 79:87–115

Pr(WH ≤ ω | WH ≤ RH ) where RH denotes an exponentially distributed random
variable, independent of WH , with mean 1/α1. Making use of fundamental matrix
algebraic techniques, the following expressions for G H (ω) and the moments of W ∗

H
are ultimately derived:

G H (ω) = 1 − Pr(WH > ω
∣∣WH ≤ RH )

= 1 − Pr(ω < WH ≤ RH )

Pr(WH ≤ RH )

= 1 −
∫ ∞
ω

Pr(WH > ω)α1e−α1x dx − ∫ ∞
ω

Pr(WH > x)α1e−α1x dx

1 − ∫ ∞
0 Pr(WH > x)α1e−α1x dx

= 1 − 	nexp{Tnω}[In −α1(α1 In −Tn)
−1]1′

ne−α1ω

1 − α1	n(α1 In −Tn)−11′
n

(13)

and

E(W ∗r
H ) = r !	n

[
In − α1(α1 In − Tn)

−1
]
(α1 In − Tn)

−r 1′
n

1 − α1	n(α1 In −Tn)−11′
n

, r = 1, 2, . . . . (14)

Note that the denominators of (13) and (14) involve a quantity which we denote by
HP Renege= α1	n(α1 In−Tn)

−11′
n , representing the probability our tagged HP patient

abandons the HP queue prior to an organ becoming available to him/her.

5 Delay distributions for LP transplant requests

We next determine stationary delay distributions associated with the arrival of an
arbitrary LP patient to the system. First of all, we focus our attention on a random
variable WL ,1, which we define as the duration of time from the arrival of a LP patient
to the system until this patient successfully completes service within the LP queue.
Therefore, as in the definition of WH from the previous section, we refer to WL ,1 as the
nominal LP patient delay, and likewise assume that there is room in the LP queue for
the arriving patient to enter the system, and that the arriving LP patient is not subject
to reneging. (We will incorporate the reneging behaviour of this patient in our analysis
later.)

We begin by defining similar conditional steady-state probabilities, namely

φi, j = πi, j

1 − LP Block
, i = 0, 1, . . . ,m − 1, j = 0, 1, . . . , n.

We next introduce several row vectors required in the subsequent analysis. First of all,
we define δi to be a 1 × (n + 1) row vector with 1 in position i , i = 1, 2, . . . , n +
1, and zeros everywhere else. Next, let φ

i
= (φi,n, φi,n−1, φi,n−2, . . . , φi,0), i =

0, 1, . . . ,m − 1. Furthermore, let φ̃
i

= (φ
i
, 0, 0, . . . , 0) be the concatenated row

vector having a total of m − i levels. φ̃
i

has an overall dimension of (m − i)(n + 1),

i = 0, 1, . . . ,m − 1. If we now define � = (φ̃
m−1

, φ̃
m−2

, φ̃
m−3

, . . . , φ̃
0
) to be the
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concatenated row vector of dimension  = ∑m−1
i=0 (m−i)(n+1) = m(m+1)(n+1)/2,

then by construction, �1′
 = 1.

Upon entry to the system, our tagged Poisson-arriving LP patient must not only
wait for all LP patients in front of it to clear, but for all HP patients, including those
present upon arrival as well as those arriving later to be cleared from the system. (This
potentially includes promoted LP patients who queued behind the tagged LP patient.)
As a result, WL ,1 can be modelled as the time to absorption in a Markov chain with
infinitesimal generator of the form

P =
[

R −R1′


0̂ 0

]
,

where 0̂r , in general, denotes a 1 × r row vector of zeros and the rate matrix R
corresponds to the following state space partitioning:

(i) Level i—the number i of LP patients in front of our tagged LP patient, i =
0, 1, . . . ,m − 1;

(ii) Phase j—the number j of LP patients who queue behind our tagged LP patient,
j = 0, 1, . . . ,m − i − 1;

(iii) Sub-phase k—the number k of HP patients present in the system, k = 0, 1, . . . , n.

Based on the permissible values that i, j , and k can assume, one can readily verify that
the cardinality of this state space equals , the total number of elements comprising
the row vector �.

In regard to this state space partitioning, the form of the matrix R is given by

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m − 1 m − 2 m − 3 · · · 1 0

m − 1 Am−1 Bm−1 0 · · · 0 0

m − 2 0 Am−2 Bm−2
. . . 0 0

m − 3 0 0 Am−3
. . . 0 0

...
...

. . .
. . .

. . .
...

...

1 0 0 0 · · · A1 B1
0 0 0 0 · · · 0 A0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

In (15) above, the diagonal blocks A0,A1, . . . ,Am−1, corresponding to state transi-
tions in which the number of LP patients in front of our tagged LP patient does not
change, are such that Ai is a square matrix of block dimension m − i in which
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Ai =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · m−i −2 m−i −1

0 F (i)
0 λ2 In+1 0 · · · 0 0

1 α2D F (i)
1 λ2 In+1

. . . 0 0

2 0 2α2D F (i)
2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

m−i −2 0 0 0 · · · F (i)
m−i−2 λ2 In+1

m−i −1 0 0 0 · · · (m−i −1)α2D F (i)
m−i−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where D, the (n + 1) × (n + 1) matrix governing the state transitions in which the
number of queued LP patients behind our tagged LP patient decreases by one, is given
by

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

n n − 1 n − 2 · · · 1 0

n 1 0 0 · · · 0 0

n − 1 p q 0
. . . 0 0

n − 2 0 p q
. . . 0 0

...
...

. . .
. . .

. . .
...

...

1 0 0 0 · · · q 0
0 0 0 0 · · · p q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The off-diagonal blocks B1,B2, . . . ,Bm−1 in (15), corresponding to state transitions
which reduce the LP queue in front of our tagged LP patient by one, are such that Bi

is a (m − i)× (m − i + 1) block matrix given by

Bi =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · m−i −1 m−i

0 Ci 0 0 · · · 0 0

1 0 Ci 0
. . . 0 0

2 0 0 Ci
. . . 0 0

...
...
. . .

. . .
. . .

...
...

m−i −1 0 0 0 · · · Ci 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where Ci = μ2(δ
′
n+1 ⊗ δn+1) + iα2D and “⊗” denotes the Kronecker prod-

uct operator. Finally, to obtain the diagonal blocks of Ai (i.e. the rate matrices
F (i)

0 ,F (i)
1 , . . . ,F (i)

m−i−1 in which the only state transitions occur within the HP queue)
for i = 0, 1, . . . ,m − 1, we make use of our earlier assumption that the tagged LP
patient does not renege, and the fact that the row sums of P must be equal to 0. This
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enables us to determine

F (i)
m−i−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n n−1 n−2 · · · 1 0

n −[βn +(m−1)α2] βn 0 · · · 0 0

n−1 λ1 −[λ1+βn−1 +(m−1)α2] βn−1

.
.
. 0 0

n−2 0 λ1 −[λ1 +βn−2 +(m−1)α2]
.
.
. 0 0

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

1 0 0 0 · · · −[λ1 +β1 + (m−1)α2] β1

0 0 0 0 · · · λ1 −(λ1 +γm−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

F (i)
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n n−1 n−2 · · · 1 0

n −[λ2 +βn +(i + j)α2] βn 0 · · · 0 0

n−1 λ1 −[λ+βn−1+(i + j)α2] βn−1

.
.
. 0 0

n−2 0 λ1 −[λ+βn−2 +(i + j)α2]
.
.
. 0 0

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

1 0 0 0 · · · −[λ+β1+(i + j)α2] β1

0 0 0 0 · · · λ1 −(λ+γi+ j )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for j = 0, 1, . . . ,m − i − 2.
With these pieces in place, the time to absorption in such a Markov chain is once

again phase-type distributed, and so the CDF of WL ,1 is given by

FL ,1(ω) = 1 −� exp {Rω}1′
.

However, we now incorporate the reneging behaviour of the tagged LP patient by
defining W ∗

L ,1 to be the actual LP delay (i.e. the arriving LP patient’s total time spent
in system to achieve successful service within the LP queue). Clearly, GL ,1(ω) =
Pr(W ∗

L ,1 ≤ ω) = Pr(WL ,1 ≤ ω|WL ,1 ≤ RL) where RL denotes an exponentially
distributed random variable, independent of WL ,1, with mean 1/α2. Following the
same approach which led to the derivation of (13) and (14), we ultimately obtain

GL ,1(ω) = 1 − �
[
I − α2(α2 I − R)−1

]
exp {Rω}1′

e−α2ω

1 − α2�(α2 I − R)−11′


(16)

as well as

E(W ∗r
L ,1) = r !� [

I − α2(α2 I − R)−1
]
(α2 I − R)−r 1′



1 − α2�(α2 I − R)−11′


, r = 1, 2, . . . . (17)

We remark that the denominators of (16) and (17) involve the LP reneging probability
LPRenege = α2�(α2 I − R)−11′

 .
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We next turn our attention to characterizing the distribution of WL ,2, which we
define as the nominal delay experienced from the point of transfer to the HP queue
of a promoted LP patient until that patient successfully completes service. We remark
that this distribution will look different than that which is perceived by the externally
arriving class-1 stream, as the instants at which promotions occur is clearly dependent
upon the present length of the LP queue. However, conditional on encountering j
class-1 patients ahead of the promoted LP patient, the results of the previous section
can still be applied to ascertain that the nominal delay the promoted patient experi-
ences in order to complete service is phase-type distributed with rate matrix given by
(12). The difference will lie in the initial probability vector to use in connection with
this phase-type distribution, as 	n from the previous section is no longer appropri-
ate.

As a means of identifying the proper initial probability vector to use, we track
the potential path our tagged LP patient can take with respect to three distinct final
outcomes (or dispositions) within the LP queue. We label these final outcomes as
follows:

F1 ≡ tagged LP patient completes successful service in the LP queue,
F2 ≡ tagged LP patient reneges and exits the system from the LP queue, and
F3 ≡ tagged LP patient receives promotion to the HP queue.

The event F3 can be further broken down into elemental final outcomes F3 =
{ fn, fn−1, . . . , f0}, where fi represents the outcome in which our tagged LP patient
finds i class-1 patients ahead of it upon promotion. Note that fn represents the outcome
that the HP queue is full at the instant of promotion. As a matter of completeness,
we include fn in the set F3 (although its associated probability will be singled out
later on as a blocking probability of interest). Let �F = {F1, F2, fn, fn−1, . . . , f0}
be the set of states corresponding to these final outcomes. Also, let �L repre-
sent the set of states corresponding to our tagged LP patient residing in the LP
queue, having the same state space partitioning as the rate matrix R above. In
order to track which of these final outcomes the tagged LP patient ultimately expe-
riences, we introduce the following Markov chain with underlying infinitesimal
generator

Q =
(�L �F

�L S T
�F 0 0

)
,

where S = R−α2 I. Recall that the matrix R given by (15) did not take into account
the reneging behaviour of our tagged LP patient. However, our current treatment neces-
sitates the incorporation of this reneging behaviour, and as such, the definition of S
includes the additional term −α2 I. Furthermore, the block-structured matrix T is
given by
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T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 F2 fn fn−1 · · · f0

m−1 0̂
′
n+1 qα21′

n+1 pα2(1′
1⊗δ′1) pα2(1′

1⊗δ′2) · · · pα2(1′
1 ⊗ δ′n+1)

m−2 0̂
′
2(n+1) qα21′

2(n+1) pα2(1′
2⊗δ′1) pα2(1′

2⊗δ′2) · · · pα2(1′
2⊗δ′n+1)

m−3 0̂
′
3(n+1) qα21′

3(n+1) pα2(1′
3⊗δ′1) pα2(1′

3⊗δ′2) · · · pα2(1′
3⊗δ′n+1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 0̂
′
(m−1)(n+1) qα21′

(m−1)(n+1) pα2(1′
m−1⊗δ′1) pα2(1′

m−1⊗δ′2) · · · pα2(1′
m−1⊗δ′n+1)

0 μ2(1′
m ⊗δ′n+1) qα21′

m(n+1) pα2(1′
m ⊗δ′1) pα2(1′

m ⊗δ′2) · · · pα2(1′
m ⊗δ′n+1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We wish to determine the absorption probabilities into each of the n + 1 states of
F3, which we denote by ψ( fi ), i = 0, 1, . . . , n. This is accomplished by analysing
the embedded Markov chain (or jump process) associated with the above continuous-
time Markov chain. Specifically, the (one-step) transition probability matrix of the
associated jump process is given by (for example, see Syski [24], p. 14)

P =
( �L �F

�L I − diag(S)−1S −diag(S)−1T
�F 0 In+3

)
, (18)

where diag(S) denotes the matrix containing only S diagonal entries. The fundamental
matrix (for example, see Pinsky and Karlin [20], p. 142) associated with (18) works
out to be

[
I −

(
I − diag(S)−1S

)]−1 = S−1diag(S),

from which it readily follows that

ψ( fi ) = �S−1diag(S)
(
−diag(S)−1T ′

n+3−i

)
= �(α2 I − R)−1T ′

n+3−i ,

where T ′
n+3−i denotes the (n + 3 − i)th column of T , i = 0, 1, . . . , n. Of particular

relevance is the quantity ψ( fn), which represents the probability that the tagged LP
patient encounters a full HP queue at the instant of its promotion (and is thus denied
entry and subsequently exits the system). In other words, ψ( fn) is another blocking
probability of interest. In keeping with our earlier choice of notation, we also let
PromLPBlock = ψ( fn).

Clearly,
∑n

i=0 ψ( fi ) = p · LPRenege, and so the 1 × n row vector

�n = 1

p · LPRenege − ψ( fn)

(
ψ( fn−1), ψ( fn−2), . . . , ψ( f0)

)

contains the (normalized) probabilities for the number of potential HP patients present
in the HP queue at the instant that the LP patient is successfully promoted to the HP
queue. With this analogue of	n in hand, we make use of the phase-type distributional
results of the previous section to immediately obtain
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FL ,2(ω) = Pr(WL ,2 ≤ ω) = 1 −�nexp{Tnω}1′
n .

In addition, the associated delay distribution defined by the conditional random vari-
able W ∗

L ,2 = WL ,2
∣∣ (WL ,2 ≤ RH ) has CDF

GL ,2(ω) = 1 − �n exp{Tnω}[In −α1(α1 In −Tn)
−1]1′

ne−α1ω

1 − PromLPRenege

and moments of the form

E(W ∗r
L ,2) = r !�n

[
In − α1(α1 In − Tn)

−1
]
(α1 In − Tn)

−r 1′
n

1 − PromLPRenege
, r = 1, 2, . . . ,

where PromLPRenege = α1 �n(α1 In − Tn)
−11′

n represents the probability that a
self-promoted LP patient leaves the system prior to an organ becoming available to
him/her.

6 Model calibration via a parametric competing risks framework

Solid organ transplantation wait-list data differ from the usual queueing perspective in
several aspects. A patient’s arrival time, waiting time, and service time are still tracked,
but there are additional complications due to both abandonments (for example, deaths
and coming off-list) and self-promotion in priority due to health degradation. In this
context, the cause for a patient to leave the queue needs to be tracked as well as their
time in the system; such data can be modelled using a “competing risks” framework
(for example, see Kalbfleisch and Prentice [10] or Lawless [17]).

To be specific, we are interested in simultaneously modelling more than one event
time variable. Consider the arrival of a LP patient, who can exit the LP queue either by
obtaining a transplanted organ, or by reneging (i.e. promotion to the HP queue, death,
or recovery to off-list status). If such a patient left the system as a result of obtaining
a transplanted organ, then we know not only the exact time of this event, but we also
know that their time to renege would have been longer (i.e. their reneging time is right
censored). Conversely, had the patient reneged, then their time to transplant would
have been right censored.

We have assumed that external arrivals to both queues follow independent Poisson
processes and that the transplant and reneging times are exponentially distributed. In
this parametric modelling context, it is possible to construct a likelihood function that
incorporates the notion of a competition between the class-specific transplantation
and reneging rates. Given data, the model can then be calibrated by estimating the
parameters using a maximum-likelihood-based approach. The suitability of assuming
exponential inter-availability times was discussed at length in Stanford et al. [21], and
that result was employed in [22] to show why it is reasonable to make that assumption
in the presence of random ABO-compatible transplantation.

Consider the case of two generic competing risks represented by the event time
random variables T1 and T2. When the observed times {ti ; i ∈ Z

+} can be viewed as
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independent, our likelihood function is given by L = ∏
i Li , where

Li =
(

fT1(ti ) [1 − FT2(ti )]
)δi ·

(
[1 − FT1(ti )] fT2(ti )

)1−δi
. (19)

In (19) above, δi is an indicator function taking the value 1 if the i th event was due to the
type 1 event, and 0 if it was due to the type 2 event, while fTj (·) and FTj (·), j = 1, 2, are
used to denote the respective probability density and cumulative distribution functions
for the two competing event times.

It is not possible to directly employ the likelihood approach outlined above using T1
as the system time of a LP patient and T2 as the corresponding time to renege, because
the system times of successive patients are not independent. Rather, they are highly
correlated since successive system times in a heavily loaded queue will have a great
degree of overlap. Instead, we consider the sequence of observed “inter-exit times”
within each priority stream, which we assume are at least approximately independent.

Calibration of the LP stream using maximum likelihood based on the sequence of
observed inter-exit times from the LP queue proceeds as follows. Suppose n2 such
exit events are observed in the LP queue over the duration of the study period, and that
these are indexed by i . Let the random variable Ti denote the i th inter-exit time, and let
ti be its observed value. Here, Ti = min{T1i , T2i }, where T1i is the random time until
the next LP transplantation and T2i is the random time until the next abandonment. The
i th inter-exit time then contributes the factor Li from (19) to the likelihood function
L , where δi is an indicator of successful service.

Due to the memoryless property of the exponential distribution, each residual time
to transplant remains exponentially distributed at rate μ2. Each residual time until the
first abandonment from the LP queue is also still exponentially distributed (because it
is the minimum of a finite number of independent exponential random variables), but
at an accelerated rate of α2(t) = N2(t)α2, where N2(t) represents the random number
of LP patients waiting at time t . In this context, the likelihood function for the LP
stream is approximately proportional to

L(μ2, α2; t1, t2, . . . , tn2) =
n2∏

i=1

(
μ2e−μ2ti ·e−α2(ti )ti

)δi ·
(

e−μ2ti ·α2(ti )e
−α2(ti )ti

)1−δi
.

(20)
The likelihood function given by (20) is an approximation, because we do not allow

for N2(t) to vary during an inter-exit time due to new arrivals to the LP queue. To
further simplify our estimation scheme, we assume a fixed value for the LP queue
size, setting N2(t) = N2 ∈ Z

+. Our rationale for this restriction is that, although there
is fluctuation in the LP queue size, it appeared to remain fairly constant in the liver
transplant data we consider in the next section.

Given such data, the maximum likelihood estimates (MLEs), obtained by maxi-
mizing the log-likelihood (with respect to the parameters), are as follows:

μ̂2 =
∑n2

i=1 δi∑n2
i=1 ti

and α̂2 =
∑n2

i=1(1 − δi )

N2
∑n2

i=1 ti
.
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We observe that if there were no abandonments and no censoring, then the estimated
service rate would be the reciprocal of the average service time, as one would expect
from a random sample of an exponential distribution.

In our framework, the probability p of being promoted to HP status occurs at
random. LP patients who renege are considered to either immediately “self-promote”
to the HP queue with probability p, or to exit the system with probability q = 1 − p,
independently of the others. The total number of reneging LP patients who become
promoted is thus a binomial random variable, whose MLE p̂ is well known to be the
empirical proportion of “successes”. In our context, p̂ is the observed proportion of
reneging LP patients who receive promotion to the HP queue.

The calibration of the HP stream follows by analogy to the LP case described above.
The LP and HP streams are analysed separately due to the assumption that HP patients
are served on a FCFT basis, regardless as to how they entered that queue. Suppose that
there were n1 customers who entered the HP queue, either directly as a new arrival
or through reneging from the LP queue, and that these observations are indexed by j .
The resulting MLEs for the HP parameters are

μ̂1 =
∑n1

j=1 δ
∗
j∑n1

j=1 t j
and α̂1 =

∑n1
j=1(1 − δ∗j )

N1
∑n1

j=1 t j
,

where δ∗j is an indicator function taking the value 1 if the j th HP patient successfully
achieved service, {t j ; j ∈ Z

+} are the observed inter-exit times in the HP queue, and
N1 is the (assumed) number of HP patients present in the queue at any given instant.

Finally, the class-specific arrivals are assumed to follow separate, homogeneous
Poisson processes, and we assume that patients arrive independently to the queueing
system. In this context, the MLEs are clearly λ̂1 = n1/S and λ̂2 = n2/S, where S
denotes the length of the study period.

7 Case study: analysis of liver transplantation data

In this section, we present an analysis of liver transplantation wait-list data provided
by a regional health centre in Canada, under its Research Ethics Board guidelines for
secondary use of anonymous information. Anonymous parameters were derived from
a data set of nearly 1,100 patients who were on that region’s liver wait list from January
2000 through December 2012, inclusive. A status and date profile was provided for
each patient. This information tracked changes to each patient’s CanWAIT (Canadian
wait-listing algorithm in transplantation) status for human livers over the duration of
their stay on the wait list. The ordinal set of CanWAIT status codes for a human liver
are described in Table 1 (adapted from Bazarah et al. [3], Table 2).

As noted in [3], donor livers are typically allocated and transplanted regionally.
However, patients with a CanWAIT status of 3F, 4, or 4F are considered “high-status
patients”, and are placed on a national wait list. Donor livers are directed to these
patients as they become available from anywhere in the country. We categorized such
patients as our HP patients, while the remaining patients with CanWAIT scores of 1,
1T, 2, or 3 were considered to be LP patients. Patients with initial scores in this range,
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Table 1 Canadian wait-listing algorithm in transplantation (CanWAIT) status codes for liver transplantation
(adapted from Bazarah et al. [3], Table 2)

CanWAIT status Patient criteria

1 At home

1T At home with a liver tumour

2 In hospital in stable condition

3 In intensive or equivalent care facility but not requiring mechanical support, with
either: Creatinine >200 mmol/L or rising by >50 mmol/L/day; or, Grade 3 or 4
encephalopathy

3F In intensive or equivalent care facility for fulminant liver failure but not on
mechanical support, who fulfils the King’s College criteria for high risk of
mortality without liver transplantation

4 In intensive care requiring mechanical ventilation support; without liver
transplantation, death is considered imminent

4F In intensive care requiring mechanical ventilation for fulminant liver failure,
including nonfunction of a primary graft; without liver transplantation, death is
considered imminent

0 On hold

whose health subsequently degraded to a 3F, 4, or 4F status, were considered to be
LP patients who self-promoted to the HP queue. If a patient was placed “on hold”
(a CanWAIT score of 0), then we assumed that their priority in the queue did not
change during the period they were in that status. In addition, although some short-
duration oscillations between the LP and HP states were observed in the records of
some patients, these were ignored and those patients were treated as if they stayed in
the originating priority stream for the entire period in question.

Estimates for each of the model’s parameters were obtained via the methodology
outlined in Sect. 6. Estimates for N1 and N2, the number of patients in each respective
priority stream at any given instant of time, were obtained by viewing time-series plots
of the moving average of each of the two priority queue sizes. A set of ABO blood-type-
specific estimates appears in Table 2. Due to the disparate relative frequencies of blood
types in Canada (for example, see [5]), no results for blood type AB are presented.
There were only about 60 type AB patients and of these, less than a dozen patients
entered the HP queue (either directly or through self-promotion). Consequently, the
corresponding parameter estimates were deemed not to be reliable. Blood types A and
O each had over 400 patients in the wait-list records and approximately 130 patients
had type B blood.

We remark that the LP placement rate for type O of 0.08214 per day is about 10 %
higher than type A’s placement rate of 0.07665 per day, which reflects the Canadian
blood mix of 46 % type O versus 42 % type A quite nicely (for example, see [5]).
In contrast to this, the type A transplantation rate of 0.05830 per day is itself about
10 % higher than the type O value of 0.05354 per day. In the case of ABO-identical
transplantation, we would anticipate the reverse situation, so this seems to suggest
that recipients of type A must be getting a non-trivial number of type O livers. This
is in keeping, qualitatively at least, with what has been reported in other jurisdictions
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Table 2 Blood-type-specific parameter estimates for the study data

Parameter Type O Type A Type B

λ1 0.01605 0.01225 0.00465

λ2 0.08214 0.07665 0.02196

μ1 0.11888 0.37037 0.20968

μ2 0.05354 0.05830 0.01449

α1 0.05828 0.05926 0.14516

α2 0.00096 0.00148 0.00120

p 0.23810 0.20430 0.23404

N1 1 1 1

N2 31 13 9

Note that the blood type AB results are not presented due to small-sample effects, as this blood type is rare
in Canada

Table 3 Blood-type-specific buffer sizes used and blocking probabilities obtained for the study data

Quantity Type O Type A Type B

m 65 40 20

n 3 3 3

LP Block 0.000735 0.000171 0.001226

HP Block 0.001064 0.000039 0.000003

PromLP Block 0.000116 0.000003 0.000000

(for example, see Glander et al. [7], Liefeldt et al. [18] and other references listed in
Stanford et al. [22]). The estimates also suggest that there is about one HP placement
for every 5 LP placements for blood types O and B, and about one HP placement for
every 6 LP placements for blood type A.

The model was run under three scenarios (i.e. for each of blood types O, A and B),
corresponding to the sets of parameter estimates given in Table 2. The buffer sizes used
for our model, along with the corresponding set of blocking probabilities obtained,
are displayed in Table 3 for each blood-type-specific case. We remark that the chosen
values for m and n yield negligible blocking probabilities in all cases.

Figures 2 through 4 display the estimated cumulative distribution functions of the
system times for three different categories of successfully transplanted patients. Each
figure presents model-based and empirically estimated results for the three blood-
type-specific models. We note that Figs. 2 and 3 are measured in days, while Fig. 4 is
measured in months, reflecting the fact that LP patients who ultimately get transplanted
in the LP queue wait much longer than individuals who are transplanted as HP patients.

Figures 2 and 3 compare the empirical waiting times of HP patients with the results
of our model for patients who arrived directly to the HP queue and for LP arrivals
that subsequently self-promoted to the HP queue, respectively. For LP arrivals that
subsequently self-promoted to the HP queue, the “system time” we display starts at
the moment of promotion. Typically, the percentiles estimated from the models are

123



Queueing Syst (2015) 79:87–115 109

Fig. 2 Model-based (solid red
lines) and empirical-based
(dashed black lines) estimates
for the cumulative distribution
functions of the system time of a
successfully transplanted HP
patient who entered the system
originally as an HP patient.
Results for each of the
blood-type-specific models
appear in separate panels (Color
figure online)
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similar to the corresponding empirical percentiles. The empirical results for blood
type B are more variable, which is not surprising as this blood type is less common.
Less than a dozen patients with type B blood self-promoted from LP to HP, which
explains why the bottom panel of Fig. 3 is not as smooth as the empirical cumulative
distribution functions for types O and A.

Whereas our HP results might be described as adequate, the same could not be said
for the LP queue. In contrast to the consistency of the HP results, Fig. 4 reveals that
the LP system time forecast by the model can be overly conservative for short delays,
and can fail to capture the extreme tail of the empirical waiting time distribution. Upon
reflection and further analysis of the source data records, it appears that the empirical
behaviour is consistent with the operation of a wait list involving three priority levels.
Specifically, patient codes 0 through 3 are being further pooled into two distinct priority
classes, and not a single class as we have considered here. This possibility calls for
investigation of other centres, to see whether what we have observed at the health
centre under study is common there as well. In parallel, it suggests that a three-class
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Fig. 3 Model-based (solid red
lines) and empirical-based
(dashed black lines) estimates
for the cumulative distribution
functions of the system time of a
successfully transplanted HP
patient who originally arrived as
a LP patient and subsequently
self-promoted to the HP queue.
Here, system time is measured
from the time of promotion to
the HP queue. Results for each
of the blood-type-specific
models appear in separate panels
(Color figure online)
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Table 4 Model-based and empirical-based estimates of reneging rates, stratified by the blood type of the
patient

Blood type and rate estimate Overall LP LP abandon only HP Promoted LP

Type O (model) 0.4348 0.3313 0.3522 0.3527

Type O (empirical) 0.3779 0.2879 0.3289 0.3429

Type A (model) 0.2749 0.2187 0.1420 0.1423

Type A (empirical) 0.2562 0.2039 0.1379 0.1579

Type B (model) 0.3730 0.2857 0.4123 0.4125

Type B (empirical) 0.4519 0.3462 0.4091 0.4545

Overall LP is the overall reneging rate from the LP queue, while LP abandon only is the abandonment rate.
HP is the reneging rate of HP patients who arrived directly to that priority stream, while Promoted LP is the
reneging rate of HP patients who arrived as LP patients and subsequently self-promoted to the HP queue
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Fig. 4 Model-based (solid red
lines) and empirical-based
(dashed black lines) estimates
for the cumulative distribution
functions of the system time of a
LP patient who was successfully
transplanted within the LP
queue. Results for each of the
blood-type-specific models
appear in separate panels (Color
figure online)
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analogue of the model being presented here should be pursued, even if the present
model may indeed prove to be adequate at a wide range of health centres.

We remark that the existence of a multi-level clinical distinction of patient acuity
such as CanWAIT rarely translates operationally class for class, in the second author’s
experience, to a multi-priority queue. Typically, there are either two priority classes,
or three priority classes as we have observed at play here. An iterative model building
approach, aided by expert perception of what is occurring, medically and mathemati-
cally, is therefore needed to determine the number of priority classes in operation.

Table 4 compares the model-based reneging rates for each of the three separate
models to the corresponding empirically observed rates. The overall reneging rate from
the LP queue as well as the abandonment rate of LP patients from the entire system
are given. Separate reneging rates for the two types of HP patients, namely those who
directly arrived to the HP queue and those who arrived as a LP patient and subsequently
self-promoted to the HP queue, are also given. In general, the model-based reneging
rates exceed those observed in the data for blood type O. A similar pattern is also seen
for the blood type A results, although the model-based and empirical-based estimates
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Table 5 Model-based and empirical-based estimates of the mean system times (measured in days) for
patients who were successfully transplanted, along with their corresponding standard deviations (SDs)

Model mean Empirical mean Model SD Empirical SD

Type O model

Successful direct-entry HP 6.1 6.2 6.0 5.7

Successful self-promoted LP 6.1 6.1 6.0 6.4

Successful LP 581.5 474.9 156.5 532.5

Type A model

Successful direct-entry HP 2.4 4.8 2.4 4.1

Successful self-promoted LP 2.4 5.2 2.4 4.6

Successful LP 209.2 306.5 104.0 304.3

Type B model

Successful direct-entry HP 2.8 4.5 2.8 4.1

Successful self-promoted LP 2.8 5.7 2.8 5.8

Successful LP 360.2 528.7 211.7 508.2

Results are given for each of the blood-type-specific models. The system times for three different types of
patients are considered: direct-entry HP patients, self-promoted LP patients and LP patients who never left
the LP queue

are in relatively close agreement. For the type B model, the opposite is observed, and
there is close agreement for the reneging rates of patients who entered directly as HP.

Table 5 presents model-based and sample-based estimates for the mean system
times, as well as the corresponding estimated standard deviations, for the different
categories of patients who were successfully transplanted. The model means for direct-
entry HP patients and self-promoted LP patients are similar for type O patients and
so are the corresponding standard deviations. The empirical means for successful HP
patients—regardless as to how they entered that stream—are about twice as large than
what is estimated by the model for type A and type B patients, and the corresponding
empirical standard deviations are also larger than those based on the fitted models.
Conversely, the model-based estimated mean system time for successful LP patients
is much larger than the HP means, regardless of blood type. For type A and type B
patients, the empirical mean time to transplant for LP patients is larger than the model
means. The empirical standard deviations for the mean time to transplantation as a LP
patient are also quite large, reflecting the fact that there are some patients who appear
to spend a very long time in the LP queue, without abandoning that queue or self-
promoting to the HP queue due to health degradation, who eventually get successfully
transplanted.

Overall, these results seem to suggest that our model of LP system time fails to
capture the high observed variability in waiting times, and the HP models are generally
overly conservative. Future work will need to pursue all of the following avenues:
revisiting the model assumptions regarding placement and abandonment rates, refining
the parameter estimates and testing the model against observed data from other wait
lists. Nonetheless, we remark that a queueing model would still be a useful decision-
making tool if it could be used qualitatively to explore the impact of various policy
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changes. Its use is not primarily a matter of forecasting the likelihood of delays as
experienced by individual patients placed on the wait list.

8 Concluding remarks

We have presented a model for estimating patient waiting times in deceased-donor
transplant queues, which reflects both the propensity for patients to renege from the
queue, and to self-promote to urgent status. Performance measures of interest we
obtain include the waiting time distributions and their moments, the queue length
distributions and the reneging probabilities. These results are obtained for patients
who are urgent when placed on the wait list, for those who have a regular status
and receive their organ in regular status, and for those regular status placements who
become urgent prior to transplantation.

In addition to the probabilistic results, which take the form of matrix geometric
solutions for the queue lengths and phase-type distributions for the waiting times,
we also have presented a maximum-likelihood-based procedure for estimation of the
model parameters. These results were then applied to study a single liver transplanta-
tion centre in Ontario. Whereas the fit of waiting time for patients transplanted with an
urgent status appeared to be appropriate, the fit for the regular stream of patients was
deemed inadequate, since it appeared that the wait list comprised three priority classes
operationally. Future work will proceed along two directions. On the one hand, we
hope to be able to apply the data to other transplantation centres, to see if our two-class
priority model is appropriate. On the other, we plan to extend the existing results to
allow for a third priority class. The approach would parallel the methodology used in
the two-class case.

We remind readers that some of the estimates in the previous section were based
on the analysis of relatively small samples of data, in particular for the case of blood
type B in the overall population. Furthermore, we felt that our estimates of AB data
were too imprecise to be reliable, as they were based on too few data values. More
precise estimates could be obtained through an analysis of longer records or through
analysis of data from multiple health centres over the same study period.

Our model’s assumption that all blood types have the same propensity to renege
per unit time waiting is consistent with the medical view that blood type does not
influence health degradation. Nonetheless, the longer a patient waits, the greater the
chance for that patient to experience degraded health. The results obtained from our
model suggest a substantial discrepancy in the HP reneging rate for blood type B than
for blood types O and A; however, once again one needs to view this in the context of
small numbers of urgent patients of all blood types. It would seem that further work
to statistically estimate the abandonment parameters is called for.

Finally, it is clear that donor allocation in transplantation is a complex system
depending on several interacting clinical and administrative events. We believe we
have shown that this system is, despite its complexity, amenable to logical analysis
using standard queueing theory. Further work is needed in terms of adequate parameter
estimation, and other possible refinements to the modelling assumptions noted above
may be needed after further numerical investigations.
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